A prolog based HIPAA online
compliance auditor

Anthony Ho Sharada Sundaram
March 20, 2008

1 Introduction

With the passing of HIPAA in 1996, multiple health-organizations have become
increasingly interested in technological methods of safeguarding health informa-
tion in order to reduce their legal liability and manage costs. With the primary
goal of enforcing medical privacy, the Privacy Rule of HIPAA deals specifically
with how health information can be disclosed by covered entities.

2 Background

The idea of modeling HIPAA using Prolog was inspired by Adam Barth during
collaborations between Vanderbilt hospital and researchers at Stanford with
Prof John Mitchell. Vanderbilt hospital required an easy to maintain system
that would enable them to verify whether or not a messages passing through
a portal enabling patients to access their health information online was legal
under HIPAA. A small protype on this line was also built by Steve Neuyen and
Nicole Taheri as CURIS project.

3 Objectives

The purpose of this project was first to determine if we could use such a Prolog
representation of HIPAA to discover weaknesses in the law, which allow unau-
thorized entities to gain access to information they should not be able to access.
For instance, we wanted to determine if an insider to a covered entity can ob-
tain unauthorized access to protected health information. Similarly, could an
outsider gain unauthorized access?

Our secondary objective was to analyze the feasibility of using Prolog to
model laws and its applicability as a HIPAA verifier. One is as a monitor that
checks if messages being sent are legal under HIPAA. The second is as a way
for us to analyze security properties of HIPAA.



4 Model

Using XSB, an open-source Prolog implementation, we developed a model of
HIPAA sections 164.502 and 164.506, and some referenced sections, which de-
scribe the circumstances under which disclosures of protected health information
is allowed. Our choices when designing the model in Prolog is a result of the
two purposes the model will have. One is as a monitor that checks if messages
being sent are legal under HIPAA. The second is as a way for us to analyze
security properties of HIPAA.

All disclosures of protected health information were represented as a message
containing seven fields. Those fields were To, From, About, Type, Purpose, In
Reply To, and Consented By. The To and From fields indicate the recipient and
sender of the message. The About field identifies who the information contained
in the message refers to. The Type field indicates what kind of information is
contained in the message. The Purpose field indicates the reason for which the
message is being sent. The In Reply To field was added to model a disclosure
where the message is sent as a result of being requested. The Consented By
field indicates the information that is being sent in the message was allowed to
be released by the information’s owner.

Firstly we translated parts of HIPAA into its corresponding prolog interpre-
tation making reasonable assumptions and maintaining the structure of the law.
A hospital environment was also simulated in prolog to verify the working and
regulation of HIPAA. Our Prolog program is run by invoking an overarching
rule as message transfer in between the agents of hospital that checks whether a
message is legal under HIPAA. The rule works by checking other rules which rep-
resented subsections of HIPAA in the program. Each rule is then subsequently
checked until the all sub-goals could be terminated at a number of facts.

5 Analysis

In order to analyze HIPAA using our Prolog program, each message would be
passed in a query to the overarching rule that checked all of HIPAA. However,
our Prolog model is also flexible in that it allows us to check if a message is
allowed by only a specific subsection by querying the rule that represents that
section directly.

Unlike other analysis tools, Prolog does not have a built-in invariant mecha-
nism that monitors whether or not a property is violated. Thus in order to test
security properties of HIPAA using Prolog, potential attacks must be explicitly
tested by executing queries for each potential problem.

We developed two types of tests to enable the testing of security properties.
The first test contained a separate set of Prolog rules and facts. These test rules
each individually test a particular clause of the HIPAA law implemented in our
Prolog model. This test helped us verify that the implementation of HIPAA in



Prolog is correct as we interpret it. The second test was a script which iterated
through all combinations of values for each field. We analyzed the results output
from the script to determine if anything seemed to be unusual.

6 Results

The test cases are effective for verifying whether each implemented clause is
working as expected. We were able to correct problems that were discovered
after the results of some of the verification test cases were incongruent with our
understanding of the HIPAA rules.

By analyzing the results of our bash script test, we were able to discover
weaknesses in HIPAA. In a test run of the script, we discovered that many
unexpected messages were being allowed. We found that this was due to the
following clause in HIPAA allows the covered entity to disclose information for
its own operations.

6.1 Insider gaining access

164.506 Uses and disclosures to carry out treatment, payment, or health care
operations. (c) Implementation specifications: Treatment, payment, or health
care operations. (1) A covered entity may use or disclose protected health
information for its own treatment, payment, or health care operations.

HIPAA only regulates the use of protected health information by a covered
entity and does not specify what should become of the information once it leaves
the entity. If the recipient is not a covered entity, he or she could potentially dis-
close protected health information. For instance, what happens if a contractor
working on renovations in the vicinity of protected health information disclosure
happens to overhear some of the details of the information? He does not seem
to be legally prevented by HIPAA to disclose the information later.

Furthermore, it does not seem that HIPAA has specified any measure to
prevent a doctor who obtains protected health information because he needs to
treat patients from revealing that information later once he is no longer part of
the covered entity. If the doctor quits his job or retires, he may no longer be
obligated to maintain the confidentiality of the information he has obtained.

6.2 Outsider gaining access

Another flaw we discovered is that there are some rules that allow a covered
entity to disclose protected health information to outside individuals. For ex-
ample, consider the following clause:

164.502 Uses and disclosures of protected health information: general rules.
(a) Standard. A covered entity may not use or disclose protected health infor-
mation, except as permitted or required by this subpart or by subpart C of part



160 of this subchapter. (2) Required disclosures. A covered entity is required
to disclose protected health information: (ii) When required by the Secretary
under subpart C of part 160 of this subchapter to investigate or determine the
covered entity’s compliance with this subpart.

In this case, once the Secretary receives the protected health information,
can the Secretary then disclose the protected health information? There is
nothing we could find in HIPAA that prevents the Secretary from then disclosing
the information. However, it is possible that other laws can prevent this from
happening.

Since HIPAA does not explicitly regulate these disclosures, we cannot be
sure the disclosures outlined above are legal or not. This problem can be fur-
ther looked into by those with legal backgrounds. However, since the primary
purpose of the Privacy law is to protect health information, we believe these
two weaknesses to be a violation of the goals of the Privacy Rule.

7 Conclusions

After working with Prolog for the past several weeks, we have come up with
some opinions on the utility of Prolog as a security analysis tool and a law
verifier. It is important to make a distinction between the two uses. A security
analysis tool should contain capabilities that enhance the analyst’s ability to
discover new attacks, while a law verifier should be easy to use and contain
conventions that facilitate the translation of the law to the language of the
verifier. Prolog exhibits both positive and negative characteristics when judged
in consideration with those two slightly different requirement sets. As a security
analysis tool, Prolog is useful in that it allows us to quickly check using a query
whether any of our pre-conceived attacks work. A security analyst with a Prolog
model of the rules governing the protocol can potentially execute queries that
probe the vulnerabilities of the protocol. XSB also contains a debugger for
Prolog that allows the user to describe why a given query is satisfied or how it
failed. However, it would be useful if a visualization of the satisfied goals and
facts could be automatically generated rather than having to walk through the
debugger a step by step to determine the reason a query passes.

The main drawback in using Prolog for security analysis is that a Prolog
program does not seem to be able to compute potential security weaknesses on
its own, at least in the way we have decided to model the law. All security
weaknesses must be thought of in advance and only then can it be quickly
verified by a query. For example, in order to find an attack, we must set up
the facts and queries in such a way that we believe may yield an unexpected
acceptance of a message. If we did not setup the environment correctly, the
attack will not be discovered. Finite-state model checkers such as Murphi seem
to be better suited to finding unknown and unexpected weaknesses, but the
problem with modeling HIPAA with Murphi is that the law will be difficult to
implement in Murphi.



As a law verifier, Prolog exhibits many positives traits. For instance, the
logic in legal clauses often maps directly to the logic of Prolog rules. In addition,
these Prolog rules are subsequently easy to understand. However, one of the
main problems with using a language to model law is that law is open to inter-
pretation. Small differences in the translation of the law can yield significant
differences in the behavior of the model. Fortunately, this problem is mitigated
by the fact that Prolog is easy to read and therefore easily validated by auditors.

Another potential problem with using Prolog as a message legality verifier is
that it may be prone to DOS attacks. This is because when the Prolog verifier
fails a query, it must search all subgoals to see if any subgoal can potentially
allow the query to pass. If the HIPAA law were implemented in its entirety, this
could take a significant amount of time. However, this problem only applies if
the Prolog program is used to monitor messages.

Although there are problems with using Prolog as a security analysis tool and
law verifier, there are also benefits to using it. As a security analysis tool, the
fact that Prolog cannot search for potential attacks is a significant limitation.
Unfortunately, it is one of the few choices available for modeling laws. Given the
size of most legal documents, analyzing laws using other tools would be require
an extraordinary amount of work. Therefore, we believe that the positives of
Prolog such as the readability and efficient translation from law to rules warrant
further investigation to see if Prolog can be better used to model law.



