
CS 259 2008

Contract-Signing Protocols

J. Mitchell

Before contract signing …

Questions about projects? Want help?
• Contact Arnab this week for suggestions

Discussion of security properties
• Authentication
• Secrecy

Precise definitions
• Set of runs of a system
• When a run violates a security condition

– Definition of successful attack
• Safety vs liveness properties

Protocol

A Protocol is defined by a set of roles, and
initial conditions (if needed)
What is a role?
• A “program” executed at one site
• Includes communication, internal actions

What are initial conditions?
• Example: each agent has a secret key, shared

only with the server
• Example: each agent knows the public

verification key for every other agent’s digital
signature key

Example roles: NSL protocol

new m;
send encrypt(Key(Y), 〈X,m〉);
recv encrypt(Key(X), 〈m, Y, n〉);
send encrypt(Key(Y), n)

recv encrypt(Key(Y), 〈X,m〉);
new n;
send encrypt(Key(X), 〈m, Y, n〉);
recv encrypt(Key(Y), n)

Initial conditions: each agent has a private key and
knows the public keys of other agents

“Alice”

“Bob”

Execution model

Initial configuration
• Set of principals and keys
• Assignment of ≥1 role to each principal

Run
send (…)new x

A

receive (…)
B

send (…)new y
C

Honest principals follow roles of the protocol; some agents may be dishonest
Actions can be arranged in a linear trace

Data “known” to agent

At each point in run, each agent knows
• All the data provided by initial conditions

– Public keys, a private key, shared secret key, …
• All the data generated by that agent

– Fresh nonces chosen at random, new keys, …
• All the messages received
• Any data derivable from this information

– Can decrypt a message if decryption key known

Symbolic representation of data and symbolic characterization
of “data knowledge” is called “the Dolev-Yao model.”

Protocol correctness

A
B

Initiate

Respond

C

D

Attacker

Correct if no security violation in any run

Correctness conditions

Authentication
• Idea: “I know I am talking to you”
• Formalization 1

– If Alice initiates conversation by sending to Bob, then
data she receives was generated by Bob for Alice.

• Formalization 2
– If Alice completes the initiator role, sending messages

to Bob, then Bob completes the responder role with
the same messages in the same order.

– One-to-one correspondence between sessions
• Your thoughts and alternatives?

Correctness conditions

Secrecy
• Idea: “The attacker does not know our secrets”
• Formalization 1

– The session key cannot be computed from the data
available to the attacker.

• Formalization 2
– The entire conversation between Alice and Bob is

indistinguishable (to others) from a run with
completely different nonces, keys, etc.

• Your thoughts and alternatives?

Safety vs Liveness

Trace property
• Property is true of a system iff it is true for all

traces (runs) of the system
Safety property
• Bad things do not happen
• Examples: no deadlock, no page fault, …

Liveness property
• Good things do happen (eventually)
• Example: every process gets scheduled to run

Safety vs Liveness

Safety property
• “Bad things do not happen”

∀ traces t, possibly infinite:
P(t) iff ∀ t’ < t. P(t’)

• If a safety property fails, it fails at some finite point
Liveness property
• “Good things do happen (eventually)”

∀ finite initial traces s: ∃ trace t. P(st)

• A liveness property holds if every beginning of a trace
can be extended to one with the desired property

Contract Signing

Two parties want to sign a contract
• Multi-party signing is more complicated
The contract is known to both parties
• The protocols we will look at are not for

contract negotiation (e.g., auctions)
The attacker could be
• Another party on the network
• The “person” you think you want to sign a

contract with

Example

Immunity
•deal

Seller advertises and
receives bids
Buyer may have several
choices

Both parties want to sign a contract
Neither wants to commit first

Another example: stock trading

Willing to sell stock at price X

Ok, willing to buy at price X

stock broker customer

Why signed contract?
• Suppose market price changes
• Buyer or seller may want proof of agreement

Network is Asynchronous

Physical solution
• Two parties sit at table
• Write their signatures simultaneously
• Exchange copies
Problem
• How to sign a contract on a network?

Fair exchange: general problem of exchanging
information so both succeed or both fail

Fundamental limitation

Impossibility of consensus
• Very weak consensus is not solvable if one or more

processes can be faulty
Asynchronous setting
• Process has initial 0 or 1, and eventually decides 0 or 1
• Weak termination: some correct process decides
• Agreement: no two processes decide on different values
• Very weak validity: there is a run in which the decision is

0 and a run in which the decision is 1
Reference
• M. J. Fischer, N. A. Lynch and M. S. Paterson,

Impossibility of Distributed Consensus with One Faulty
Process. J ACM 32(2):374-382 (April 1985).

Implication for fair exchange

Need a trusted third party (TTP)
• It is impossible to solve strong fair exchange

without a trusted third party.
The proof is by relating strong fair exchange to the
problem of consensus and adapting the impossibility
result of Fischer, Lynch and Paterson.

Reference
• H. Pagnia and F. C. Gärtner, On the impossibility

of fair exchange without a trusted third party.
Technical Report TUD-BS-1999-02, Darmstadt
University of Technology, March 1999

Two forms of contract signing

Gradual-release protocols
• Alice and Bob sign contract
• Exchange signatures a few bits at a time
• Issues

– Signatures are verifiable
– Work required to guess remaining signature decreases
– Alice, Bob must be able to verify that what they have

received so far is part of a valid signature

Add trusted third party

Easy TTP contract signing

A BTTP
signature signature

contractcontract

Problem
• TTP is bottleneck
• Can we do better?

Optimistic contract signing

Use TTP only if needed
• Can complete contract signing without TTP
• TTP will make decisions if asked
Goals
• Fair: no one can cheat the other
• Timely: no one has to wait indefinitely

(assuming that TTP is available)
• Other properties …

A general protocol outline

I am going to sign the contract

A B
I am going to sign the contract

Here is my signature

Here is my signature

Trusted third party can force contract
• Third party can declare contract binding if

presented with first two messages.

Commitment (idea from crypto)

Cryptographic hash function
• Easy to compute function f
• Given f(x), hard to find y with f(y)=f(x)
• Hard to find pairs x, y with f(y)=f(x)
Commit
• Send f(x) for randomly chosen x
Complete
• Reveal x

Refined protocol outline

sign(A, 〈contract, hash(rand_A)〉)

A B
sign(B, 〈contract, hash(rand_B)〉)

rand_A

rand_B

Trusted third party can force contract
• Third party can declare contract binding by

signing first two messages.

Optimistic Protocol [Asokan, Shoup, Waidner]

A B

Input:
PKA, T, text

Input:
PKB, T, text

m1 = sigA (PKA, PKB, T, text, hash(RA))

m2 = sigB (m1, hash(RB))

m3 = RA

m4 = RB

m1, RA, m2, RB

Contract from normal execution

Contract issued by third party

Abort token issued by third party

Asokan-Shoup-Waidner Outcomes

m1, RA, m2, RB

sigT (m1, m2)

sigT (abort, a1)

Role of Trusted Third Party

T can issue a replacement contract
• Proof that both parties are committed
T can issue an abort token
• Proof that T will not issue contract
T acts only when requested
• decides whether to abort or resolve on

the first-come-first-serve basis
• only gets involved if requested by A or B

Resolve Subprotocol

T

BNetA Net

r1 = m1, m2r2

aborted?
Yes: r2 = sigT (abort, a1)
No: resolved := true

r2 = sigT (m1, m2)

r2

m1 = sigA (… hash(RA))

m3 = ??? m4 = ???

m2 = sigB (… hash(RB))

sigT (m1, m2)

sigT (abort, a1)

OR

Abort Subprotocol

A m2 = ??? BNetwork

T

a1 = sigA (abort, m1)

a2

resolved?
Yes: a2 = sigT (m1, m2)
No: aborted := true

a2 = sigT (abort, a1)

m1 = sigA (… hash(RA))

sigT (m1, m2)

sigT (abort, a1)

OR

Fairness and Timeliness

If A cannot obtain B’s signature, then
B should not be able to obtain A’s signature

Fairness

and vice versa

“One player cannot force the other to wait --
a fair and timely termination can always be

forced by contacting TTP”

Timeliness

[Asokan, Shoup, Waidner Eurocrypt ‘98]

Asokan-Shoup-Waidner protocol

BA

m1= sign(A, 〈c, hash(r_A)〉)

sign(B, 〈m1, hash(r_B)〉)
r_A
r_B

Agree

A B
Network

T

Abort

???a1

sigT (a1,abort) If not already
resolved

Resolve Attack?

BA Net

T sigT (m1, m2)

m1

???

m2 A

T

Contract Consistency Attack

M

r2 = sigT (m1, m2)

m1 = sigA (... hash(RA))

m2 = sigB (m1, hash(RB))

m3 = RA

T

r1 = m1, m2

secret QK, m2

contracts are
inconsistent!

sigT (m1, m2) m1, RM, m2, QK

Replay Attack

A

Later ...

sigM (PKA, PKB, T, text, hash(RA))

B

Intruder causes B
to commit to old
contract with A

sigK (m1, hash(QB))

RA

B
RA

sigA (… hash(RA))

RB

sigB (... hash(RB))

QB

Fixing the Protocol

A B

Input:
PKA, T, text

Input:
PKB, T, text

m1 = sigA (PKA, PKB, T, text, hash(RA))

m2 = sigB (m1, hash(RB))

m3 = RA

m4 = RB

sigA (, hash(RB))

m1, RA, m2, RB

Desirable properties

Fair
• If one can get contract, so can other
Accountability
• If someone cheats, message trace shows

who cheated
Abuse free
• No party can show that they can

determine outcome of the protocol

Abuse-Free Contract Signing

[Garay, Jakobsson, MacKenzie]

B

PCSA(text,B,T)

PCSB(text,A,T)

sigA(text)

sigB(text)

A

Preventing “abuse” [Garay, Jakobsson, MacKenzie]

Private Contract Signature
• Special cryptographic primitive
• B cannot take msg from A and show to C
• T converts signatures, does not use own

Role of Trusted Third Party

T can convert PCS to regular signature
• Resolve the protocol if necessary
T can issue an abort token
• Promise not to resolve protocol in future
T acts only when requested
• decides whether to abort or resolve on a

first-come-first-served basis
• only gets involved if requested by A or B

Resolve Subprotocol

BA Net

T

r1 = PCSA(text,B,T), sigB(text)

aborted?
Yes: r2 = sigT(a1)
No: resolved := true

r2 = sigA(text)
store sigB(text)

r2

PCSA(text,B,T)

???

PCSB(text,A,T)

sigT(a1)

sigA(text)

OR

Abort Subprotocol

A ??? BNetwork

T

a1=sigA(m1,abort)

a2

resolved?
Yes: a2 = sigB(text)
No: aborted := true

a2 = sigT(a1)

m1 = PCSA(text,B,T)

sigB(text)

sigT(a1)

OR

Garay, Jakobsson, MacKenzie

BA

PCSA(text,B,T)

PCSB(text,A,T)
sigA(text)
sigB(text)

Agree

A B
Network

T

m1 = PCSA(text,B,T)

Abort

???

Resolve Attack

BA Net

T PCSA(text,B,T)
sigB(text)

PCSA(text,B,T)

???

PCSB(text,A,T) B

T

sigT(abort)

abort AND
sigB(text) abort

Leaked by T

Attack

B
PCSA(text,B,T),

sigB(text)
sigT(abort)

PCSA(text,B,T)

PCSB(text,A,T)

T

sigA(abort)

sigT(abort)
Leaked by T

abort AND sigB(text) only abort

Repairing the Protocol

B
PCSA(text,B,T),
PCSB(text,A,T)

PCSA(text,B,T)

PCSB(text,A,T)

T

If T converts PCS into a
conventional signature,
T can be held accountable

Balance

No party should be able to unilaterally
determine the outcome of the protocol

Balance may be violated even if basic fairness is satisfied!

Stock sale example: there is a point in the protocol where
the broker can unilaterally choose
whether the sale happens or not

Can a timely, optimistic protocol be fair AND balanced?

Advantage

Willing to sell stock at price X

Ok, willing to buy at price X

Must be able to ask TTP to cancel this
instance of protocol, or will be stuck
indefinitely if customer does not respond

stock broker customer

Can go ahead and complete the sale, OR
can still ask TTP to cancel

(TTP doesn’t know customer has responded)

Optimistically waits for broker to respond …

Chooses whether deal will happen:
does not have to commit stock for sale,
can cancel if sale looks unprofitable

Cannot back out of the deal:
must commit money for stock

“Abuse free”: as good as it gets

Specifically:
• One signer always has an advantage over

the other, no matter what the protocol is

• Best case: signer with advantage cannot
prove it has the advantage to an outside
observer

Theorem

In any fair, optimistic, timely
contract-signing protocol, if one
player is optimistic*, the other player
has an advantage.

* optimistic player: waits a little before
going to the third party

Abuse-Freeness

No party should be able to unilaterally
determine the outcome of the protocol

Balance impossible

No party should be able to prove that
it can unilaterally determine
the outcome of the protocol

Abuse-Freeness

How to prove something like this?

Define “protocol”
• Program for Alice, Bob, TTP
• Each move depends on

– Local State (what’s happened so far)
– Message from network
– Timeout

Consider possible optimistic runs
Show someone gets advantage

Key idea (omitting many subtleties)

Define “power” of a signer (A or B)
in a state s

if A can get contract by reading
a message already in network,
doing internal computation

if A can get contract by
communicating with TTT,
assuming B does nothing

otherwise

2

1

0

PowerA(s) =

Look at optimistic transition s → s’
where PowerB(s’) =1 > PowerB(s) = 0.

Advantage (intuition for main argument)

If PowerB(s) = 0 → PowerB(s’) =1 then
• This is result of some move by A

– PowerB(s) = 0 means B cannot get contract
without B’s help

• The move by A is not a message to TTP
– The proof is for an optimistic protocol, so we

are thinking about a run without msg to T
• B could abort in state s

– We assume protocol is timely and fair: B must
be able to do something, cannot get contract

• B can still abort in s’, so B has advantage!

Conclusions

Online contract signing is subtle
• Fair
• Abuse-free
• Accountability

Several interdependent subprotocols
• Many cases and interleavings

Finite-state tools great for case analysis!
• Find bugs in protocols proved correct

Proving properties of all protocols is harder
• Understand what is possible and what is not

