CS 259 2008

Contract-Signing Protocols

J. Mitchell

Before contract signing ...

€ Questions about projects? Want help?
» Contact Arnab this week for suggestions

@ Discussion of security properties
» Authentication
- Secrecy

® Precise definitions
+ Set of runs of a system

* When a run violates a security condition
- Definition of successful attack
- Safety vs liveness properties

Protocol

® A Protocol is defined by a set of roles, and
initial conditions (if needed)

® What is a role?

* A "program” executed at one site
» Includes communication, internal actions

&€ What are initial conditions?

+ Example: each agent has a secret key, shared
only with the server

»+ Example: each agent knows the public
verification key for every other agent's digital
signature key

Example roles: NSL protocol

new m;

send encrypt(Key(Y), (X,m)):
recv encrypt(Key(X), (m, Y, n));
send encrypt(Key(Y), n)

>~ "Alice"

AN

recv encrypt(Key(Y), (X,m));
new n; >
send encrypt(Key(X), (m, Y, n)): “Bob”
recv encrypt(Key(Y), n) /

Initial conditions: each agent has a private key and
knows the public keys of other agents

Execution model

@ ILnitial configuration
+ Seft of principals and keys
+ Assignment of >1 role to each principal

€ Run

new X send (...)
JA > l > >
s g receive (2 I g N

newy send (...)>

C >

>

Honest principals follow roles of the protocol; some agents may be dishonest
Actions can be arranged in a linear trace

Data "known" to agent

€ At each point in run, each agent knows
» All the data provided by initial conditions
- Public keys, a private key, shared secret key, ...

» All the data generated by that agent
- Fresh nonces chosen at random, new keys, ...

» All the messages received

* Any data derivable from this information
- Can decrypt a message if decryption key known

Symbolic representation of data and symbolic characterization
of “data knowledge” is called “the Dolev-Yao model.”

Protocol correctness

Initiate

~ -
-~
~ -
-~

-
-
-
-
-
-
____—
—
-
—— -

Correct if no security violation in any run

Correctness conditions

& Authentication

» Idea: "I know I am talking to you"

- Formalization 1
- If Alice initiates conversation by sending to Bob, then
data she receives was generated by Bob for Alice.
- Formalization 2

- If Alice completes the initiator role, sending messages
to Bob, then Bob completes the responder role with
the same messages in the same order.

- One-to-one correspondence between sessions
* Your thoughts and alternatives?

Correctness conditions

& Secrecy
« Idea: "The attacker does not know our secrets”

- Formalization 1

- The session key cannot be computed from the data
available to the attacker.

- Formalization 2

- The entire conversation between Alice and Bob is
indistinguishable (to others) from a run with
completely different nonces, keys, etc.

* Your thoughts and alternatives?

Safety vs Liveness

€ Trace property

* Property is true of a system iff it is true for all
traces (runs) of the system

& Safety property

» Bad things do not happen

» Examples: no deadlock, no page fault, ...
®Liveness property

» Good things do happen (eventually)
+ Example: every process gets scheduled to run

Safety vs Liveness
& Safety property
» "Bad things do not happen”

V traces t, possibly infinite:
P(t) iff Vvt <t.P(t)

» If asafety property fails, it fails at some finite point

@ Liveness property
» "Good things do happen (eventually)”

V finite initial traces s: 3 trace t. P(st)

» A liveness property holds if every beginning of a trace
can be extended to one with the desired property

Contract Signing

€ Two parties want to sign a contract
* Multi-party signing is more complicated
® The contract is known to both parties

» The protocols we will look at are not for
contract negotiation (e.g., auctions)

&® The attacker could be

» Another party on the network

* The "person” you think you want to sign a
contract with

Example

Seller advertises and
receives bids

Buyer may have several — — — -
choices |

€ Both parties want to sign a contract
&®Neither wants to commit first

Another example: stock trading

S

Willing to sell stock at price X

>
Ok, willing to buy at price X

stock broker customer

€ Why signed contract?

- Suppose market price changes
* Buyer or seller may want proof of agreement

Network is Asynchronous

®Physical solution
» Two parties sit at table
» Write their signatures simultaneously
- Exchange copies

®Problem

» How to sign a contract on a network?

Fair exchange: general problem of exchanging
Information so both succeed or both fail

Fundamental limitation

@ Impossibility of consensus
Very weak consensus is not solvable if one or more
processes can be faulty
€ Asynchronous setting
» Process has /nitial O or 1, and eventually decides O or 1
Weak termination. some correct process decides
- Agreement. no two processes decide on different values
Very weak validity. there is a run in which the decision is
O and a run in which the decision is 1
€ Reference

- M. J. Fischer, N. A. Lynch and M. S. Paterson,
Impossibility of Distributed Consensus with One Faulty
Process. I ACM 32(2):374-382 (April 1985).

Impllca‘rlon for fcur exchange

®Need a trusted third party (TTP)

+ It is impossible to solve strong fair exchange
without a trusted third party.

The proof is by relating strong fair exchange to the
problem of consensus and adapting the impossibility
result of Fischer, Lynch and Paterson.

®Reference

» H. Pagnia and F. C. Gartner, On the impossibility
of fair exchange without a trusted third party.
Technical Report TUD-BS-1999-02, Darmstadt
University of Technology, March 1999

Two forms of contract signing

€ Gradual-release protocols
» Alice and Bob sign contract
» Exchange signatures a few bits at a time

- Issues
- Signatures are verifiable
- Work required to guess remaining signature decreases

- Alice, Bob must be able to verify that what they have
received so far is part of a valid signature

€ Add trusted third party

Easy TTP contract signing

signature signature
> <
< >
contract contract
®Problem

- TTP is bottleneck
- Can we do better?

OPTImISTIC con’rrac’r S|gn|n9

®Use TTP only if needed
- Can complete contract signing without TTP

- TTP will make decisions if asked

&® Goals

- Fair: no one can cheat the other

» Timely: no one has to wait indefinitely
(assuming that TTP is available)

* Other properties ...

A general protocol outline

| am going to sign the contract

| am going to sign the contract

Here is my signature

Here is my signature

& Trusted third party can force contract

» Third party can declare contract binding if
presented with first two messages.

Commleen’r (|dea from crypTo)

OCryp’rogmphlc hash func’rlon
» Easy to compute function f
+ Given f(x), hard to find y with f(y)=f(x)
* Hard to find pairs x, y with f(y)=f(x)
®Commit
+ Send f(x) for randomly chosen x
& Complete

- Reveal x

Refined protocol outline

sign(A, (contract, hash(rand_A)))

sign(B, (contract, hash(rand_B)))

rand_A

rand B

& Trusted third party can force contract

» Third party can declare contract binding by
signing first two messages.

Optimistic Protocol rasokan, shoup, Waiher]
Input: Input:
PKa, T, text PKg, T, text

m, = sigy (PK,, PKg, T, text, hash(Rpa))
e ——

m, = sigg (M4, hash(Rg))
i

M3 = Rp
———————————————————————
m, = Rp

—

mq, Ry, My, Ry

Asokan-Shoup-Waidner Outcomes

& Contract from normal execution

my, RA, mo, RB

& Contract issued bE third party

& Abort token issued by third party

sig+ (abort, a,)

Role of Trusted Third Party

€ T can issue a replacement contract
* Proof that both parties are committed

€ T can issue an abort token
* Proof that T will not issue contract

€ T acts only when requested

- decides whether to abort or resolve on
the first-come-first-serve basis

- only gets involved if requested by A or B

Resolve Subprotocol

My =Siga (... hash(R,))
—
m, = sigg (... hash(Rg))

aborted?
P sior(m.m) < Yes: r, = sigr (abort, ay)
OR No: resolved := true

sig+ (abort, a,) 2= Sigr (Mg, M)

Abort Subprotocol

ETR

Yes: a,=sigr(mq, m,)

OR

_ No: aborted := true
sigr (abort, a,) a, = sigr (abort, a,)

Fairness and Timeliness

Falrness

If A cannot obtain B’s signature, then
B should not be able to obtain A’s signature

_ _ and vice versa
Timeliness

“One player cannot force the other to walit --
a fair and timely termination can always be

forced by contacting TTP”

[Asokan, Shoup, Waidner Eurocrypt ‘98]

Asokan-Shoup-Waidner protocol

Agree

m1= sign(A, {c, hash(r__A))Z)
- sign(B, (m1, hash(r_B)))

r A .
- r B sig- (a,,abort) If not already
resolved
Resolve Attack?

A ©
o

Contract Consistency Attack
My = Sigp (... hash(R,))

m, = sigg (M4, hash(Rp))

rl—m1 m,

[, = Sigt (ml

Replay Attack

<— Sigg (... hash(Rg)) — . 8
- RB

Later ...

Sigy (M4, hash(Qg))

Fixing the Protocol

Input: Input:
PK,, T, text PKg, T, text

= S|gA (PK,, PKg, T, text, hash(R,))

2 = Sigg (M, hash(Rg))

3 = sig, (R, , hash(Rg))

Desirable properties

®Fair
» If one can get contract, so can other

& Accountability

+ If someone cheats, message trace shows
who cheated

m) Abuse free

* No party can show that they can
determine outcome of the protocol

Abuse-Free Contract Signing

[Garay, Jakobsson, MacKenzie]

PCS,(text,B,T)
—

PCSg(text,A,T)
B —————————————————

Sig(text)
e

sigg(text)

Pr'even’ring "abuse” [Garay, Jakobsson, MacKenzie]

®Private Contract Signature
- Special cryptographic primitive
* B cannot take msg from A and show to C
- T converts signatures, does not use own

Role of Trusted Third Party

€ T can convert PCS to regular signature
* Resolve the protocol if necessary

€ T can issue an abort token
* Promise not to resolve protocol in future

€ T acts only when requested

- decides whether to abort or resolve on a
first-come-first-served basis

- only gets involved if requested by A or B

Resolve Subprofocol

PCS,(text,B,T)
—_—
PCSg(text,A,T)

P

aborted?
Yes: r,=sigr(a;)
No: resolved .= true
I, = sig,(text)
store sigg(text)

m, = PCS,(text,B,T)
—_—

B
277

a;=slga(m,abort)

do

sigg(text) resolved?
Yes: a, = sigg(text)
OR No: aborted :=true

Garay, Jakobsson, MacKenzie

Agree Abort
PCS,(text,B,T) m, = PCS,(text,B,T)
PCSg(text,A,T)

sSig,(text)
sigg(text)
Resolve Attack

PCS,(text,B,T)
>

- PCSg(text,A,T)

5 .)
; arals /

PCS,(text,B,T)
sigg(text)

o

PCS,(text,B,T)
PCSg(text,A,T)

sig(abort) PCS,(text,B,T),
sigg(text) -2

V4

sigr(abort) sigr(abort)

abort AND sigs(text)

Repairing the Protocol

PCS,(text,B,T)

PCSg(text,A,T)
_—

PCS,(text,B,T),

PCSg(text,A,T)

If T converts PCS into a
conventional signature,
T can be held accountable

Balance

No party should be able to unilaterally

determine the outcome of the protocol

Balance may be violated even if basic fairness is satisfied!

Stock sale example: there is a point in the protocol where
the broker can unilaterally choose
whether the sale happens or not

Can a timely, optimistic protocol be fair AND balanced?

Advantage

Willing to sell stock at price X

S

>

Ok, willing to buy at price X

Must be able to ask TTP to cancel this
instance of protocol, or will be stuck
indefinitely if customer does not respond

customer

stock broker

Can go ahead and complete the sale, OR Optimistically waits for broker to respond ...
can still ask TTP to cancel
(TTP doesn’'t know customer has responded)

Chooses whether deal will happen:

does not have to commit stock for sale,
can cancel if sale looks unprofitable

"Abuse free": as good as it gets

& Specifically:
» One signer always has an advantage over
the other, no matter what the protocol is

- Best case: signer with advantage cannot
prove it has the advantage to an outside
observer

Theorem

€ In any fair, optimistic, timely
contract-signing protocol, if one
player is optimistic*, the other player
has an advantage.

* optimistic player: waits a little before
going to the third party

Abuse-Freeness

Balance
\/

No party should b8 able to unilaterally
determine the ﬂ of the protocol

Abuse-Freeness

No party should be able to prove that
It can unilaterally determine

the outcome of the protocol

How To) prove some’rhmg llke Thls‘>

ODefme ‘protocol”
* Program for Alice, Bob, TTP

* Each move depends on
- Local State (what's happened so far)
- Message from network
- Timeout

® Consider possible optimistic runs
€ Show someone gets advantage

Keyldea

(oml’r’rmg many sub’rle’rles)

@ Define "power"” of a signer (A or B)
In a state s

Power 4(s) = <

1 2 if A can get contract by reading

a message already in network,
doing internal computation

1 if A can get contract by
communicating with TTT,

assuming B does nothing
. O otherwise

® Look at optimistic transitions — s’
where Powerpg(s’) =1 > Powerp(s) = O.

AdVClnTClge (in‘rui‘rion for main ar'gumen’r)

€ If Powerp(s)=0— PowerB(s) =1 then

* This is result of some move by A

- Powerg(s) = 0 means B cannot get contract
without B's help

* The move by A is not a message to TTP

- The proof is for an optimistic protocol, so we
are thinking about a run without msg to T

* B could abort in state s

- We assume protocol is timely and fair: B must
be able to do something, cannot get contract

* B can still abort in s', so B has advantage!

Conclusions

€ Online contract signing is subtle
* Fair
+ Abuse-free
- Accountability

@ Several interdependent subprotocols
* Many cases and interleavings

®Finite-state tools great for case analysis!
- Find bugs in protocols proved correct

@ Proving properties of all protocols is harder
» Understand what is possible and what is not

