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Introduction	  
	  
As	  the	  cost	  of	  sequencing	  individuals	  is	  significantly	  decreasing,	  it	  seems	  that	  it	  is	  
just	  a	  matter	  of	  time	  before	  we	  can	  all	  get	  our	  genomes	  sequenced.	  Following	  the	  
1000	  Genome	  project,	  we	  will	  expect	  on	  the	  order	  of	  hundreds	  of	  thousands	  of	  
individuals	  to	  be	  sequenced	  in	  the	  next	  few	  years	  under	  various	  projects,	  such	  as	  UK	  
10K,	  the	  Million	  Human	  Genome	  Project	  and	  etc.	  	  These	  massive-‐scale	  projects	  lead	  
to	  applications	  that	  are	  unforeseen.	  With	  genomics	  and	  computational	  biology,	  we	  
are	  starting	  to	  build	  a	  much	  deeper	  understand	  of	  ourselves	  as	  a	  population.	  This	  
lecture	  focuses	  on	  two	  main	  currently	  popular	  topics:	  human	  evolution	  and	  
genome-‐wide	  association	  (GWA)	  studies.	  	  
	  
	  
Revisiting	  Human	  Genome	  Diversity	  
	  
Two	  lectures	  ago,	  we	  studied	  evolution	  and	  phylogenetic	  trees.	  We	  introduced	  the	  
idea	  of	  comparing	  the	  mutations	  in	  two	  individual	  genomes	  to	  trace	  a	  common	  
ancestor.	  It	  is	  possible	  to	  estimate	  the	  time	  (with	  respect	  to	  the	  molecular	  clock)	  
when	  the	  common	  ancestor	  existed	  by	  knowing	  the	  number	  of	  mutations	  
accumulated	  per	  generation	  (mutation	  rate).	  This	  approach	  enables	  us	  to	  build	  the	  
theory	  that	  humans	  originated	  in	  Africa	  and	  migrated	  out	  of	  Africa	  about	  50,000	  
years	  ago.	  Other	  interesting	  things	  we	  can	  do	  with	  this	  approach	  is	  finding	  “Adam”	  
and	  “Eve”	  by	  Y	  chromosome	  coalescence	  and	  mitochondrial	  chromosome	  
coalescence	  respectively.	  	  
	  
	  
Human	  Evolution	  Involving	  Other	  Populations	  
	  
The	  Neandertal	  Genome	  
It	  was	  also	  mentioned	  briefly	  that	  Europeans	  and	  Asians	  are	  approximately	  5%	  
Neanderthal,	  and	  that	  there	  was	  gene	  flow	  from	  Neandertals	  into	  ancestors	  of	  non-‐
Africans	  before	  they	  diverged.	  Here	  we	  go	  into	  more	  details	  on	  how	  this	  theory	  is	  
suggested	  by	  genomic	  data.	  In	  2010,	  the	  draft	  sequence	  of	  the	  Neandertal	  Genome	  
published	  in	  Science	  by	  Green	  et	  al.	  using	  the	  bones	  of	  three	  different	  Neandertals.	  
[1]	  The	  Neandertal	  genome	  was	  sequenced	  and	  compared	  with	  five	  modern	  humans	  
from	  different	  regions	  in	  the	  world.	  From	  this	  paper,	  a	  couple	  of	  figures	  come	  to	  our	  
attention.	  	  
	  
	  



1. Segments	  of	  Neandertal	  ancestry	  in	  the	  human	  reference	  genome.	  
	  

	  
	  
To	  search	  for	  segments	  where	  Neandertals	  and	  modern	  humans	  differ	  little,	  
haploid	  human	  DNA	  sequences	  were	  used	  instead	  of	  diploid	  sequences,	  as	  
the	  latter	  require	  both	  alleles	  to	  derive	  from	  Neandertals	  to	  produce	  a	  strong	  
signal.	  Thus,	  the	  human	  reference	  genome	  was	  used	  for	  the	  purpose	  of	  
comparison.	  It	  was	  found	  that	  European	  genome	  segments	  that	  are	  very	  
similar	  to	  that	  in	  Neandertals	  are	  very	  different	  from	  those	  in	  present-‐day	  
humans,	  whereas	  this	  phenomenon	  is	  not	  observed	  in	  African	  segments	  that	  
are	  very	  similar	  to	  that	  in	  Neandertals.	  This	  implies	  that	  interbreeding	  
between	  human	  and	  Neandertals	  occurred	  after	  the	  time	  point	  of	  “Out	  of	  
Africa”.	  It	  is	  further	  discussed	  in	  the	  paper	  from	  an	  alternative	  approach	  that	  
“non-‐Africans	  haplotypes	  match	  Neandertals	  unexpectedly	  often”.	  	  [1]	  

	  
2. Selective	  Sweep	  Screen	  	  

	  

	  
	  

the Neandertal genome—in order to identify re-
gions that are the strongest candidates for being
derived from Neandertals. If these candidate re-
gions match the Neandertals at a higher rate than
is expected by chance, this provides additional
evidence for gene flow from Neandertals into
modern humans.

We thus identified regions in which there is
considerably more diversity outside Africa than

inside Africa, as might be expected in regions that
have experienced gene flow from Neandertals to
non-Africans. We used 1,263,750 Perlegen Class
A SNPs, identified in individuals of diverse
ancestry (78), and found 13 candidate regions of
Neandertal ancestry (SOM Text 17). A prediction
of Neandertal-to-modern human gene flow is that
DNA sequences that entered the human gene pool
from Neandertals will tend to match Neandertal

more often than their frequency in the present-day
human population. To test this prediction, we
identified 166 “tag SNPs” that separate 12 of the
haplotype clades in non-Africans (OOA) from the
cosmopolitan haplotype clades shared between
Africans and non-Africans (COS) and for which
we had data from the Neandertals. Overall, the
Neandertals match the deep clade unique to non-
Africans at 133 of the 166 tag SNPs, and 10 of the
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Fig. 5. Segments of Neandertal ancestry in the human reference genome.
We examined 2825 segments in the human reference genome that are of
African ancestry and 2797 that are of European ancestry. (A) European
segments, with few differences from the Neandertals, tend to have many
differences from other present-day humans, whereas African segments do

not, as expected if the former are derived from Neandertals. (B) Scatter plot
of the segments in (A) with respect to their divergence to the Neandertals
and to Venter. In the top left quandrant, 94% of segments are of European
ancestry, suggesting that many of them are due to gene flow from
Neandertals.

Table 5. Non-African haplotypes match Neandertal at an unexpected rate. We
identified 13 candidate gene flow regions by using 48 CEU+ASN to represent
the OOA population, and 23 African Americans to represent the AFR population.
We identified tag SNPs for each region that separate an out-of-Africa specific
clade (OOA) from a cosmopolitan clade (COS) and then assessed the rate at

which Neandertal matches each of these clades by further subdividing tag SNPs
based on their ancestral and derived status in Neandertal and whether they
match the OOA-specific clade or not. Thus, the categories are AN (Ancestral
Nonmatch), DN (Derived Nonmatch), DM (Derived Match), and AM (Ancestral
Match). We do not list the sites where matching is ambiguous.

Chromo-
some

Start of candidate
region in Build 36

End of candidate
region in Build 36

Span
(bp)

ST
(estimated
ratio of
OOA/AFR
gene tree
depth)

Average
frequency of
tag in OOA

clade

Neandertal
(M)atches

OOA-specific
clade
AM DM

Neandertal does
(N)ot match
OOA-specific

clade
AN DN

Qualitative
assessment*

1 168,110,000 168,220,000 110,000 2.9 6.3% 5 10 1 0 OOA
1 223,760,000 223,910,000 150,000 2.8 6.3% 1 4 0 0 OOA
4 171,180,000 171,280,000 100,000 1.9 5.2% 1 2 0 0 OOA
5 28,950,000 29,070,000 120,000 3.8 3.1% 16 16 6 0 OOA
6 66,160,000 66,260,000 100,000 5.7 28.1% 6 6 0 0 OOA
9 32,940,000 33,040,000 100,000 2.8 4.2% 7 14 0 0 OOA
10 4,820,000 4,920,000 100,000 2.6 9.4% 9 5 0 0 OOA
10 38,000,000 38,160,000 160,000 3.5 8.3% 5 9 2 0 OOA
10 69,630,000 69,740,000 110,000 4.2 19.8% 2 2 0 1 OOA
15 45,250,000 45,350,000 100,000 2.5 1.1% 5 6 1 0 OOA
17 35,500,000 35,600,000 100,000 2.9 (no tags) – – – – –
20 20,030,000 20,140,000 110,000 5.1 64.6% 0 0 10 5 COS
22 30,690,000 30,820,000 130,000 3.5 4.2% 0 2 5 2 COS
Relative tag SNP frequencies in actual data 34% 46% 15% 5%
Relative tag SNP simulated under a demographic model without introgression 34% 5% 33% 27%
Relative tag SNP simulated under a demographic model with introgression 23% 31% 37% 9%

*To qualitatively assess the regions in terms of which clade the Neandertal matches, we asked whether the proportion matching the OOA-specific clade (AM and DM) is much more than 50%. If
so, we classify it as an OOA region, and otherwise a COS region. One region is unclassified because no tag SNPs were found. We also compared to simulations with and without gene flow (SOM
Text 17), which show that the rate of DM and DN tag SNPs where Neandertal is derived are most informative for distinguishing gene flow from no gene flow.
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duplications with no evidence of duplication
among humans or any other primate (fig. S23),
and none contained known genes.

A comparison to any single present-day
human genome reveals that 89% of the detected
duplications are shared with Neandertals. This is
lower than the proportion seen between present-
day humans (around 95%) but higher than what
is observed when the Neandertals are compared
with the chimpanzee (67%) (fig. S19).

Because the Neandertal data set is derived from
a pool of three individuals and represents an aver-
age sequence coverage of 1.3-fold after filtering, we
created two resampled sets from three human
genomes (SOM Text 12) at a comparable level
of mixture and coverage (table S34 and figs. S24
and S25). The analysis of both resampled sets
show a nonsignificant trend toward more dupli-
cated sequences among Neandertals than among
present-day humans (88,869 kb, N = 1129 re-
gions for present-day humans versus 94,419 kb,
N = 1194 for the Neandertals) (fig. S25).

We also estimated the copy number for
Neandertal genes and compared it with those from

three previously analyzed human genomes (SOM
Text 12). Copy number was correlated between
the two groups (r2 = 0.91) (fig. S29), with only 43
genes (15 nonredundant genes >10 kb) showing a
difference ofmore than five copies (tables S35 and
S36). Of these genes, 67% (29/43) are increased in
Neandertals compared with present-day humans,
and most of these are genes of unknown function.
One of the most extreme examples is the gene
PRR20 (NM_198441), for which we predicted 68
copies in Neandertals, 16 in humans, and 58 in the
chimpanzee. It encodes a hypothetical proline-rich
protein of unknown function. Other genes with pre-
dicted higher copy number in humans as opposed
to Neandertals included NBPF14 (DUF1220),
DUX4 (NM_172239),REXO1L1 (NM_033178),
and TBC1D3 (NM_001123391).

A screen for positive selection in earlymodern
humans. Neandertals fall within the variation of
present-day humans for many regions of the
genome; that is, Neandertals often share derived
single-nucleotide polymorphism (SNP) alleles
with present-day humans.We devised an approach
to detect positive selection in earlymodern humans

that takes advantage of this fact by looking for
genomic regions where present-day humans share
a common ancestor subsequent to their divergence
from Neandertals, and Neandertals therefore lack
derived alleles found in present-day humans
(except in rare cases of parallel substitutions)
(Fig. 4A). Gene flow between Neandertals and
modern humans after their initial population sep-
aration might obscure some cases of positive se-
lection by causing Neandertals and present-day
humans to share derived alleles, but it will not
cause false-positive signals.

We identified SNPs as positions that vary
among the five present-day human genomes of
diverse ancestry plus the human reference genome
and used the chimpanzee genome to determine the
ancestral state (SOM Text 13). We ignored SNPs
at CpG sites since these evolve rapidly and may
thus be affected by parallel mutations. We iden-
tified 5,615,438 such SNPs, at about 10% of
which Neandertals carry the derived allele. As
expected, SNPs with higher frequencies of the
derived allele in present-day humans were more
likely to show the derived allele in Neandertals
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Fig. 4. Selective sweep screen. (A) Schematic illustration of
the rationale for the selective sweep screen. For many
regions of the genome, the variation within current humans
is old enough to include Neandertals (left). Thus, for SNPs
in present-day humans, Neandertals often carry the derived
allele (blue). However, in genomic regions where an
advantageous mutation arises (right, red star) and sweeps
to high frequency or fixation in present-day humans,
Neandertals will be devoid of derived alleles. (B) Candidate
regions of selective sweeps. All 4235 regions of at least
25 kb where S (see SOM Text 13) falls below two standard
deviations of the mean are plotted by their S and genetic
width. Regions on the autosomes are shown in orange and
those on the X chromosome in blue. The top 5% by S are
shadowed in light blue. (C) The top candidate region from
the selective sweep screen contains two genes, ZFP36L2 and
THADA. The red line shows the log-ratio of the number of
observed Neandertal-derived alleles versus the number of
expected Neandertal-derived alleles, within a 100 kilobase window. The blue dots above the panel indicate all SNP positions, and the green dots indicate SNPs
where the Neandertal carries the derived allele.
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The	  Neandertal	  genome	  shares	  a	  lot	  of	  derived	  alleles	  (shown	  as	  the	  blue	  star	  
in	  the	  figure	  above)	  in	  common	  with	  modern	  humans.	  Thus,	  it	  is	  reasonable	  
to	  look	  for	  alleles	  where	  modern	  humans	  share	  a	  common	  ancestor	  after	  
diverging	  from	  Neandertals.	  	  In	  genomic	  regions	  where	  an	  advantageous	  
mutation	  arises	  (shown	  as	  red	  star)	  and	  sweeps	  to	  high	  frequency	  or	  fixation	  
in	  modern	  humans,	  we	  should	  not	  expect	  the	  Neandertals	  to	  have	  such	  
alleles.	  Evolution	  with	  selection	  will	  be	  discussed	  in	  more	  details	  later	  in	  this	  
class.	  	  [1]	  

	  
The	  Denisovan	  Genome	  
Another	  population	  found	  very	  far	  from	  us	  is	  the	  Denisovan.	  Also	  published	  in	  2010	  
[2],	  it	  was	  reported	  that	  a	  complete	  mitochondrial	  DNA	  sequence	  retrieved	  from	  a	  
bone	  excavated	  in	  2008	  in	  Denisova	  Cave.	  It	  suggested	  the	  existence	  of	  another	  
population	  that	  lived	  close	  in	  time	  and	  space	  with	  Neanderthals	  and	  modern	  
humans.	  Here,	  we	  are	  also	  interested	  in	  the	  question	  of	  how	  much	  of	  this	  Denisovan	  
genome	  is	  shared	  with	  us.	  	  
	  

	  
	  
The	  figure	  above	  focuses	  on	  the	  sharing	  of	  derived	  alleles	  among	  modern	  humans,	  
Denisovans	  and	  Neandertals.	  Pairs	  of	  different	  human	  population	  are	  compared	  in	  
terms	  of	  the	  “D-‐statistics”,	  which	  is	  a	  measure	  of	  the	  rate	  at	  which	  the	  pairs	  of	  
populations	  share	  derived	  alleles	  with	  Denisovans	  and	  Neandertals.	  	  It	  is	  found	  that	  
Denisovans	  share	  more	  alleles	  with	  Papauns	  than	  with	  Europeans	  and	  Asians.	  
Notice	  that	  for	  population	  within	  regions,	  the	  derived	  alleles	  they	  share	  in	  common	  
are	  typically	  specific	  to	  their	  own	  population	  and	  is	  not	  that	  related	  to	  Neandertals	  
and	  Denisovans.	  	  [2]	  
	  
Runs	  of	  Homozygosity	  	  	  
“Runs	  of	  homozygosity”	  are	  regions	  of	  the	  genome	  where	  the	  copies	  inherited	  from	  
our	  parents	  are	  identical	  because	  of	  a	  common	  ancestor	  they	  had.	  It	  does	  not	  
specifically	  refer	  to	  situations	  such	  as	  marriage	  between	  cousins,	  as	  we	  are	  all	  

Figure 4.
(A) Sharing of derived alleles among present-day humans, Denisovans and Neandertals. We
compare all possible pairs of 11 present-day humans {H1, H2} in their “D-statistics”, which
measure the rate at which they share derived alleles with Denisovans (x-axis) and
Neandertals (y-axis). Each point reports ±1 standard error bars from a Block Jackknife. D-
statistics are color-coded by geographic region. The D-statistic is not the same as the
mixture proportion; it is also affected by quantities like the amount of shared genetic drift
between the samples being compared. (B) Sharing of derived alleles that are absent in
Africans among present-day humans, Denisovans and Neandertals. We enhance the power
of the D-statistics by restricting to sites where 35 sub-Saharan African samples have the
ancestral allele, and pooling modern humans by region to increase resolution (bars again
give one standard error). Eastern non-African populations have significantly more archaic
ancestry than European populations (Z=5.3 and Z=4.8 for the tests based on the Denisovan
and Neandertal D-statistics, respectively).
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related	  if	  we	  go	  far	  enough	  back	  in	  the	  phylogeny	  tree.	  However,	  we	  can	  infer	  the	  
history	  of	  intermarriage	  among	  a	  population	  from	  homozygosity.	  In	  the	  figure	  
below,	  we	  see	  the	  fraction	  of	  genome	  in	  runs	  of	  homozygosity	  for	  different	  
populations	  which	  implies	  that	  Neanderthals	  had	  a	  high	  level	  of	  inbreeding	  which	  
might	  have	  been	  due	  to	  the	  population	  being	  segregated	  and	  confined	  to	  a	  small	  
region.	  Modern	  humans	  on	  the	  other	  have	  a	  much	  lower	  level	  of	  run	  of	  
homozygosity	  as	  inbreeding	  in	  modern	  society	  is	  less	  common.	  [1]	  
	  

	  
	  
Population	  Sequencing	  and	  Association	  Studies	  
	  
1000	  Genomes	  Project	  
The	  goal	  of	  the	  1000	  Genomes	  Project	  is	  to	  find	  human	  genetic	  variation	  among	  
humans	  that	  can	  be	  used	  for	  association	  studies.	  The	  samples,	  whose	  whole	  
genomes	  are	  sequenced,	  are	  chosen	  from	  very	  different	  ethnic	  groups	  to	  capture	  the	  
population	  diversity.	  	  In	  our	  previous	  lecture	  on	  multiple-‐sequence	  alignment,	  we	  
discussed	  how	  genes	  are	  conserved	  among	  mammalians	  due	  to	  purifying	  selection,	  
so	  we	  expect	  the	  sites	  where	  we	  observe	  low	  allele	  frequency	  of	  functional	  variants	  
to	  also	  be	  conserved	  across	  mammals.	  	  
	  

The Neanderthal Whole Genome 



In	  the	  figure	  below,	  the	  proportion	  of	  variants	  with	  derived	  allele	  frequencies	  less	  
than	  0.5%,	  which	  is	  a	  measure	  of	  purifying	  selection,	  is	  plotted	  against	  the	  GERP	  
score,	  which	  is	  a	  measure	  of	  evolutionary	  conservation.	  	  Variations	  related	  to	  stop	  
codons	  and	  splicing	  have	  been	  very	  infrequent	  since	  humans	  diverged	  from	  other	  
primates.	  	  [3]	  
	  

	  

	  
	  
In	  the	  left	  figure	  above,	  we	  observe	  the	  fraction	  of	  alleles	  specific	  to	  different	  
ancestry	  groups.	  Africans	  have	  accumulated	  relatively	  more	  of	  low-‐frequency	  
variants,	  whereas	  Americans	  have	  accumulated	  the	  least,	  which	  is	  related	  to	  how	  
long	  these	  populations	  have	  been	  around.	  In	  the	  right	  figure	  above,	  we	  are	  
interested	  in	  the	  expected	  number	  of	  derived	  alleles	  across	  humans.	  However,	  one	  
may	  point	  out	  that	  if	  the	  population	  is	  constant,	  then	  the	  plot	  should	  be	  flat.	  The	  
reason	  why	  we	  see	  low	  density	  of	  variants	  at	  low	  derived	  allele	  frequency	  and	  high	  
density	  of	  variants	  at	  high	  derived	  allele	  frequency	  can	  be	  explained	  by	  two	  main	  
reasons:	  1)	  A	  lot	  of	  derived	  alleles	  got	  fixed	  in	  a	  small	  population,	  and	  2)	  Recent	  
population	  expansion	  has	  led	  to	  accumulation	  of	  a	  larger	  number	  of	  rare	  alleles.	  	  
	  
	  

meeting this goal. However, coverage may be lower for populations
not closely related to those studied. For example, our resource includes
only 23.7%, 76.9% and 99.3% of the SNPs with frequencies of ,0.1%,
1.0% and 5.0%, respectively, in ,2,000 genomes sequenced in a study
of the isolated population of Sardinia (the SardiNIA study).

Genetic variation within and between populations
The integrated data set provides a detailed view of variation across
several populations (illustrated in Fig. 2a). Most common variants
(94% of variants with frequency $5% in Fig. 2a) were known before
the current phase of the project and had their haplotype structure
mapped through earlier projects2,9. By contrast, only 62% of variants
in the range 0.5–5% and 13% of variants with frequencies of #0.5%
had been described previously. For analysis, populations are grouped
by the predominant component of ancestry: Europe (CEU (see Fig. 2a
for definitions of this and other populations), TSI, GBR, FIN and IBS),
Africa (YRI, LWK and ASW), East Asia (CHB, JPT and CHS) and
the Americas (MXL, CLM and PUR). Variants present at 10% and
above across the entire sample are almost all found in all of the
populations studied. By contrast, 17% of low-frequency variants in
the range 0.5–5% were observed in a single ancestry group, and 53% of
rare variants at 0.5% were observed in a single population (Fig. 2b).
Within ancestry groups, common variants are weakly differentiated
(most within-group estimates of Wright’s fixation index (FST) are
,1%; Supplementary Table 11), although below 0.5% frequency
variants are up to twice as likely to be found within the same popu-
lation compared with random samples from the ancestry group
(Supplementary Fig. 6a). The degree of rare-variant differentiation
varies between populations. For example, within Europe, the IBS and
FIN populations carry excesses of rare variants (Supplementary Fig.
6b), which can arise through events such as recent bottlenecks10, ‘clan’
breeding structures11 and admixture with diverged populations12.

Some common variants show strong differentiation between popu-
lations within ancestry-based groups (Supplementary Table 12),
many of which are likely to have been driven by local adaptation either
directly or through hitchhiking. For example, the strongest differenti-
ation between African populations is within an NRSF (neuron-restrictive
silencer factor) transcription-factor peak (PANC1 cell line)13, upstream
of ST8SIA1 (difference in derived allele frequency LWK 2 YRI of 0.475 at
rs7960970), whose product is involved in ganglioside generation14.
Overall, we find a range of 17–343 SNPs (fewest 5 CEU 2 GBR,
most 5 FIN 2 TSI) showing a difference in frequency of at least 0.25
between pairs of populations within an ancestry group.

The derived allele frequency distribution shows substantial diver-
gence between populations below a frequency of 40% (Fig. 2c), such
that individuals from populations with substantial African ancestry
(YRI, LWK and ASW) carry up to three times as many low-frequency
variants (0.5–5% frequency) as those of European or East Asian origin,
reflecting ancestral bottlenecks in non-African populations15. However,
individuals from all populations show an enrichment of rare variants
(,0.5% frequency), reflecting recent explosive increases in population
size and the effects of geographic differentiation6,16. Compared with the
expectations from a model of constant population size, individuals
from all populations show a substantial excess of high-frequency-
derived variants (.80% frequency).

Because rare variants are typically recent, their patterns of sharing
can reveal aspects of population history. Variants present twice across
the entire sample (referred to as f2 variants), typically the most recent
of informative mutations, are found within the same population in
53% of cases (Fig. 3a). However, between-population sharing identifies
recent historical connections. For example, if one of the individuals
carrying an f2 variant is from the Spanish population (IBS) and the
other is not (referred to as IBS2X), the other individual is more likely
to come from the Americas populations (48%, correcting for sample
size) than from elsewhere in Europe (41%). Within the East Asian
populations, CHS and CHB show stronger f2 sharing to each other

(58% and 53% of CHS2X and CHB2X variants, respectively) than
either does to JPT, but JPT is closer to CHB than to CHS (44% versus
35% of JPT2X variants). Within African-ancestry populations, the
ASW are closer to the YRI (42% of ASW2X f2 variants) than the
LWK (28%), in line with historical information17 and genetic evidence
based on common SNPs18. Some sharing patterns are surprising; for
example, 2.5% of the f2 FIN2X variants are shared with YRI or LWK
populations.

Independent evidence about variant age comes from the length of
the shared haplotypes on which they are found. We find, as expected,

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

2.0

Derived allele frequency

D
en

si
ty

 o
f v

ar
ia

nt
s 

pe
r k

b

0.0

0.2

0.4

0.6

0.8

1.0

Frequency across sample

P
ro

po
rt

io
n 

pr
iv

at
e 

pe
r c

os
m

op
ol

ita
n

EUR
EAS
AFR
AMR

1.00.10.010.001

4.0

73.80 Mb 73.89 Mb2p13.1
ALMS1 NAT8

GBR
FIN
IBS
CEU
TSI
CHS

CHB

JPT
YRI

LWK
ASW
PUR
CLM
MXL

SegDups

All continents

All populations

Private

EUR

EAS

AFR

AMR

a

b c

Figure 2 | The distribution of rare and common variants. a, Summary of
inferred haplotypes across a 100-kb region of chromosome 2 spanning the genes
ALMS1 and NAT8, variation in which has been associated with kidney disease45.
Each row represents an estimated haplotype, with the population of origin
indicated on the right. Reference alleles are indicated by the light blue
background. Variants (non-reference alleles) above 0.5% frequency are
indicated by pink (typed on the high-density SNP array), white (previously
known) and dark blue (not previously known). Low frequency variants (,0.5%)
are indicated by blue crosses. Indels are indicated by green triangles and novel
variants by dashes below. A large, low-frequency deletion (black line) spanning
NAT8 is present in some populations. Multiple structural haplotypes mediated
by segmental duplications are present at this locus, including copy number gains,
which were not genotyped for this study. Within each population, haplotypes are
ordered by total variant count across the region. Population abbreviations: ASW,
people with African ancestry in Southwest United States; CEU, Utah residents
with ancestry from Northern and Western Europe; CHB, Han Chinese in
Beijing, China; CHS, Han Chinese South, China; CLM, Colombians in Medellin,
Colombia; FIN, Finnish in Finland; GBR, British from England and Scotland,
UK; IBS, Iberian populations in Spain; LWK, Luhya in Webuye, Kenya; JPT,
Japanese in Tokyo, Japan; MXL, people with Mexican ancestry in Los Angeles,
California; PUR, Puerto Ricans in Puerto Rico; TSI, Toscani in Italia; YRI,
Yoruba in Ibadan, Nigeria. Ancestry-based groups: AFR, African; AMR,
Americas; EAS, East Asian; EUR, European. b, The fraction of variants identified
across the project that are found in only one population (white line), are
restricted to a single ancestry-based group (defined as in a, solid colour), are
found in all groups (solid black line) and all populations (dotted black line).
c, The density of the expected number of variants per kilobase carried by a
genome drawn from each population, as a function of variant frequency (see
Supplementary Information). Colours as in a. Under a model of constant
population size, the expected density is constant across the frequency spectrum.
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GWA	  Studies	  	  
Whole	  genome	  information	  from	  many	  individuals	  allows	  us	  to	  conduct	  studies	  to	  
identify	  how	  common	  genetic	  variants	  related	  to	  certain	  traits,	  and	  typically	  the	  
focus	  is	  on	  single-‐nucleotide	  polymorphisms	  (SNPs)	  and	  traits	  like	  common	  
diseases	  where	  we	  can	  get	  a	  large	  enough	  sample	  size.	  For	  a	  given	  disease,	  we	  
compare	  two	  groups	  of	  population:	  one	  with	  disease	  (cases)	  and	  one	  without	  the	  
disease	  (controls).	  Then	  the	  goal	  is	  to	  use	  the	  genotypes	  of	  these	  individuals	  to	  see	  
which	  loci	  are	  associated	  with	  the	  disease	  as	  shown	  in	  the	  left	  figure	  below.	  	  The	  
metric	  of	  statistical	  significance	  is	  typically	  the	  p-‐value.	  The	  smaller	  it	  is	  for	  a	  SNP,	  
the	  more	  likely	  that	  this	  SNP	  is	  associated.	  Thus,	  we	  can	  plot	  the	  negative	  log	  of	  the	  
p-‐values	  of	  al	  SNPs	  in	  a	  Manhattan	  plot	  as	  shown	  in	  the	  right	  figure	  below,	  and	  find	  
the	  peaks	  that	  indicate	  strong	  correlation	  with	  the	  disease.	  Notice	  that	  there	  are	  
multiple	  close-‐by	  SNPs	  that	  have	  small	  p-‐values	  due	  to	  linkage	  disequilibrium,	  so	  
that	  SNPs	  that	  are	  linked	  also	  show	  some	  correlation	  with	  the	  trait.	  	  
	  

	  
	  
Traditionally,	  there	  have	  been	  several	  limitations	  in	  GWA	  studies,	  such	  as	  
insufficient	  sample	  size	  and	  false	  positive	  results.	  	  However,	  high	  throughput	  whole	  
genome	  sequencing	  technologies	  can	  provide	  a	  better	  alternative	  to	  overcome	  the	  
related	  shortcomings.	  	  
	  
Heritability	  and	  Environment.	  
Taking	  a	  step	  back	  to	  the	  big-‐picture	  question,	  we	  are	  interested	  in	  how	  much	  of	  the	  
variance	  of	  certain	  traits	  across	  populations	  can	  be	  explained	  by	  the	  variance	  of	  
genes,	  in	  other	  words,	  whether	  certain	  traits	  are	  heritable.	  	  

Association Studies 

Control 

Disease 

A/G 
A/G 
G/G 
G/G 
A/G 
G/G 
G/G 

A/A 
A/G 
A/A 
A/G 
A/G 
A/A 
A/A 

AA 0 4 

AG 3 3 

GG 4 0 

p-value 



Twin	  studies	  are	  popular	  methods	  to	  understand	  the	  genetic	  influences	  on	  certain	  
traits	  in	  a	  population	  sample.	  (Intuitively,	  a	  given	  trait	  in	  only	  one	  member	  of	  the	  
pair	  of	  twins	  provides	  a	  strong	  signal	  of	  environmental	  effects.)	  It	  was	  found	  that	  
there	  is	  a	  higher	  correlation	  of	  intelligence	  among	  identical	  twins	  (who	  share	  almost	  
all	  genomes)	  reared	  apart	  than	  fraternal	  twins	  (just	  like	  normal	  siblings)	  reared	  
together.	  Thus,	  this	  comparison	  suggests	  that	  intelligence	  has	  a	  strong	  dependency	  
on	  genetics.	  	  [4]	  

	  
	  
	  
What	  is	  the	  “Missing	  Heritability”?	  
Hundreds	  of	  genetic	  variants	  have	  been	  identified	  to	  be	  associated	  with	  complex	  
diseases	  and	  traits	  through	  GWA	  studies,	  but	  most	  variants	  only	  explain	  a	  small	  
portion	  of	  familial	  clustering.	  This	  leads	  to	  the	  concept	  of	  “missing”	  heritability	  
where	  SNPs	  cannot	  explain	  the	  remaining	  risk	  or	  variance.	  Even	  traits	  such	  as	  the	  
human	  height,	  which	  is	  a	  classical	  complex	  trait	  found	  to	  be	  associated	  with	  40	  loci,	  
cannot	  be	  explained	  well	  by	  the	  genotype	  information.	  [5]	  
	  

	  
The	  figure	  above	  captures	  the	  feasibility	  of	  identifying	  genetic	  variants	  by	  risk	  allele	  
frequency	  and	  strength	  of	  genetic	  effect.	  The	  diagonal	  components	  are	  where	  most	  
emphasis	  in	  identifying	  associations	  lies.	  Certain	  variants	  may	  not	  be	  sufficient	  
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family studies, and can be expected to vary across environments.
Narrow-sense heritability estimates in humans can be inflated if
family resemblance is influenced by non-additive genetic effects
(dominance and epistasis, or gene–gene interaction), shared familial
environments, and by correlations or interactions among genotypes
and environment36,37. However, heritabilities estimated from pedi-
gree studies in animals agree well with heritability estimated from
response to artificial selection, suggesting that estimates from family
studies are not necessarily inflated.

Teasing apart the contributions to heritability of environmental
factors shared among relatives will soon be possible because the
availability of genome-wide markers now provides empirical esti-
mates of identity-by-descent (IBD) allele sharing between pairs of rela-
tives. For example, full sibs share on average half their genetic com-
plement, but this proportion can vary—in one large study it ranged
from 0.37 to 0.62 (ref. 38). By relating phenotypic differences to the
observed IBD sharing fraction among sib pairs, marker data were used
to generate a heritability estimate of 0.8 for height38. This is remarkably
consistent with estimates using traditional methods but free of their
assumptions, suggesting that for height at least, heritability is not over-
estimated. Applying such estimation to distantly related or ‘unrelated’
individuals is now feasible using dense genomic scans39; given the num-
ber of people with dense genotyping data, heritability estimates could be
generated for a wide variety of traits free of potential confounding by
unmeasured shared environment.

Improving estimates of all contributors to heritability will facilitate
determination of the proportion of genetic variance that has been
explained. Despite imprecision in current estimates, it may still be
possible to know that ‘all the heritability’ has been explained by pre-
dicting phenotypes in a new set of individuals from trait-associated
markers, and correlating the predicted phenotypes with the actual
values. If the markers truly explain all the additive genetic variance,
the squared correlation between predicted and actual phenotype will
be equal to the heritability40. Population-based heritability estimates
thus provide a valuable metric for completeness of available genetic
risk information, but individualized disease prevention and treatment
will ultimately require identifying the variants accounting for risk in a
given individual rather than on a population basis.

Rare variants and unexplained heritability
Much of the speculation about missing heritability from GWAS has
focused on the possible contribution of variants of low minor allele
frequency (MAF), defined here as roughly 0.5% , MAF , 5%, or of
rare variants (MAF , 0.5%). Such variants are not sufficiently fre-
quent to be captured by current GWA genotyping arrays14,41, nor do
they carry sufficiently large effect sizes to be detected by classical
linkage analysis in family studies (Fig. 1). Once MAF falls below
0.5%, detection of associations becomes unlikely unless effect sizes
are very large, as in monogenic conditions. For modest effect sizes,
association testing may require composite tests of overall ‘mutational
load’, comparing frequencies of mutations of potentially similar
functional effect in cases and controls.

Low frequency variants could have substantial effect sizes (increas-
ing disease risk two- to threefold) without demonstrating clear
Mendelian segregation, and could contribute substantially to missing
heritability42. For example, 20 variants with risk allele frequency of 1%
and allelic odds ratio (or probability of an event occurring divided by
the probability of it not occurring, compared in people with versus
without the risk allele) of three would account for most familial
aggregation of type 2 diabetes. There are relatively few examples of
such variants contributing to complex traits, possibly owing to insuf-
ficiently large sample sizes or insufficiently comprehensive arrays.

The primary technology for the detection of rare SNPs is sequen-
cing, which may target regions of interest, or may examine the whole
genome. ‘Next-generation’ sequencing technologies, which process
millions of sequence reads in parallel, provide monumental increases
in speed and volume of generated data free of the cloning biases and

arduous sample preparation characteristic of capillary sequencing43.
Detection of associations with low frequency and rare variants will be
facilitated by the comprehensive catalogue of variants with
MAF $ 1% being generated by the 1,000 Genomes Project (http://
www.1000genomes.org/page.php), which will also identify many
variants at lower allele frequencies. The pilot effort of that program
has already identified more than 11 million new SNPs in initially low-
depth coverage of 172 individuals44.

Current mechanisms for using sequencing to identify rare variants
underlying or co-located with GWA-defined associations include
sequencing in genomic regions defined by strong and repeatedly repli-
cated associations with common variants, and sequencing a larger frac-
tion of the genome in people with extreme phenotypes. In the absence
of GWA-defined signals, sequencing candidate genes in subjects at the
extremes of a quantitative trait (such as lipid levels or the age at onset),
can identify other associated variants, both common and rare45,46. An
important finding from these studies is that much of the information is
provided by people at the extremes of trait distributions, who seem to be
more likely to carry loss-of-function alleles47.

Sample sizes used for the initial identification of DNA sequence
variants have generally been modest, and sample size requirements
increase essentially linearly with 1/MAF. Much larger samples are
needed for the identification of associations with variants than those
needed for the detection of the variants themselves. They also scale
roughly linearly with 1/MAF given a fixed odds ratio and fixed degree
of linkage disequilibrium with genotyped markers. Sample size for
association detection also scales approximately quadratically with
1/j(OR 2 1)j, and thus increases sharply as the odds ratio (OR)
declines. Sample size is even more strongly affected by small odds
ratios than by small MAF, so low frequency and rare variants will
need to have higher odds ratios to be detected.

Complicating matters further, numerous rare variants may be
detected in a gene or region but they may have disparate effects on
phenotype. Common variants have typically been analysed individu-
ally23,48, but with one or two carriers of each rare variant, pooling
them using specific criteria becomes attractive47,49,50. Pooling variants
of similar class increases the effective MAF of the class and reduces the
number of tests performed, but raises several other questions (Box 1).

Determining which of the multitude of variants carried by an
individual are responsible for a given phenotype represents a massive
task, especially if the causal alleles are relatively anonymous in terms
of known functional consequences. Because only a small proportion
will have obvious functional consequences for the resultant protein,
lesser evidence of association may suffice to implicate variants of this
sort. The best approaches for combining functional credibility and
statistical support in the evaluation of such variants remain to be
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(with	  minor	  allele	  frequency	  <0.5%)	  in	  the	  sample	  to	  be	  detected	  by	  GWA	  
genotyping	  arrays.	  	  

Importantly,	  low	  frequency	  variants	  (with	  minor	  allele	  frequency	  between	  1%	  and	  
5%)	  in	  the	  middle	  of	  the	  plot	  can	  have	  significant	  effect	  sizes	  too	  low	  to	  support	  
Mendelian	  segregation	  and	  to	  be	  detected	  by	  traditional	  linkage	  approaches.	  
Meanwhile,	  the	  minor	  allele	  frequency	  is	  also	  too	  low	  to	  be	  clearly	  identified	  by	  
GWA	  studies.	  Thus,	  the	  1,000	  Genomes	  Project	  and	  other	  large-‐scale	  projects	  are	  
targeted	  towards	  finding	  these	  variants	  with	  low	  or	  even	  rare	  minor	  allele	  
frequencies.	  	  
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