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Introduction	
  
	
  
As	
  the	
  cost	
  of	
  sequencing	
  individuals	
  is	
  significantly	
  decreasing,	
  it	
  seems	
  that	
  it	
  is	
  
just	
  a	
  matter	
  of	
  time	
  before	
  we	
  can	
  all	
  get	
  our	
  genomes	
  sequenced.	
  Following	
  the	
  
1000	
  Genome	
  project,	
  we	
  will	
  expect	
  on	
  the	
  order	
  of	
  hundreds	
  of	
  thousands	
  of	
  
individuals	
  to	
  be	
  sequenced	
  in	
  the	
  next	
  few	
  years	
  under	
  various	
  projects,	
  such	
  as	
  UK	
  
10K,	
  the	
  Million	
  Human	
  Genome	
  Project	
  and	
  etc.	
  	
  These	
  massive-­‐scale	
  projects	
  lead	
  
to	
  applications	
  that	
  are	
  unforeseen.	
  With	
  genomics	
  and	
  computational	
  biology,	
  we	
  
are	
  starting	
  to	
  build	
  a	
  much	
  deeper	
  understand	
  of	
  ourselves	
  as	
  a	
  population.	
  This	
  
lecture	
  focuses	
  on	
  two	
  main	
  currently	
  popular	
  topics:	
  human	
  evolution	
  and	
  
genome-­‐wide	
  association	
  (GWA)	
  studies.	
  	
  
	
  
	
  
Revisiting	
  Human	
  Genome	
  Diversity	
  
	
  
Two	
  lectures	
  ago,	
  we	
  studied	
  evolution	
  and	
  phylogenetic	
  trees.	
  We	
  introduced	
  the	
  
idea	
  of	
  comparing	
  the	
  mutations	
  in	
  two	
  individual	
  genomes	
  to	
  trace	
  a	
  common	
  
ancestor.	
  It	
  is	
  possible	
  to	
  estimate	
  the	
  time	
  (with	
  respect	
  to	
  the	
  molecular	
  clock)	
  
when	
  the	
  common	
  ancestor	
  existed	
  by	
  knowing	
  the	
  number	
  of	
  mutations	
  
accumulated	
  per	
  generation	
  (mutation	
  rate).	
  This	
  approach	
  enables	
  us	
  to	
  build	
  the	
  
theory	
  that	
  humans	
  originated	
  in	
  Africa	
  and	
  migrated	
  out	
  of	
  Africa	
  about	
  50,000	
  
years	
  ago.	
  Other	
  interesting	
  things	
  we	
  can	
  do	
  with	
  this	
  approach	
  is	
  finding	
  “Adam”	
  
and	
  “Eve”	
  by	
  Y	
  chromosome	
  coalescence	
  and	
  mitochondrial	
  chromosome	
  
coalescence	
  respectively.	
  	
  
	
  
	
  
Human	
  Evolution	
  Involving	
  Other	
  Populations	
  
	
  
The	
  Neandertal	
  Genome	
  
It	
  was	
  also	
  mentioned	
  briefly	
  that	
  Europeans	
  and	
  Asians	
  are	
  approximately	
  5%	
  
Neanderthal,	
  and	
  that	
  there	
  was	
  gene	
  flow	
  from	
  Neandertals	
  into	
  ancestors	
  of	
  non-­‐
Africans	
  before	
  they	
  diverged.	
  Here	
  we	
  go	
  into	
  more	
  details	
  on	
  how	
  this	
  theory	
  is	
  
suggested	
  by	
  genomic	
  data.	
  In	
  2010,	
  the	
  draft	
  sequence	
  of	
  the	
  Neandertal	
  Genome	
  
published	
  in	
  Science	
  by	
  Green	
  et	
  al.	
  using	
  the	
  bones	
  of	
  three	
  different	
  Neandertals.	
  
[1]	
  The	
  Neandertal	
  genome	
  was	
  sequenced	
  and	
  compared	
  with	
  five	
  modern	
  humans	
  
from	
  different	
  regions	
  in	
  the	
  world.	
  From	
  this	
  paper,	
  a	
  couple	
  of	
  figures	
  come	
  to	
  our	
  
attention.	
  	
  
	
  
	
  



1. Segments	
  of	
  Neandertal	
  ancestry	
  in	
  the	
  human	
  reference	
  genome.	
  
	
  

	
  
	
  
To	
  search	
  for	
  segments	
  where	
  Neandertals	
  and	
  modern	
  humans	
  differ	
  little,	
  
haploid	
  human	
  DNA	
  sequences	
  were	
  used	
  instead	
  of	
  diploid	
  sequences,	
  as	
  
the	
  latter	
  require	
  both	
  alleles	
  to	
  derive	
  from	
  Neandertals	
  to	
  produce	
  a	
  strong	
  
signal.	
  Thus,	
  the	
  human	
  reference	
  genome	
  was	
  used	
  for	
  the	
  purpose	
  of	
  
comparison.	
  It	
  was	
  found	
  that	
  European	
  genome	
  segments	
  that	
  are	
  very	
  
similar	
  to	
  that	
  in	
  Neandertals	
  are	
  very	
  different	
  from	
  those	
  in	
  present-­‐day	
  
humans,	
  whereas	
  this	
  phenomenon	
  is	
  not	
  observed	
  in	
  African	
  segments	
  that	
  
are	
  very	
  similar	
  to	
  that	
  in	
  Neandertals.	
  This	
  implies	
  that	
  interbreeding	
  
between	
  human	
  and	
  Neandertals	
  occurred	
  after	
  the	
  time	
  point	
  of	
  “Out	
  of	
  
Africa”.	
  It	
  is	
  further	
  discussed	
  in	
  the	
  paper	
  from	
  an	
  alternative	
  approach	
  that	
  
“non-­‐Africans	
  haplotypes	
  match	
  Neandertals	
  unexpectedly	
  often”.	
  	
  [1]	
  

	
  
2. Selective	
  Sweep	
  Screen	
  	
  

	
  

	
  
	
  

the Neandertal genome—in order to identify re-
gions that are the strongest candidates for being
derived from Neandertals. If these candidate re-
gions match the Neandertals at a higher rate than
is expected by chance, this provides additional
evidence for gene flow from Neandertals into
modern humans.

We thus identified regions in which there is
considerably more diversity outside Africa than

inside Africa, as might be expected in regions that
have experienced gene flow from Neandertals to
non-Africans. We used 1,263,750 Perlegen Class
A SNPs, identified in individuals of diverse
ancestry (78), and found 13 candidate regions of
Neandertal ancestry (SOM Text 17). A prediction
of Neandertal-to-modern human gene flow is that
DNA sequences that entered the human gene pool
from Neandertals will tend to match Neandertal

more often than their frequency in the present-day
human population. To test this prediction, we
identified 166 “tag SNPs” that separate 12 of the
haplotype clades in non-Africans (OOA) from the
cosmopolitan haplotype clades shared between
Africans and non-Africans (COS) and for which
we had data from the Neandertals. Overall, the
Neandertals match the deep clade unique to non-
Africans at 133 of the 166 tag SNPs, and 10 of the
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Fig. 5. Segments of Neandertal ancestry in the human reference genome.
We examined 2825 segments in the human reference genome that are of
African ancestry and 2797 that are of European ancestry. (A) European
segments, with few differences from the Neandertals, tend to have many
differences from other present-day humans, whereas African segments do

not, as expected if the former are derived from Neandertals. (B) Scatter plot
of the segments in (A) with respect to their divergence to the Neandertals
and to Venter. In the top left quandrant, 94% of segments are of European
ancestry, suggesting that many of them are due to gene flow from
Neandertals.

Table 5. Non-African haplotypes match Neandertal at an unexpected rate. We
identified 13 candidate gene flow regions by using 48 CEU+ASN to represent
the OOA population, and 23 African Americans to represent the AFR population.
We identified tag SNPs for each region that separate an out-of-Africa specific
clade (OOA) from a cosmopolitan clade (COS) and then assessed the rate at

which Neandertal matches each of these clades by further subdividing tag SNPs
based on their ancestral and derived status in Neandertal and whether they
match the OOA-specific clade or not. Thus, the categories are AN (Ancestral
Nonmatch), DN (Derived Nonmatch), DM (Derived Match), and AM (Ancestral
Match). We do not list the sites where matching is ambiguous.

Chromo-
some

Start of candidate
region in Build 36

End of candidate
region in Build 36

Span
(bp)

ST
(estimated
ratio of
OOA/AFR
gene tree
depth)

Average
frequency of
tag in OOA

clade

Neandertal
(M)atches

OOA-specific
clade
AM DM

Neandertal does
(N)ot match
OOA-specific

clade
AN DN

Qualitative
assessment*

1 168,110,000 168,220,000 110,000 2.9 6.3% 5 10 1 0 OOA
1 223,760,000 223,910,000 150,000 2.8 6.3% 1 4 0 0 OOA
4 171,180,000 171,280,000 100,000 1.9 5.2% 1 2 0 0 OOA
5 28,950,000 29,070,000 120,000 3.8 3.1% 16 16 6 0 OOA
6 66,160,000 66,260,000 100,000 5.7 28.1% 6 6 0 0 OOA
9 32,940,000 33,040,000 100,000 2.8 4.2% 7 14 0 0 OOA
10 4,820,000 4,920,000 100,000 2.6 9.4% 9 5 0 0 OOA
10 38,000,000 38,160,000 160,000 3.5 8.3% 5 9 2 0 OOA
10 69,630,000 69,740,000 110,000 4.2 19.8% 2 2 0 1 OOA
15 45,250,000 45,350,000 100,000 2.5 1.1% 5 6 1 0 OOA
17 35,500,000 35,600,000 100,000 2.9 (no tags) – – – – –
20 20,030,000 20,140,000 110,000 5.1 64.6% 0 0 10 5 COS
22 30,690,000 30,820,000 130,000 3.5 4.2% 0 2 5 2 COS
Relative tag SNP frequencies in actual data 34% 46% 15% 5%
Relative tag SNP simulated under a demographic model without introgression 34% 5% 33% 27%
Relative tag SNP simulated under a demographic model with introgression 23% 31% 37% 9%

*To qualitatively assess the regions in terms of which clade the Neandertal matches, we asked whether the proportion matching the OOA-specific clade (AM and DM) is much more than 50%. If
so, we classify it as an OOA region, and otherwise a COS region. One region is unclassified because no tag SNPs were found. We also compared to simulations with and without gene flow (SOM
Text 17), which show that the rate of DM and DN tag SNPs where Neandertal is derived are most informative for distinguishing gene flow from no gene flow.
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duplications with no evidence of duplication
among humans or any other primate (fig. S23),
and none contained known genes.

A comparison to any single present-day
human genome reveals that 89% of the detected
duplications are shared with Neandertals. This is
lower than the proportion seen between present-
day humans (around 95%) but higher than what
is observed when the Neandertals are compared
with the chimpanzee (67%) (fig. S19).

Because the Neandertal data set is derived from
a pool of three individuals and represents an aver-
age sequence coverage of 1.3-fold after filtering, we
created two resampled sets from three human
genomes (SOM Text 12) at a comparable level
of mixture and coverage (table S34 and figs. S24
and S25). The analysis of both resampled sets
show a nonsignificant trend toward more dupli-
cated sequences among Neandertals than among
present-day humans (88,869 kb, N = 1129 re-
gions for present-day humans versus 94,419 kb,
N = 1194 for the Neandertals) (fig. S25).

We also estimated the copy number for
Neandertal genes and compared it with those from

three previously analyzed human genomes (SOM
Text 12). Copy number was correlated between
the two groups (r2 = 0.91) (fig. S29), with only 43
genes (15 nonredundant genes >10 kb) showing a
difference ofmore than five copies (tables S35 and
S36). Of these genes, 67% (29/43) are increased in
Neandertals compared with present-day humans,
and most of these are genes of unknown function.
One of the most extreme examples is the gene
PRR20 (NM_198441), for which we predicted 68
copies in Neandertals, 16 in humans, and 58 in the
chimpanzee. It encodes a hypothetical proline-rich
protein of unknown function. Other genes with pre-
dicted higher copy number in humans as opposed
to Neandertals included NBPF14 (DUF1220),
DUX4 (NM_172239),REXO1L1 (NM_033178),
and TBC1D3 (NM_001123391).

A screen for positive selection in earlymodern
humans. Neandertals fall within the variation of
present-day humans for many regions of the
genome; that is, Neandertals often share derived
single-nucleotide polymorphism (SNP) alleles
with present-day humans.We devised an approach
to detect positive selection in earlymodern humans

that takes advantage of this fact by looking for
genomic regions where present-day humans share
a common ancestor subsequent to their divergence
from Neandertals, and Neandertals therefore lack
derived alleles found in present-day humans
(except in rare cases of parallel substitutions)
(Fig. 4A). Gene flow between Neandertals and
modern humans after their initial population sep-
aration might obscure some cases of positive se-
lection by causing Neandertals and present-day
humans to share derived alleles, but it will not
cause false-positive signals.

We identified SNPs as positions that vary
among the five present-day human genomes of
diverse ancestry plus the human reference genome
and used the chimpanzee genome to determine the
ancestral state (SOM Text 13). We ignored SNPs
at CpG sites since these evolve rapidly and may
thus be affected by parallel mutations. We iden-
tified 5,615,438 such SNPs, at about 10% of
which Neandertals carry the derived allele. As
expected, SNPs with higher frequencies of the
derived allele in present-day humans were more
likely to show the derived allele in Neandertals
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Fig. 4. Selective sweep screen. (A) Schematic illustration of
the rationale for the selective sweep screen. For many
regions of the genome, the variation within current humans
is old enough to include Neandertals (left). Thus, for SNPs
in present-day humans, Neandertals often carry the derived
allele (blue). However, in genomic regions where an
advantageous mutation arises (right, red star) and sweeps
to high frequency or fixation in present-day humans,
Neandertals will be devoid of derived alleles. (B) Candidate
regions of selective sweeps. All 4235 regions of at least
25 kb where S (see SOM Text 13) falls below two standard
deviations of the mean are plotted by their S and genetic
width. Regions on the autosomes are shown in orange and
those on the X chromosome in blue. The top 5% by S are
shadowed in light blue. (C) The top candidate region from
the selective sweep screen contains two genes, ZFP36L2 and
THADA. The red line shows the log-ratio of the number of
observed Neandertal-derived alleles versus the number of
expected Neandertal-derived alleles, within a 100 kilobase window. The blue dots above the panel indicate all SNP positions, and the green dots indicate SNPs
where the Neandertal carries the derived allele.
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The	
  Neandertal	
  genome	
  shares	
  a	
  lot	
  of	
  derived	
  alleles	
  (shown	
  as	
  the	
  blue	
  star	
  
in	
  the	
  figure	
  above)	
  in	
  common	
  with	
  modern	
  humans.	
  Thus,	
  it	
  is	
  reasonable	
  
to	
  look	
  for	
  alleles	
  where	
  modern	
  humans	
  share	
  a	
  common	
  ancestor	
  after	
  
diverging	
  from	
  Neandertals.	
  	
  In	
  genomic	
  regions	
  where	
  an	
  advantageous	
  
mutation	
  arises	
  (shown	
  as	
  red	
  star)	
  and	
  sweeps	
  to	
  high	
  frequency	
  or	
  fixation	
  
in	
  modern	
  humans,	
  we	
  should	
  not	
  expect	
  the	
  Neandertals	
  to	
  have	
  such	
  
alleles.	
  Evolution	
  with	
  selection	
  will	
  be	
  discussed	
  in	
  more	
  details	
  later	
  in	
  this	
  
class.	
  	
  [1]	
  

	
  
The	
  Denisovan	
  Genome	
  
Another	
  population	
  found	
  very	
  far	
  from	
  us	
  is	
  the	
  Denisovan.	
  Also	
  published	
  in	
  2010	
  
[2],	
  it	
  was	
  reported	
  that	
  a	
  complete	
  mitochondrial	
  DNA	
  sequence	
  retrieved	
  from	
  a	
  
bone	
  excavated	
  in	
  2008	
  in	
  Denisova	
  Cave.	
  It	
  suggested	
  the	
  existence	
  of	
  another	
  
population	
  that	
  lived	
  close	
  in	
  time	
  and	
  space	
  with	
  Neanderthals	
  and	
  modern	
  
humans.	
  Here,	
  we	
  are	
  also	
  interested	
  in	
  the	
  question	
  of	
  how	
  much	
  of	
  this	
  Denisovan	
  
genome	
  is	
  shared	
  with	
  us.	
  	
  
	
  

	
  
	
  
The	
  figure	
  above	
  focuses	
  on	
  the	
  sharing	
  of	
  derived	
  alleles	
  among	
  modern	
  humans,	
  
Denisovans	
  and	
  Neandertals.	
  Pairs	
  of	
  different	
  human	
  population	
  are	
  compared	
  in	
  
terms	
  of	
  the	
  “D-­‐statistics”,	
  which	
  is	
  a	
  measure	
  of	
  the	
  rate	
  at	
  which	
  the	
  pairs	
  of	
  
populations	
  share	
  derived	
  alleles	
  with	
  Denisovans	
  and	
  Neandertals.	
  	
  It	
  is	
  found	
  that	
  
Denisovans	
  share	
  more	
  alleles	
  with	
  Papauns	
  than	
  with	
  Europeans	
  and	
  Asians.	
  
Notice	
  that	
  for	
  population	
  within	
  regions,	
  the	
  derived	
  alleles	
  they	
  share	
  in	
  common	
  
are	
  typically	
  specific	
  to	
  their	
  own	
  population	
  and	
  is	
  not	
  that	
  related	
  to	
  Neandertals	
  
and	
  Denisovans.	
  	
  [2]	
  
	
  
Runs	
  of	
  Homozygosity	
  	
  	
  
“Runs	
  of	
  homozygosity”	
  are	
  regions	
  of	
  the	
  genome	
  where	
  the	
  copies	
  inherited	
  from	
  
our	
  parents	
  are	
  identical	
  because	
  of	
  a	
  common	
  ancestor	
  they	
  had.	
  It	
  does	
  not	
  
specifically	
  refer	
  to	
  situations	
  such	
  as	
  marriage	
  between	
  cousins,	
  as	
  we	
  are	
  all	
  

Figure 4.
(A) Sharing of derived alleles among present-day humans, Denisovans and Neandertals. We
compare all possible pairs of 11 present-day humans {H1, H2} in their “D-statistics”, which
measure the rate at which they share derived alleles with Denisovans (x-axis) and
Neandertals (y-axis). Each point reports ±1 standard error bars from a Block Jackknife. D-
statistics are color-coded by geographic region. The D-statistic is not the same as the
mixture proportion; it is also affected by quantities like the amount of shared genetic drift
between the samples being compared. (B) Sharing of derived alleles that are absent in
Africans among present-day humans, Denisovans and Neandertals. We enhance the power
of the D-statistics by restricting to sites where 35 sub-Saharan African samples have the
ancestral allele, and pooling modern humans by region to increase resolution (bars again
give one standard error). Eastern non-African populations have significantly more archaic
ancestry than European populations (Z=5.3 and Z=4.8 for the tests based on the Denisovan
and Neandertal D-statistics, respectively).
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related	
  if	
  we	
  go	
  far	
  enough	
  back	
  in	
  the	
  phylogeny	
  tree.	
  However,	
  we	
  can	
  infer	
  the	
  
history	
  of	
  intermarriage	
  among	
  a	
  population	
  from	
  homozygosity.	
  In	
  the	
  figure	
  
below,	
  we	
  see	
  the	
  fraction	
  of	
  genome	
  in	
  runs	
  of	
  homozygosity	
  for	
  different	
  
populations	
  which	
  implies	
  that	
  Neanderthals	
  had	
  a	
  high	
  level	
  of	
  inbreeding	
  which	
  
might	
  have	
  been	
  due	
  to	
  the	
  population	
  being	
  segregated	
  and	
  confined	
  to	
  a	
  small	
  
region.	
  Modern	
  humans	
  on	
  the	
  other	
  have	
  a	
  much	
  lower	
  level	
  of	
  run	
  of	
  
homozygosity	
  as	
  inbreeding	
  in	
  modern	
  society	
  is	
  less	
  common.	
  [1]	
  
	
  

	
  
	
  
Population	
  Sequencing	
  and	
  Association	
  Studies	
  
	
  
1000	
  Genomes	
  Project	
  
The	
  goal	
  of	
  the	
  1000	
  Genomes	
  Project	
  is	
  to	
  find	
  human	
  genetic	
  variation	
  among	
  
humans	
  that	
  can	
  be	
  used	
  for	
  association	
  studies.	
  The	
  samples,	
  whose	
  whole	
  
genomes	
  are	
  sequenced,	
  are	
  chosen	
  from	
  very	
  different	
  ethnic	
  groups	
  to	
  capture	
  the	
  
population	
  diversity.	
  	
  In	
  our	
  previous	
  lecture	
  on	
  multiple-­‐sequence	
  alignment,	
  we	
  
discussed	
  how	
  genes	
  are	
  conserved	
  among	
  mammalians	
  due	
  to	
  purifying	
  selection,	
  
so	
  we	
  expect	
  the	
  sites	
  where	
  we	
  observe	
  low	
  allele	
  frequency	
  of	
  functional	
  variants	
  
to	
  also	
  be	
  conserved	
  across	
  mammals.	
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In	
  the	
  figure	
  below,	
  the	
  proportion	
  of	
  variants	
  with	
  derived	
  allele	
  frequencies	
  less	
  
than	
  0.5%,	
  which	
  is	
  a	
  measure	
  of	
  purifying	
  selection,	
  is	
  plotted	
  against	
  the	
  GERP	
  
score,	
  which	
  is	
  a	
  measure	
  of	
  evolutionary	
  conservation.	
  	
  Variations	
  related	
  to	
  stop	
  
codons	
  and	
  splicing	
  have	
  been	
  very	
  infrequent	
  since	
  humans	
  diverged	
  from	
  other	
  
primates.	
  	
  [3]	
  
	
  

	
  

	
  
	
  
In	
  the	
  left	
  figure	
  above,	
  we	
  observe	
  the	
  fraction	
  of	
  alleles	
  specific	
  to	
  different	
  
ancestry	
  groups.	
  Africans	
  have	
  accumulated	
  relatively	
  more	
  of	
  low-­‐frequency	
  
variants,	
  whereas	
  Americans	
  have	
  accumulated	
  the	
  least,	
  which	
  is	
  related	
  to	
  how	
  
long	
  these	
  populations	
  have	
  been	
  around.	
  In	
  the	
  right	
  figure	
  above,	
  we	
  are	
  
interested	
  in	
  the	
  expected	
  number	
  of	
  derived	
  alleles	
  across	
  humans.	
  However,	
  one	
  
may	
  point	
  out	
  that	
  if	
  the	
  population	
  is	
  constant,	
  then	
  the	
  plot	
  should	
  be	
  flat.	
  The	
  
reason	
  why	
  we	
  see	
  low	
  density	
  of	
  variants	
  at	
  low	
  derived	
  allele	
  frequency	
  and	
  high	
  
density	
  of	
  variants	
  at	
  high	
  derived	
  allele	
  frequency	
  can	
  be	
  explained	
  by	
  two	
  main	
  
reasons:	
  1)	
  A	
  lot	
  of	
  derived	
  alleles	
  got	
  fixed	
  in	
  a	
  small	
  population,	
  and	
  2)	
  Recent	
  
population	
  expansion	
  has	
  led	
  to	
  accumulation	
  of	
  a	
  larger	
  number	
  of	
  rare	
  alleles.	
  	
  
	
  
	
  

meeting this goal. However, coverage may be lower for populations
not closely related to those studied. For example, our resource includes
only 23.7%, 76.9% and 99.3% of the SNPs with frequencies of ,0.1%,
1.0% and 5.0%, respectively, in ,2,000 genomes sequenced in a study
of the isolated population of Sardinia (the SardiNIA study).

Genetic variation within and between populations
The integrated data set provides a detailed view of variation across
several populations (illustrated in Fig. 2a). Most common variants
(94% of variants with frequency $5% in Fig. 2a) were known before
the current phase of the project and had their haplotype structure
mapped through earlier projects2,9. By contrast, only 62% of variants
in the range 0.5–5% and 13% of variants with frequencies of #0.5%
had been described previously. For analysis, populations are grouped
by the predominant component of ancestry: Europe (CEU (see Fig. 2a
for definitions of this and other populations), TSI, GBR, FIN and IBS),
Africa (YRI, LWK and ASW), East Asia (CHB, JPT and CHS) and
the Americas (MXL, CLM and PUR). Variants present at 10% and
above across the entire sample are almost all found in all of the
populations studied. By contrast, 17% of low-frequency variants in
the range 0.5–5% were observed in a single ancestry group, and 53% of
rare variants at 0.5% were observed in a single population (Fig. 2b).
Within ancestry groups, common variants are weakly differentiated
(most within-group estimates of Wright’s fixation index (FST) are
,1%; Supplementary Table 11), although below 0.5% frequency
variants are up to twice as likely to be found within the same popu-
lation compared with random samples from the ancestry group
(Supplementary Fig. 6a). The degree of rare-variant differentiation
varies between populations. For example, within Europe, the IBS and
FIN populations carry excesses of rare variants (Supplementary Fig.
6b), which can arise through events such as recent bottlenecks10, ‘clan’
breeding structures11 and admixture with diverged populations12.

Some common variants show strong differentiation between popu-
lations within ancestry-based groups (Supplementary Table 12),
many of which are likely to have been driven by local adaptation either
directly or through hitchhiking. For example, the strongest differenti-
ation between African populations is within an NRSF (neuron-restrictive
silencer factor) transcription-factor peak (PANC1 cell line)13, upstream
of ST8SIA1 (difference in derived allele frequency LWK 2 YRI of 0.475 at
rs7960970), whose product is involved in ganglioside generation14.
Overall, we find a range of 17–343 SNPs (fewest 5 CEU 2 GBR,
most 5 FIN 2 TSI) showing a difference in frequency of at least 0.25
between pairs of populations within an ancestry group.

The derived allele frequency distribution shows substantial diver-
gence between populations below a frequency of 40% (Fig. 2c), such
that individuals from populations with substantial African ancestry
(YRI, LWK and ASW) carry up to three times as many low-frequency
variants (0.5–5% frequency) as those of European or East Asian origin,
reflecting ancestral bottlenecks in non-African populations15. However,
individuals from all populations show an enrichment of rare variants
(,0.5% frequency), reflecting recent explosive increases in population
size and the effects of geographic differentiation6,16. Compared with the
expectations from a model of constant population size, individuals
from all populations show a substantial excess of high-frequency-
derived variants (.80% frequency).

Because rare variants are typically recent, their patterns of sharing
can reveal aspects of population history. Variants present twice across
the entire sample (referred to as f2 variants), typically the most recent
of informative mutations, are found within the same population in
53% of cases (Fig. 3a). However, between-population sharing identifies
recent historical connections. For example, if one of the individuals
carrying an f2 variant is from the Spanish population (IBS) and the
other is not (referred to as IBS2X), the other individual is more likely
to come from the Americas populations (48%, correcting for sample
size) than from elsewhere in Europe (41%). Within the East Asian
populations, CHS and CHB show stronger f2 sharing to each other

(58% and 53% of CHS2X and CHB2X variants, respectively) than
either does to JPT, but JPT is closer to CHB than to CHS (44% versus
35% of JPT2X variants). Within African-ancestry populations, the
ASW are closer to the YRI (42% of ASW2X f2 variants) than the
LWK (28%), in line with historical information17 and genetic evidence
based on common SNPs18. Some sharing patterns are surprising; for
example, 2.5% of the f2 FIN2X variants are shared with YRI or LWK
populations.

Independent evidence about variant age comes from the length of
the shared haplotypes on which they are found. We find, as expected,
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Figure 2 | The distribution of rare and common variants. a, Summary of
inferred haplotypes across a 100-kb region of chromosome 2 spanning the genes
ALMS1 and NAT8, variation in which has been associated with kidney disease45.
Each row represents an estimated haplotype, with the population of origin
indicated on the right. Reference alleles are indicated by the light blue
background. Variants (non-reference alleles) above 0.5% frequency are
indicated by pink (typed on the high-density SNP array), white (previously
known) and dark blue (not previously known). Low frequency variants (,0.5%)
are indicated by blue crosses. Indels are indicated by green triangles and novel
variants by dashes below. A large, low-frequency deletion (black line) spanning
NAT8 is present in some populations. Multiple structural haplotypes mediated
by segmental duplications are present at this locus, including copy number gains,
which were not genotyped for this study. Within each population, haplotypes are
ordered by total variant count across the region. Population abbreviations: ASW,
people with African ancestry in Southwest United States; CEU, Utah residents
with ancestry from Northern and Western Europe; CHB, Han Chinese in
Beijing, China; CHS, Han Chinese South, China; CLM, Colombians in Medellin,
Colombia; FIN, Finnish in Finland; GBR, British from England and Scotland,
UK; IBS, Iberian populations in Spain; LWK, Luhya in Webuye, Kenya; JPT,
Japanese in Tokyo, Japan; MXL, people with Mexican ancestry in Los Angeles,
California; PUR, Puerto Ricans in Puerto Rico; TSI, Toscani in Italia; YRI,
Yoruba in Ibadan, Nigeria. Ancestry-based groups: AFR, African; AMR,
Americas; EAS, East Asian; EUR, European. b, The fraction of variants identified
across the project that are found in only one population (white line), are
restricted to a single ancestry-based group (defined as in a, solid colour), are
found in all groups (solid black line) and all populations (dotted black line).
c, The density of the expected number of variants per kilobase carried by a
genome drawn from each population, as a function of variant frequency (see
Supplementary Information). Colours as in a. Under a model of constant
population size, the expected density is constant across the frequency spectrum.
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GWA	
  Studies	
  	
  
Whole	
  genome	
  information	
  from	
  many	
  individuals	
  allows	
  us	
  to	
  conduct	
  studies	
  to	
  
identify	
  how	
  common	
  genetic	
  variants	
  related	
  to	
  certain	
  traits,	
  and	
  typically	
  the	
  
focus	
  is	
  on	
  single-­‐nucleotide	
  polymorphisms	
  (SNPs)	
  and	
  traits	
  like	
  common	
  
diseases	
  where	
  we	
  can	
  get	
  a	
  large	
  enough	
  sample	
  size.	
  For	
  a	
  given	
  disease,	
  we	
  
compare	
  two	
  groups	
  of	
  population:	
  one	
  with	
  disease	
  (cases)	
  and	
  one	
  without	
  the	
  
disease	
  (controls).	
  Then	
  the	
  goal	
  is	
  to	
  use	
  the	
  genotypes	
  of	
  these	
  individuals	
  to	
  see	
  
which	
  loci	
  are	
  associated	
  with	
  the	
  disease	
  as	
  shown	
  in	
  the	
  left	
  figure	
  below.	
  	
  The	
  
metric	
  of	
  statistical	
  significance	
  is	
  typically	
  the	
  p-­‐value.	
  The	
  smaller	
  it	
  is	
  for	
  a	
  SNP,	
  
the	
  more	
  likely	
  that	
  this	
  SNP	
  is	
  associated.	
  Thus,	
  we	
  can	
  plot	
  the	
  negative	
  log	
  of	
  the	
  
p-­‐values	
  of	
  al	
  SNPs	
  in	
  a	
  Manhattan	
  plot	
  as	
  shown	
  in	
  the	
  right	
  figure	
  below,	
  and	
  find	
  
the	
  peaks	
  that	
  indicate	
  strong	
  correlation	
  with	
  the	
  disease.	
  Notice	
  that	
  there	
  are	
  
multiple	
  close-­‐by	
  SNPs	
  that	
  have	
  small	
  p-­‐values	
  due	
  to	
  linkage	
  disequilibrium,	
  so	
  
that	
  SNPs	
  that	
  are	
  linked	
  also	
  show	
  some	
  correlation	
  with	
  the	
  trait.	
  	
  
	
  

	
  
	
  
Traditionally,	
  there	
  have	
  been	
  several	
  limitations	
  in	
  GWA	
  studies,	
  such	
  as	
  
insufficient	
  sample	
  size	
  and	
  false	
  positive	
  results.	
  	
  However,	
  high	
  throughput	
  whole	
  
genome	
  sequencing	
  technologies	
  can	
  provide	
  a	
  better	
  alternative	
  to	
  overcome	
  the	
  
related	
  shortcomings.	
  	
  
	
  
Heritability	
  and	
  Environment.	
  
Taking	
  a	
  step	
  back	
  to	
  the	
  big-­‐picture	
  question,	
  we	
  are	
  interested	
  in	
  how	
  much	
  of	
  the	
  
variance	
  of	
  certain	
  traits	
  across	
  populations	
  can	
  be	
  explained	
  by	
  the	
  variance	
  of	
  
genes,	
  in	
  other	
  words,	
  whether	
  certain	
  traits	
  are	
  heritable.	
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Twin	
  studies	
  are	
  popular	
  methods	
  to	
  understand	
  the	
  genetic	
  influences	
  on	
  certain	
  
traits	
  in	
  a	
  population	
  sample.	
  (Intuitively,	
  a	
  given	
  trait	
  in	
  only	
  one	
  member	
  of	
  the	
  
pair	
  of	
  twins	
  provides	
  a	
  strong	
  signal	
  of	
  environmental	
  effects.)	
  It	
  was	
  found	
  that	
  
there	
  is	
  a	
  higher	
  correlation	
  of	
  intelligence	
  among	
  identical	
  twins	
  (who	
  share	
  almost	
  
all	
  genomes)	
  reared	
  apart	
  than	
  fraternal	
  twins	
  (just	
  like	
  normal	
  siblings)	
  reared	
  
together.	
  Thus,	
  this	
  comparison	
  suggests	
  that	
  intelligence	
  has	
  a	
  strong	
  dependency	
  
on	
  genetics.	
  	
  [4]	
  

	
  
	
  
	
  
What	
  is	
  the	
  “Missing	
  Heritability”?	
  
Hundreds	
  of	
  genetic	
  variants	
  have	
  been	
  identified	
  to	
  be	
  associated	
  with	
  complex	
  
diseases	
  and	
  traits	
  through	
  GWA	
  studies,	
  but	
  most	
  variants	
  only	
  explain	
  a	
  small	
  
portion	
  of	
  familial	
  clustering.	
  This	
  leads	
  to	
  the	
  concept	
  of	
  “missing”	
  heritability	
  
where	
  SNPs	
  cannot	
  explain	
  the	
  remaining	
  risk	
  or	
  variance.	
  Even	
  traits	
  such	
  as	
  the	
  
human	
  height,	
  which	
  is	
  a	
  classical	
  complex	
  trait	
  found	
  to	
  be	
  associated	
  with	
  40	
  loci,	
  
cannot	
  be	
  explained	
  well	
  by	
  the	
  genotype	
  information.	
  [5]	
  
	
  

	
  
The	
  figure	
  above	
  captures	
  the	
  feasibility	
  of	
  identifying	
  genetic	
  variants	
  by	
  risk	
  allele	
  
frequency	
  and	
  strength	
  of	
  genetic	
  effect.	
  The	
  diagonal	
  components	
  are	
  where	
  most	
  
emphasis	
  in	
  identifying	
  associations	
  lies.	
  Certain	
  variants	
  may	
  not	
  be	
  sufficient	
  

Heritability & Environment 

Bienvenu OJ, Davydow DS, & 
Kendler KS (2011).  
Psychological medicine, 
41 (1), 33-40 PMID: 

family studies, and can be expected to vary across environments.
Narrow-sense heritability estimates in humans can be inflated if
family resemblance is influenced by non-additive genetic effects
(dominance and epistasis, or gene–gene interaction), shared familial
environments, and by correlations or interactions among genotypes
and environment36,37. However, heritabilities estimated from pedi-
gree studies in animals agree well with heritability estimated from
response to artificial selection, suggesting that estimates from family
studies are not necessarily inflated.

Teasing apart the contributions to heritability of environmental
factors shared among relatives will soon be possible because the
availability of genome-wide markers now provides empirical esti-
mates of identity-by-descent (IBD) allele sharing between pairs of rela-
tives. For example, full sibs share on average half their genetic com-
plement, but this proportion can vary—in one large study it ranged
from 0.37 to 0.62 (ref. 38). By relating phenotypic differences to the
observed IBD sharing fraction among sib pairs, marker data were used
to generate a heritability estimate of 0.8 for height38. This is remarkably
consistent with estimates using traditional methods but free of their
assumptions, suggesting that for height at least, heritability is not over-
estimated. Applying such estimation to distantly related or ‘unrelated’
individuals is now feasible using dense genomic scans39; given the num-
ber of people with dense genotyping data, heritability estimates could be
generated for a wide variety of traits free of potential confounding by
unmeasured shared environment.

Improving estimates of all contributors to heritability will facilitate
determination of the proportion of genetic variance that has been
explained. Despite imprecision in current estimates, it may still be
possible to know that ‘all the heritability’ has been explained by pre-
dicting phenotypes in a new set of individuals from trait-associated
markers, and correlating the predicted phenotypes with the actual
values. If the markers truly explain all the additive genetic variance,
the squared correlation between predicted and actual phenotype will
be equal to the heritability40. Population-based heritability estimates
thus provide a valuable metric for completeness of available genetic
risk information, but individualized disease prevention and treatment
will ultimately require identifying the variants accounting for risk in a
given individual rather than on a population basis.

Rare variants and unexplained heritability
Much of the speculation about missing heritability from GWAS has
focused on the possible contribution of variants of low minor allele
frequency (MAF), defined here as roughly 0.5% , MAF , 5%, or of
rare variants (MAF , 0.5%). Such variants are not sufficiently fre-
quent to be captured by current GWA genotyping arrays14,41, nor do
they carry sufficiently large effect sizes to be detected by classical
linkage analysis in family studies (Fig. 1). Once MAF falls below
0.5%, detection of associations becomes unlikely unless effect sizes
are very large, as in monogenic conditions. For modest effect sizes,
association testing may require composite tests of overall ‘mutational
load’, comparing frequencies of mutations of potentially similar
functional effect in cases and controls.

Low frequency variants could have substantial effect sizes (increas-
ing disease risk two- to threefold) without demonstrating clear
Mendelian segregation, and could contribute substantially to missing
heritability42. For example, 20 variants with risk allele frequency of 1%
and allelic odds ratio (or probability of an event occurring divided by
the probability of it not occurring, compared in people with versus
without the risk allele) of three would account for most familial
aggregation of type 2 diabetes. There are relatively few examples of
such variants contributing to complex traits, possibly owing to insuf-
ficiently large sample sizes or insufficiently comprehensive arrays.

The primary technology for the detection of rare SNPs is sequen-
cing, which may target regions of interest, or may examine the whole
genome. ‘Next-generation’ sequencing technologies, which process
millions of sequence reads in parallel, provide monumental increases
in speed and volume of generated data free of the cloning biases and

arduous sample preparation characteristic of capillary sequencing43.
Detection of associations with low frequency and rare variants will be
facilitated by the comprehensive catalogue of variants with
MAF $ 1% being generated by the 1,000 Genomes Project (http://
www.1000genomes.org/page.php), which will also identify many
variants at lower allele frequencies. The pilot effort of that program
has already identified more than 11 million new SNPs in initially low-
depth coverage of 172 individuals44.

Current mechanisms for using sequencing to identify rare variants
underlying or co-located with GWA-defined associations include
sequencing in genomic regions defined by strong and repeatedly repli-
cated associations with common variants, and sequencing a larger frac-
tion of the genome in people with extreme phenotypes. In the absence
of GWA-defined signals, sequencing candidate genes in subjects at the
extremes of a quantitative trait (such as lipid levels or the age at onset),
can identify other associated variants, both common and rare45,46. An
important finding from these studies is that much of the information is
provided by people at the extremes of trait distributions, who seem to be
more likely to carry loss-of-function alleles47.

Sample sizes used for the initial identification of DNA sequence
variants have generally been modest, and sample size requirements
increase essentially linearly with 1/MAF. Much larger samples are
needed for the identification of associations with variants than those
needed for the detection of the variants themselves. They also scale
roughly linearly with 1/MAF given a fixed odds ratio and fixed degree
of linkage disequilibrium with genotyped markers. Sample size for
association detection also scales approximately quadratically with
1/j(OR 2 1)j, and thus increases sharply as the odds ratio (OR)
declines. Sample size is even more strongly affected by small odds
ratios than by small MAF, so low frequency and rare variants will
need to have higher odds ratios to be detected.

Complicating matters further, numerous rare variants may be
detected in a gene or region but they may have disparate effects on
phenotype. Common variants have typically been analysed individu-
ally23,48, but with one or two carriers of each rare variant, pooling
them using specific criteria becomes attractive47,49,50. Pooling variants
of similar class increases the effective MAF of the class and reduces the
number of tests performed, but raises several other questions (Box 1).

Determining which of the multitude of variants carried by an
individual are responsible for a given phenotype represents a massive
task, especially if the causal alleles are relatively anonymous in terms
of known functional consequences. Because only a small proportion
will have obvious functional consequences for the resultant protein,
lesser evidence of association may suffice to implicate variants of this
sort. The best approaches for combining functional credibility and
statistical support in the evaluation of such variants remain to be
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Figure 1 | Feasibility of identifying genetic variants by risk allele frequency
and strength of genetic effect (odds ratio). Most emphasis and interest lies
in identifying associations with characteristics shown within diagonal dotted
lines. Adapted from ref. 42.
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(with	
  minor	
  allele	
  frequency	
  <0.5%)	
  in	
  the	
  sample	
  to	
  be	
  detected	
  by	
  GWA	
  
genotyping	
  arrays.	
  	
  

Importantly,	
  low	
  frequency	
  variants	
  (with	
  minor	
  allele	
  frequency	
  between	
  1%	
  and	
  
5%)	
  in	
  the	
  middle	
  of	
  the	
  plot	
  can	
  have	
  significant	
  effect	
  sizes	
  too	
  low	
  to	
  support	
  
Mendelian	
  segregation	
  and	
  to	
  be	
  detected	
  by	
  traditional	
  linkage	
  approaches.	
  
Meanwhile,	
  the	
  minor	
  allele	
  frequency	
  is	
  also	
  too	
  low	
  to	
  be	
  clearly	
  identified	
  by	
  
GWA	
  studies.	
  Thus,	
  the	
  1,000	
  Genomes	
  Project	
  and	
  other	
  large-­‐scale	
  projects	
  are	
  
targeted	
  towards	
  finding	
  these	
  variants	
  with	
  low	
  or	
  even	
  rare	
  minor	
  allele	
  
frequencies.	
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