CS 262 Lecture 4: Burrows-Wheeler Transform

Winter 2015

Professor: Serafim Batzoglou

Notes scribed by Sanjay Siddhanti

*This lecture was given by Victoria Popic

Contents

DNA sequencing - page 2
Human genetic variation - page 4
BWT introduction - page 6
Constructing BWT - pages 6-10

o Naive construction - page 6

o Suffix array construction - page 9
Reversing the BWT - pages 10-15

o Naive approach - page 10

o Approach using LF mapping - page 12
Searching for a pattern in BWT - pages 15-16
BWT-based aligners in practice - pages 16-17

Aligning short reads to populations of genomes - pages 17-18

Topic 1: DNA Sequencing

* Goal: obtain the full nucleotide sequence of a piece of DNA

* This is challenging because no machine is currently capable of sequencing a long
piece of DNA without first breaking it up

* Currently we can only sequence ~150 nucleotides at a time

Shotgun sequencing (current method):
¢ Input: along piece of DNA
* Break the DNA strand at random locations to produce fragments of length ~100
o Repeat this several times, breaking randomly each time, so that the result
will be lots of overlapping fragments of length 100
o Most of the human genome was sequenced to 12x coverage in the Human
Genome Project (citation:
http://en.wikipedia.org/wiki/Shotgun_sequencing)
* Sequence each of the short fragments and reassemble them using the overlap in
the sequences

o This is particularly difficult when there are short repeats of DNA

b e e

Get one or two reads from
each segment

— —

~100 bp ~100 bp
Assembly

* Genome assembly is just the process of attaining a genome sequence

* There are two main assembly problems:

1. De Novo Assembly

* First time sequencing an organism, so there is no template (reference genome)
to compare against

* This problem is extremely challenging

2. Resequencing

* Sequencing an organism for which there exists a reference genome

* Every time a human genome is sequenced, this is an example of resequencing

¢ This problem is much easier because humans are genetically and biochemically
very similar (http://en.wikipedia.org/wiki/Human_genetic_variation)

o Instead of assembling only based on overlap, we can match short
fragments to the reference genome to see where they belong - this is
called read mapping (see below)

Read Mapping

Given a bunch of short fragments (reads) from shotgun sequencing, figure out
where they belong on the template genome
This is algorithmically challenging because naive solutions will take linear time
with respect to the reference genome

o The human genome has 3 billion base pairs, so clearly using a linear time

algorithm will be slow and not ideal

This problem is further complicated by the fact that individuals differ, so
sometimes a fragment might not be an exact match to anywhere in the reference
genome
We want something that is a) fast and b) detects genetic variation
Modern fast read aligners include BWT, Bowtie, SOAP

o All are based on the Burrows-Wheeler Transform

CATCGACCGAGCGCGATGCTAGCTAGGTGATCGT
TGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATCGT. . .
GCATGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATCGT
GTGCATGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATC

Topic 2: Human Genetic Variation

1.

SNP = Single Nucleotide polymorphism

A change at one nucleotide

TGCTGAGA
TGCCGAGA

Inversion

A piece of DNA is reversed

— =
—s —>

Translocation

Parts of non-homologous chromosomes rearrange
—
-_—

4. Microdeletion

5.

A small deletion (up to 5 MB)

TGC - - AGA
TGCCGAGA

Large deletion

Deletion > 5 MB

> > >

Novel sequence

Same as “Insertion” in the fragment

TGCTCGGAGA
TGC - - - GAGA

Mobile element insertion / Pseudogene insertion
Mobile element = piece of DNA that can move around

Pseudogene = nonfunctional relative of a functional gene

> > >

Tandem duplication

Duplication of a piece of DNA in one strand

—> > P]

> > >

9. Transposition

* A piece of DNA gets moved to somewhere within the opposite strand

el > > >
> > > > >

10. Novel sequence at breakpoint
* DNA breakpoint - locations in the genome where an inversion, deletion, etc is

likely to occur (http://www.dnalc.org/view/1241-Breakpoints.html)

> TGG >
—s —>

Topic 3: Burrows-Wheeler Transform

* Take along sequence S, and a pattern P that you want to locate in S

* The BWT is a reversible permutation of S
o Given the BWT, S can be reconstructed

* The BWT allows one to search for pattern P in sequence S in O(|P|) time
o This means that the time required is linear with respect to the length of

the PATTERN

o Does NOT depend on the length of the sequence!

Constructing the BWT (with example word “BANANA")
Method 1: Simple approach

* There are better ways to get the BWT, but we will go through a simple approach
* Let $ be a character that is not in the alphabet, and is lexicographically smaller

than all characters in the alphabet

1. Figure out all suffixes of the word

BANANA
ANANA
NANA
ANA

NA

A

2. Add ‘$’ to the end of each suffix

BANANAS
ANANAS
NANAS
ANAS
NAS

AS

$

3. Add the prefix (where prefix + suffix = original word) after ‘$’

* Every line below is called a “rotation”

BANANAS
ANANASB
NANASBA
ANASBAN
NASBANA
ASBANAN
SBANANA

4. Sort the rotations lexicographically

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

The BWT is the last column of the sorted matrix of rotations (highlighted in
red)!

Method 2 for constructing BWT: Suffix Arrays

* The suffix array (http://en.wikipedia.org/wiki/Suffix_array) is a very useful data

structure

e Sort all the suffixes of “BANANA$”

S

AS

ANAS
ANANAS
BANANAS
NAS
NANAS

* (Create a suffix array S for “BANANAS”

~S~Sooodh WNH

o S[i] contains the index of where the ith smallest suffix occurs in the
original string “BANANAS$”

o So S[1] will contain the index of where “$” (the smallest suffix, as seen
above) occurs in “BANANAS$”. This is the last index, 7.

o Note: The lecture slides start the indexing at 1 (not 0), so I will
continue this convention. S[1] is the first element of S.

* Thus we end up with the following suffix array (bottom) for the original string

(top)

1 2 3 4 5 6

Constructing BWT from Suffix Array:

* Very simple rule to get BWT(X][i], the ith character in the BWT of string X

10

o Inwords: Go to the character in X pointed to by S[i], and move one spot to
the left. If S[i] = 1, take the last character of X (which is the $)
o In Python-like code: BWT (X)[i] = X[S[i] - 1] if S[i] > 1 else X[len(X)]

1

S 7

2
X B A

6

BWT(X) A N

3
O

)|

4
A

Reconstructing the original string from the BWT:

5

6

7

N A §

* We said that the BWT is a reversible permutation, which means that given only

the BWT, we must be able to recreate the original string

Method 1: Simple approach

$SBANANA
AS$SBANAN
ANASBAN
ANANASB
BANANAS
NA$BANA
NANASBA

PrunwZzZp

BWT matrix of
string ‘BANANA’

220ppPun

sort

|
ZEBEEEE

append
BWT

$B ASB
AS NAS
AN NAN
=== AN =3 BAN
BA $BA
NA ANA
NA ANA
append

sort

BWT

$BA
ASB

=== ANA

sort

NAS
NAN

11

¢ Starting with an empty matrix, repeat the following procedure

o Append BWT as last column of the matrix

o Sortthe matrix

* Do this n times, where n is the length of the BWT string

e After 1 iteration, this gives the first column of the sorted BWT matrix

2 Z2W PPy

After 2 iterations, this gives the first two columns of the sorted BWT matrix

SEPBEE LG

After n iterations, this gives the full BWT matrix

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

The original string is just the first row, starting after the $

Method 2: Faster approach to reconstructing original string from BWT

Lemma:

The ith occurrence of character c in the last column of the BWT matrix is the
same exact character as the ith occurrence of character c in the first column

Looking at our BWT matrix:

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

12

13

The 1st occurrence of “A” in the last column (first row) is the third “A” in

“BANANA”

The 1st occurrence of “A” in the first column (second row) is also this same exact
“A”, the third “A” in “BANANA”
o This will always be the case. It will never be a different “A”.
LF(r) is a function mapping from the last column of the BWT to the first column
o Parameter r is the row number
o Inthe last column of row r in the BWT matrix, say we have the ith
occurrence of character j
o LF(r) finds the ith occurrence of letter j in the first column of the BWT

matrix, and returns that row

SBANANA —
AS$SBANAN

ANASBAN
ANANASE — ANANASE
BANANAS
NASBANA
NANASBA

LF[1=12,6,7,5,1, 3, 4]

If LF(r) = x, then row x can be attained by rotating row r by one position to the
right

o This is obvious because of how LF is defined

14

Computing LF is very simple
o Let C(‘a’) be the number of characters in the string smaller than ‘a’
* For banana:
e C¥H=0
* C(A)=1 (only $is smaller)
* C(B)=4($and all three ‘A’s are smaller)
* Etc.
o LF(r) = C(X) + i, where row r holds the ith occurrence of letter X in the last
column
Now there is a very elegant way to reconstruct the original string
o We notice that the first row of the BWT matrix is just the original string
= So the first letter of the actual BWT is therefore the last letter of
the original string
* The idea is to work backwards from here - what is the 21d to last
character? If we compute LF(1st row) = row X, then we know that
the very last character in row X = BWT[X] = 2nd to last character in
original string.
» Then compute LF(X) =Y, and BWT[Y] must be the 3rd to last
character in the original string
» Continue doing this until we hit a “$” in the BWT - this means we

have reconstructed the entire string

15

CO 1 5 5 4 0 1 1 e

indexi 1 1 2 1 1 2 3 :ntﬂ'%itéﬂ?rg:zésofc

LF) 2 6 7 5 1 3 4 LF()=C() +i
Reconstruct BANANA:

This reconstruction takes O(n) time

Searching for a pattern in the BWT:

L(W): lowest index in BWT matrix where W is prefix
U(W): highest index in BWT matrix where W is prefix
o Ex:L(“NA”)=6,U(“NA") =7 for BANANA

Lemma

L(aW) =C(a) + i+1, where i = # of occurrences of character ‘a’ up to slot L(W)-1
in BWT (X)
U(aW) = C(a) + j, where j = # of occurrences of character ‘a’ up to slot U(W) in

BWT (X)

16

* L(“ANA")=C(‘A) +#‘Asupto (L("NA")-1)+1
o =1+(#A'supto5)+1
o =1+1+1=3

* U(“ANA”)=1+#‘AsuptoU(“NA")=1+3=4

* Then we can find where our pattern occurs using the following algorithm:

Let
LFC(r,a)=C(a) +i, wherei=#a'sup torin BWT

ExactMatch(W[1...k]) {

a := WLK];
low := C(a) +1;
high := C(a+1); // a+1: lexicographically next char
i=k-1;
while (low <= high && i >= 1) {
a = WIij;
low = LFC(low -1, a) + 1,
high = LFC(high, a);
i=i-1;}
return (low, high);

}

* We can thus search for all exact occurrences of W in time O(|W|)

BWT-based aligners in practice
* Inexact matching
o Allow mismatches and gaps

o This accounts for sequencing errors, mutations, etc

17

* Heuristics
o Putbounds on the number of allowed differences
o Add heuristics for scoring (different types of gap penalties, different
confusion matrix for mismatch penalties, etc.)
* Memory optimizations
o Precompute parts of the suffix or occurrence arrays if necessary
* Aligners often have 3 phases:
1. BWT index construction
2. Shortread mapping

3. Reporting and evaluation of alignment results

Topic 4: Short read alignments with populations of genomes
* For many species, there are now an abundance of genomes available
o 1000 Genomes Project in humans
o 1000 Plant Genomes Project
o 100K Genomes Project for infectious microorganisms
o 15k Project for arthropods
o 1001 Genomes Project for A. Thaliana (a flowering plant)
o etc..
* When we do short read alignments to just one reference genome, that comes
with whatever biases are in the reference genome
o To avoid this, we can even out the biases by aligning to populations of
genomes
* Idea: create a compressed reference representation (reference multi-genome)
that captures all the variations in the genome collection and can be used for
short-read alignment

o see pictures below

@—00—0O90—0—900Q Q Q—0—9—090——0—G
@—0—O0—0—¥—0—d— 10—V 0V-0—0—90—90—d—043
D—0—90—0—9—0—Q Q—0—90—9——03
D—9—9—0—9—90—Q D Q—0—9—90—d—90—3

@collapse

SNPs INDEL bubbles

IWPAC| - |A[B |[C| D G| H |[K|M| N |R|S TV (W

<

2. Append INDEL branches
padded with surrounding context

<O 0-0-3-0—--9—0—

now we can use this in modified alignment algorithms

18

