CS262
A Zero-Knowledge Based Introduction to Biology

Biology

- From the greek word β ios = life Timeline:
- 1683 - discovery of bacteria
- 1858 - Darwin's natural selection
- 1865 - Mendel's laws
- 1953 - double helix suggested by Watson-Crick
- 1955 - discovery of DNA and RNA polymerase
- 1978 - sequencing of first genome (5kb virus)
- 1983 - invention of PCR
- 1990 - discovery of RNAi
- 2000 - human genome (draft)

How to learn some?

- Online sources
- Wikipedia
- http://www.wikipedia.org/
- John Kimball's Biology Pages
- http://biology-pages.info/
- Cold Spring Harbor Meetings
- CSHL Biology of Genomes
- CSHL Genome Informatics
- Hang out with biologists

The Cell

cell, nucleus, cytoplasm, mitochondrion

© 1997-2005 Coriell Institute for Medical Research

How many?

- Cells in the human body: $\sim 10^{14}$ (100 trillion)
$\sim 10^{15}$ bacterial cells!

Chromosomes

histone, nucleosome, chromatin, chromosome, centromere, telomere
ıme

How many?

Chromosomes in a human cell: $46(2 \times 22+X / Y)$

Nucleotide

deoxyribose, nucleotide, base, A, C, G, T, purine, pyrimidine, 3', 5'
to previous nucleotide

purines

Adenine (A) to base

Thymine (T)

pyrimidines
to next nucleotide
Let's write "AGACC"!

"AGACC" (backbone)

"AGACC" (DNA)

deoxyribonucleic acid (DNA)

DNA is double stranded

strand, reverse complement

DNA is always written 5^{\prime} to 3^{\prime}
AGACC or GGTCT

RNA

ribose, ribonucleotide, U

to previous ribonucleotide

How many?

- Nucleotides in the human genome: ~ 3 billion

Genes \& Proteins

gene, transcription, translation, protein

Double-stranded DNA

(transcription)
Single-stranded RNA
AUGGGAUUACAAAGCAUUUAGGGA. . . UCACCCUCUCUAGACUAGCAUCUAUAUAA

How many?

Genes in the human genome: ~ 20,000 - 25,000

Gene Transcription

promoter

Gene Transcription

transcription factor, binding site, RNA polymerase

Transcription factors recognize transcription factor binding sites and bind to them, forming a complex. RNA polymerase binds the complex.

Gene Transcription

The two strands are separated

Gene Transcription

An RNA copy of the $5^{\prime} \rightarrow 3^{\prime}$ sequence is created from the $3^{\prime} \rightarrow 5^{\prime}$ template

Gene Transcription

pre-mRNA 5^{\prime} GAUUACA...

RNA Processing

5' cap, polyadenylation, exon, intron, splicing, UTR, mRNA

Gene Structure

How many?

- Exons per gene: ~ 8 on average (max: 148)
Nucleotides per exon:
170 on average (max: 12k)
Nucleotides per intron:
5,500 on average (max: 500k)
Nucleotides per gene:
45 k on average (max: 2,2M)

Amino acjd

amino acid

There are 20 standard amino acids

Proteins

N-terminus, C-terminus

Translation

The ribosome synthesizes a protein by reading the mRNA in triplets (codons). Each codon is translated to an amino acid.

The Genetic Code

	U	C	A	G	
U	UUU Phenylalanine (Phe)	UCU Serine (Ser)	UAU Tyrosine (Tyr)	UGU Cysteine (Cys)	U
	UUC Phe	UCC Ser	UAC Tyr	UGC Cys	C
	UUA Leucine (Leu)	UCA Ser	UAA STOP	UGA STOP	A
	UUG Leu	UCG Ser	UAG STOP	UGG Tryptophan (Trp)	G
C	CUU Leucine (Leu)	CCU Proline (Pro)	CAU Histidine (His)	CGU Arginine (Arg)	U
	CUC Leu	CCC Pro	CAC His	CGC Arg	C
	CUA Leu	CCA Pro	CAA Glutamine (GIn)	CGA Arg	A
	CUG Leu	CCG Pro	CAG GIn	CGG Arg	G
A	AUU Isoleucine (lle)	ACU Threonine (Thr)	AAU Asparagine (Asn)	AGU Serine (Ser)	U
	AUC lle	ACC Thr	AAC Asn	AGC Ser	C
	AUA lle	ACA Thr	AAA Lysine (Lys)	AGA Arginine (Arg)	A
	AUG Methionine (Met) or START	ACG Thr	AAG Lys	AGG Arg	G
G	GUU Valine (Val)	GCU Alanine (Ala)	GAU Aspartic acid (Asp)	GGU Glycine (Gly)	U
	GUC Val	GCC Ala	GAC Asp	GGC Gly	C
	GUA Val	GCA Ala	GAA Glutamic acid (Glu)	GGA Gly	A
	GUG Val	GCG Ala	GAG Glu	GGG Gly	G

Translation (tRNA)

tRNA, anticodon

(Tryptophan codon: UGG)

$\widehat{C} \mid$
Tryptophan
anticodon

Translation (tRNA)

aminoacylation

Translation

$5^{\prime} \ldots \underbrace{\ldots A \cup U}_{\text {UTR }} \underbrace{A \cup G}_{\text {Met }} \underbrace{G C C}_{\text {Ala }} \underbrace{U G G}_{\text {Trp }} \underbrace{A C U}_{\text {Thr }} \cup G A \ldots 3^{\prime}$

Start
Codon

Translation

$$
5^{\prime} \ldots . . . A \cup \cup A \cup G G C C \cup G G A C \cup \cup G A . . .3^{\prime}
$$

Translation

Errors?

mutation

- What if the transcription / translation machinery makes mistakes?
- What is the effect of mutations in coding regions?

Reading Frames

reading frame

GCUUGUUUACGAAUUAG

$$
\begin{aligned}
& \text { Gl U U G U U U A C G A A U U A G } \\
& \text { G C U U G U U U A C G A A U U A G } \\
& G C \left\lvert\, \begin{array}{|l|l|l|l|l|}
\hline U U G U U & U C G & A & A & U \\
\hline
\end{array}\right.
\end{aligned}
$$

Synonymous Mutation

synonymous (silent) mutation, fourfold site

$$
\begin{aligned}
& G \subset \cup \cup G \cup \cup \cup \not \subset C G A A \cup U A G \\
& \begin{array}{|l|l|lll|lll|lll}
\hline G \subset ~ U & U & G & U & U & U & A & G & A & A & U \\
& & \\
\hline
\end{array} \\
& \begin{array}{|l|l||l||l|l|}
\hline \text { Aaa } & \text { Cyst } & \text { Leu } & \text { Arg } & \text { Ide } \\
\hline
\end{array} \\
& \begin{array}{|l|ll|lll|l|lll|l}
\hline G \subset & U & G & U & U & U & G & C & G & A & A \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline \text { Ala } & \text { mys } & \text { Leu } & \text { Arg } & \text { Ilo } \\
\hline
\end{array}
\end{aligned}
$$

Missense Mutation

$$
\begin{aligned}
& \text { GCUUG GUUUACGAAUUAG } \\
& \begin{array}{|l|l|l|l|l|l}
\hline \text { G C U U G U U U A } & \text { C G A A U U } \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline \text { A1a } & \text { Cys } & \text { Leu } & \text { Arg } & \text { I1e } \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l}
\hline \text { G C U U G G U U A } & \text { C G A A U U } \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline \text { A1a } & \text { Trp } & \text { Leu } & \text { Arg } & \text { Ile } \\
\hline
\end{array}
\end{aligned}
$$

Nonsense Mutation

Ala	Chs	Leu	Arg	Il

Ala STOP

Frameshift

frameshift

$$
\begin{aligned}
& \text { GCUUGUMUACGAAUUAG }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline \text { A1a } & \text { Cys } & \text { Leu } & \text { Arg } & \text { I1e } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline \text { Ala } & \text { Cys } & \text { Tyr } & \text { G1u } & \text { Leu } \\
\hline
\end{array}
\end{aligned}
$$

Quality Control

nonsense-mediated decay

- Nonsense-Mediated mRNA Decay (NMD) (Destroy mRNA with premature STOP codon)

Gene Expression Regulation

regulation

- When should each gene be expressed?
- Regulate gene expression

Examples:

- Make more of gene A when substance X is present
- Stop making gene B once you have enough
- Make genes $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ simultaneously

Regulatory Mechanisms

enhancer, silencer

Transcription Factor Specificity:

Enhancer:

Silencer:

Chromation

Assemblies

read, contig, scaffold, sequencing gaps, assembly

Retrovirus

virus, reverse transcriptase, integrase

Infection

Infection

Replication cycle

RNA

\square

DNA

Reverse

Transcription

Replication cycle

Are they alive?

- Polio virus made from scratch (\$300,000 DARPA project - 2002)

" The first part of the sequence was painstakingly pieced together by hand and took over a year. The researchers then hired a commercial laboratory, Integrated DNA Technologies, to synthesise the remaining two thirds of the sequence mechanically. This took an additional two months."

Are they alive?

- Polio virus made from scratch (\$300,000 DARPA project - 2002)

" Once the entire sequence was replicated, it was reconverted into RNA by enzymatic means. Viral propagation and replication were accomplished by throwing the virus into a predesigned protein soup that contained all the polymerases and other enzymatic ingredients necessary for RNA transcription and translation. The synthetic virus was able to successfully replicate itself from this mixture."

Are they allive?

Polio virus made from scratch (\$300,000 DARPA project - 2002)

" The viral copies were then injected into the brains of mice, which subsequently developed paralysis indistinguishable from polio."

The end?

Keywords

cell, nucleus, cytoplasm, mitochondrion, histone, nucleosome, chromatin, chromosome, centromere, telomere, deoxyribose, nucleotide, base, A, C, G, T, purine, pyrimidine, 3', 5', deoxyribonucleic acid (DNA), strand, reverse complement, ribose, ribonucleotide, U, gene, transcription, translation, protein, promoter, transcription factor, binding site, RNA polymerase, 5' cap, polyadenylation, exon, intron, splicing, UTR, mRNA, amino acid, N terminus, C terminus, ribosome, codon, tRNA, anticodon, aminoacylation, mutation, reading frame, synonymous (silent) mutation, fourfold site, missense mutation, nonsense mutation, frameshift, nonsense-mediated decay, regulation, enhancer, silencer, read, contig, scaffold, sequencing gaps, assembly, virus, reverse transcriptase, integrase

