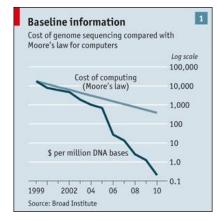
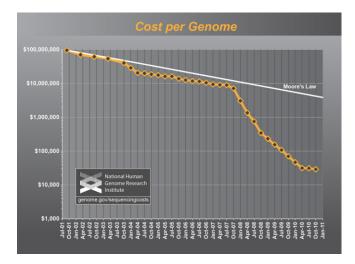


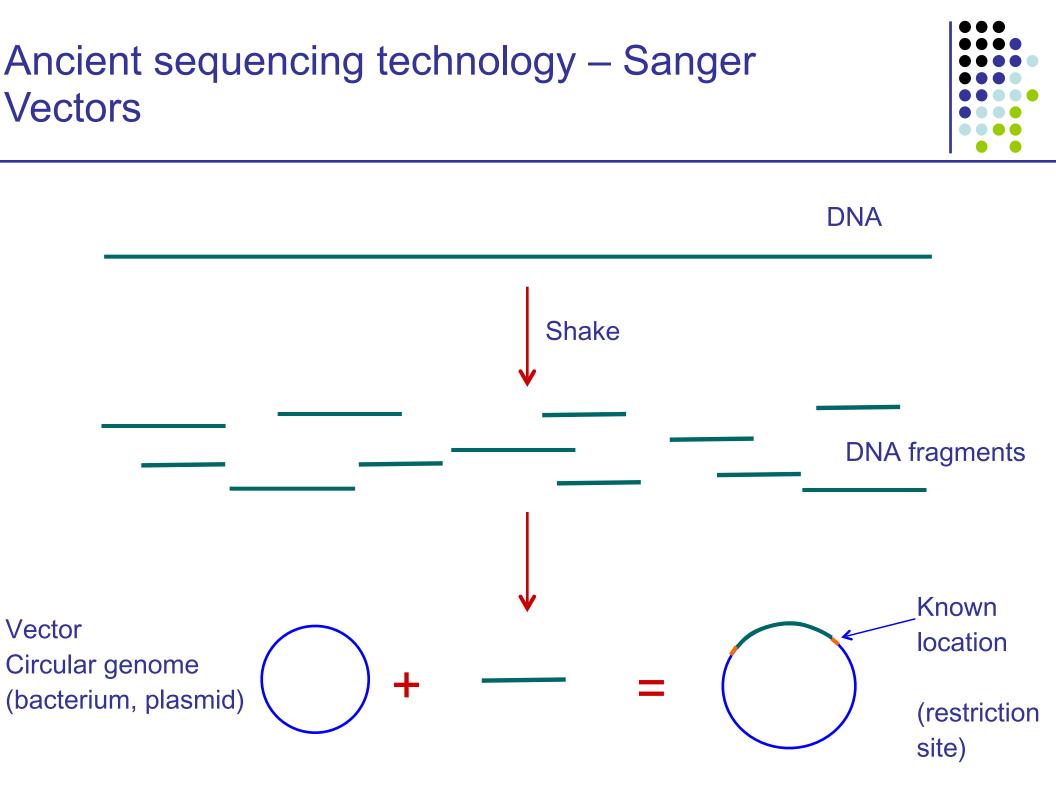
# **DNA Sequencing**



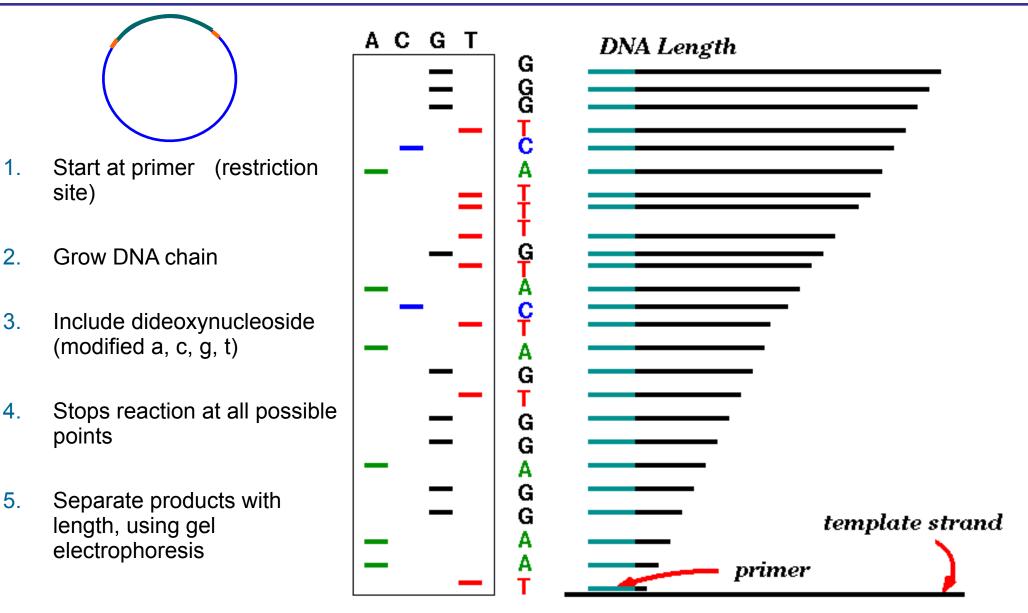

### Sequencing Growth


### Cost of one human genome

- 2004: \$30,000,000
- 2008: \$100,000
- 2010: \$10,000
- **2014**: **\$1,000**
- ???: \$300



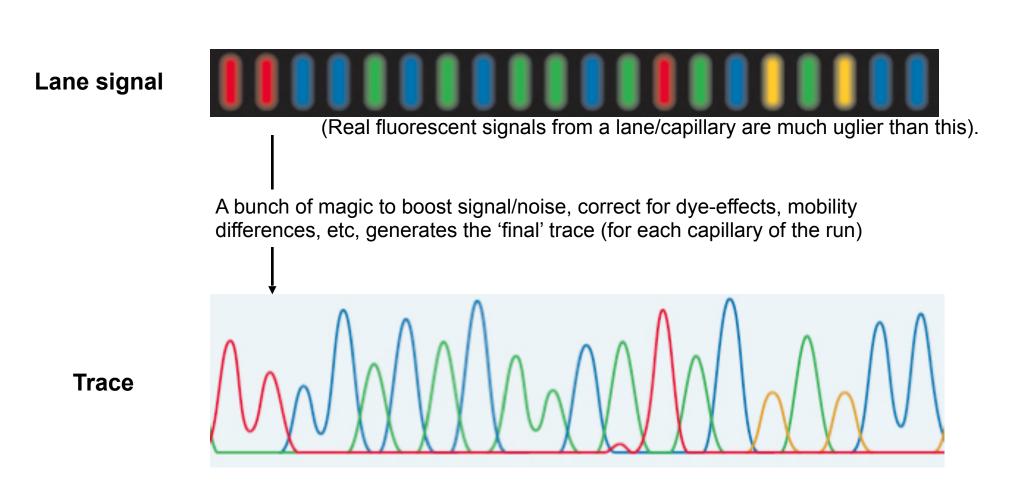

How much would you pay for a smartphone?





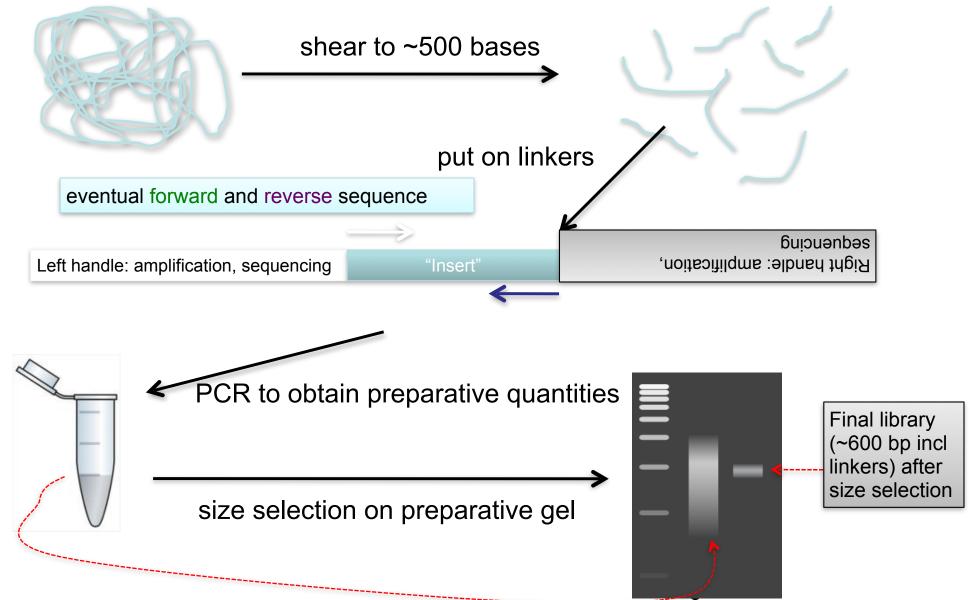






### Ancient sequencing technology – Sanger Gel Electrophoresis





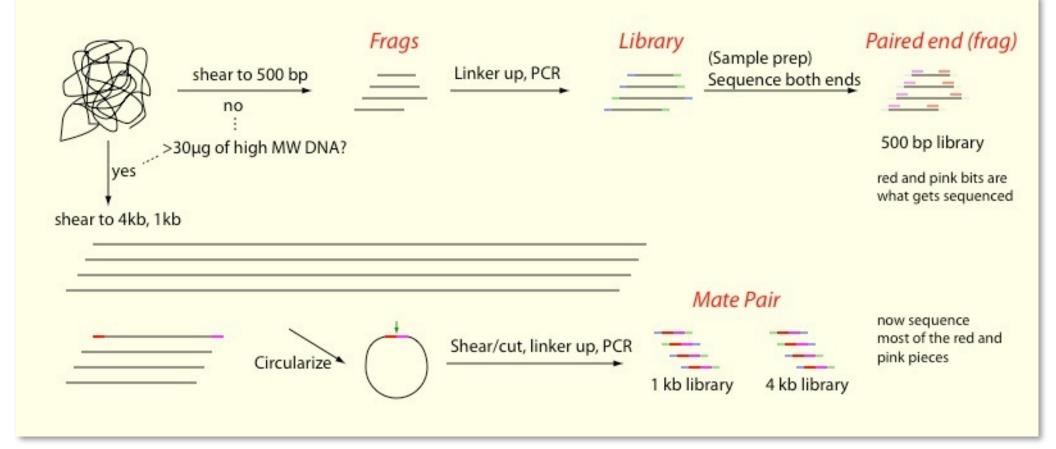



### Fluorescent Sanger sequencing trace



## Making a Library (present)



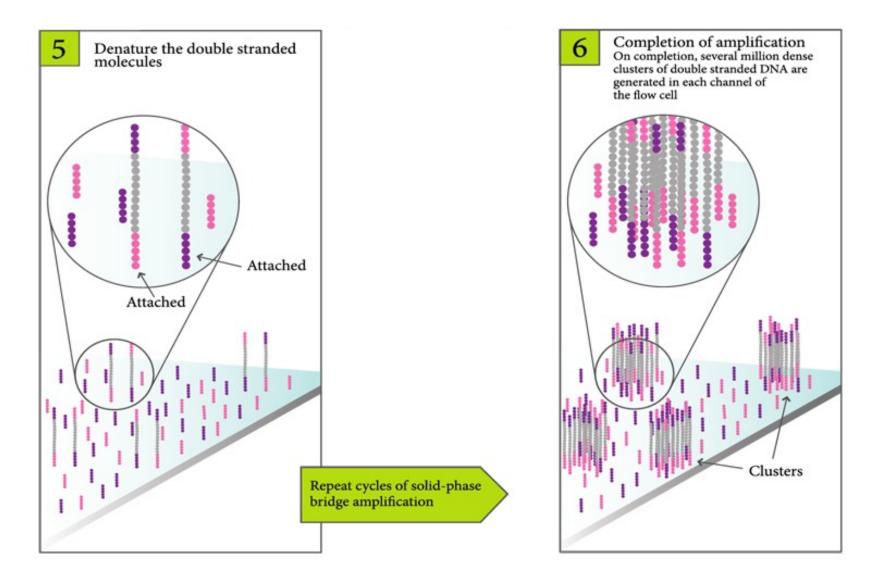


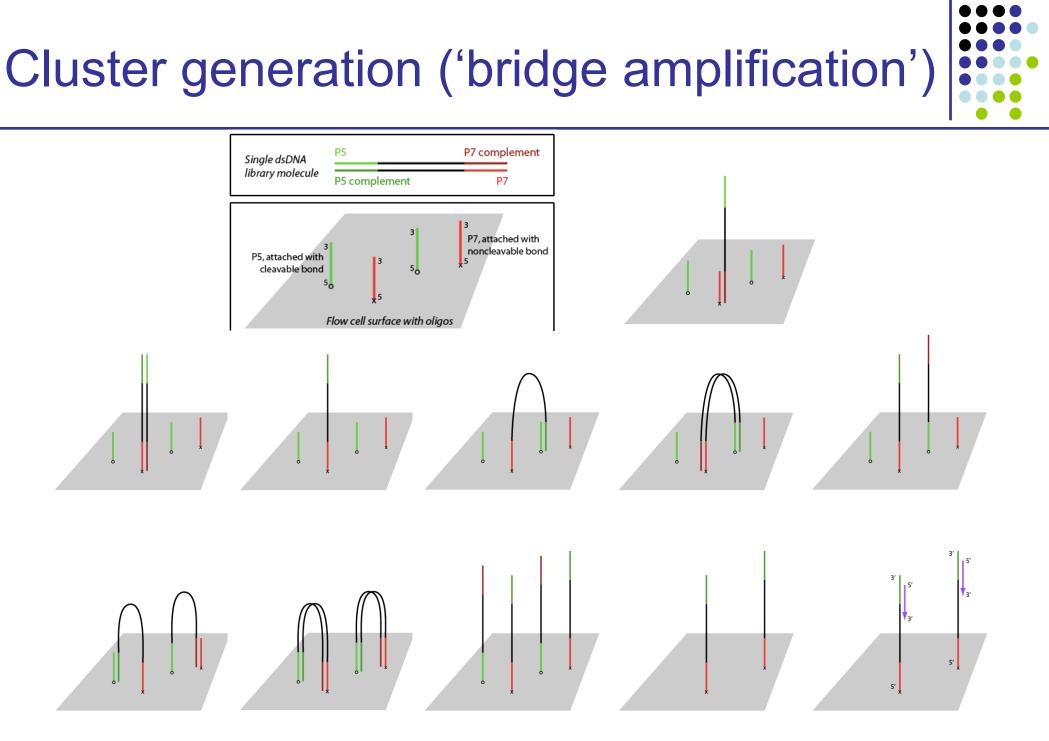

Library



- Library is a massively complex mix of -initially- individual, unique fragments
- Library amplification mildly amplifies each fragment to retain the complexity of the mix while obtaining preparative amounts
  - (how many-fold do 10 cycles of PCR amplify the sample?)

### Fragment vs Mate pair ('jumping')

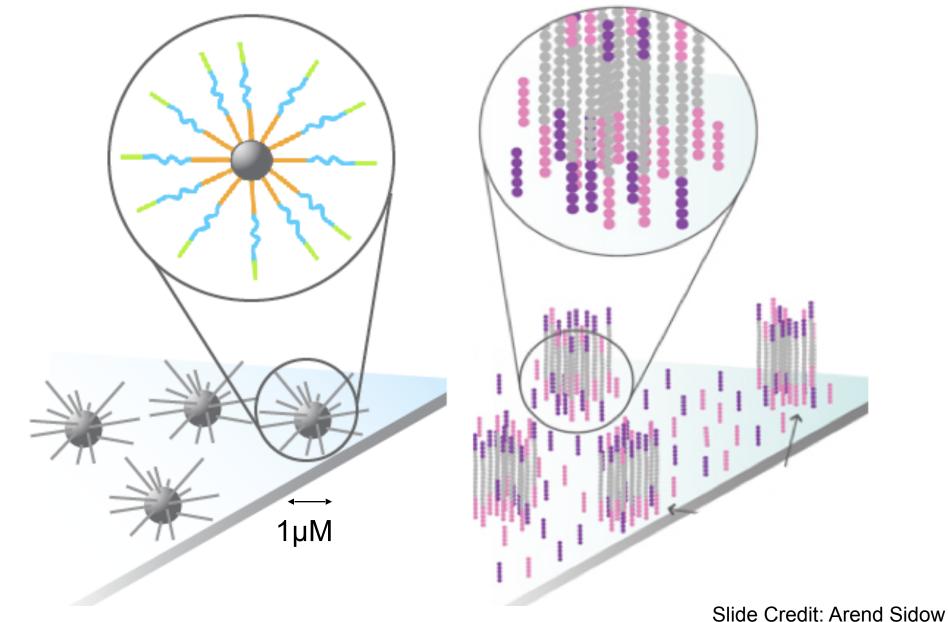




(Illumina has new kits/methods with which mate pair libraries can be built with less material)



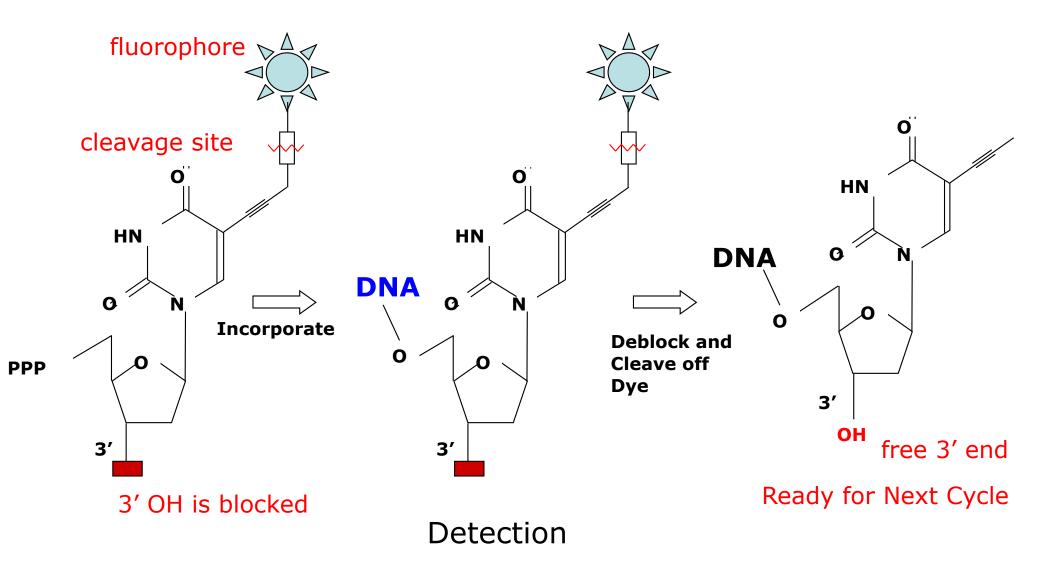
### Illumina cluster concept







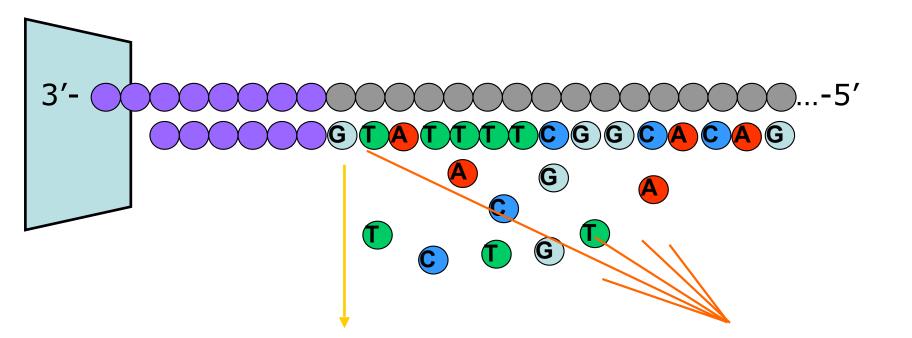

Slide Credit: Arend Sidow




### **Clonally Amplified Molecules on Flow Cell**



### **Reversible Terminators**






Slide Credit: Arend Sidow



### Sequencing by Synthesis, One Base at a Time



Cycle 1: Add sequencing reagents First base incorporated Remove unincorporated bases Detect signal Cycle 2-n: Add sequencing reagents and repeat

### HiSeq X & NextSeq





| Preliminary | <u>/ specs:</u>   |
|-------------|-------------------|
| Run time:   | 3 days            |
| Output:     | 1.6 Tb            |
| #reads:     | 6x10 <sup>9</sup> |
| Read lengt  | h: 2x150bp        |

#### NextSeq 500 Sequencing System Performance Parameters

| READ LENGTH | TOTAL TIME <sup>†</sup> | OUTPUT     |
|-------------|-------------------------|------------|
| 2 × 150 bp  | ~29 hrs                 | 100-120 Gb |
| 2 × 75 bp   | 18 hrs                  | 50-60 Gb   |
| 1 × 75 bp   | 11 hrs                  | 25-30 Gb   |

| READ LENGTH | TOTAL TIME <sup>†</sup> | OUTPUT     |
|-------------|-------------------------|------------|
| 2 × 150 bp  | 26 hrs                  | 32.5-39 Gb |

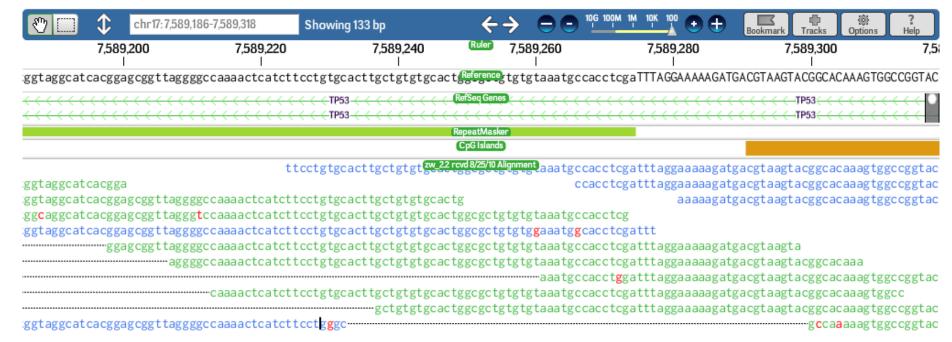
#### **Reads Passing Filter**

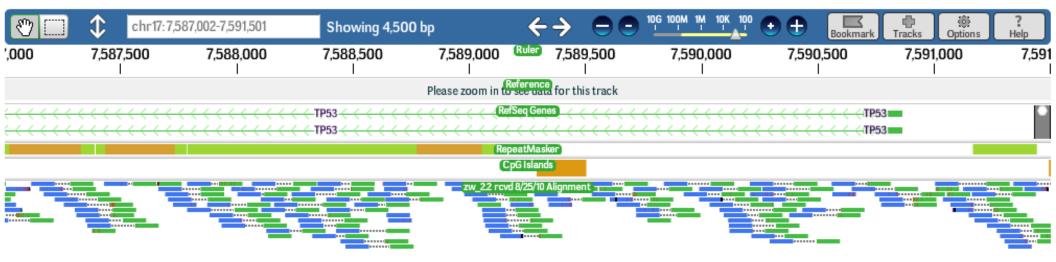
#### NEXTSEQ 500 HIGH OUTPUT KIT

| 1.170.0 | <br>2.1.2 | <br>100 | <br>2011 | 100 |
|---------|-----------|---------|----------|-----|
|         |           |         |          |     |
|         |           |         |          |     |

| Single Reads | Up to 400 Million |
|--------------|-------------------|
|              |                   |

Paired-End Reads Up to 800 million


| NEXTSEQ | 500 | MID | OUTPUT | KIT |
|---------|-----|-----|--------|-----|


| Single Reads     | Up to 130 Million |
|------------------|-------------------|
| Paired-End Reads | Up to 260 Million |



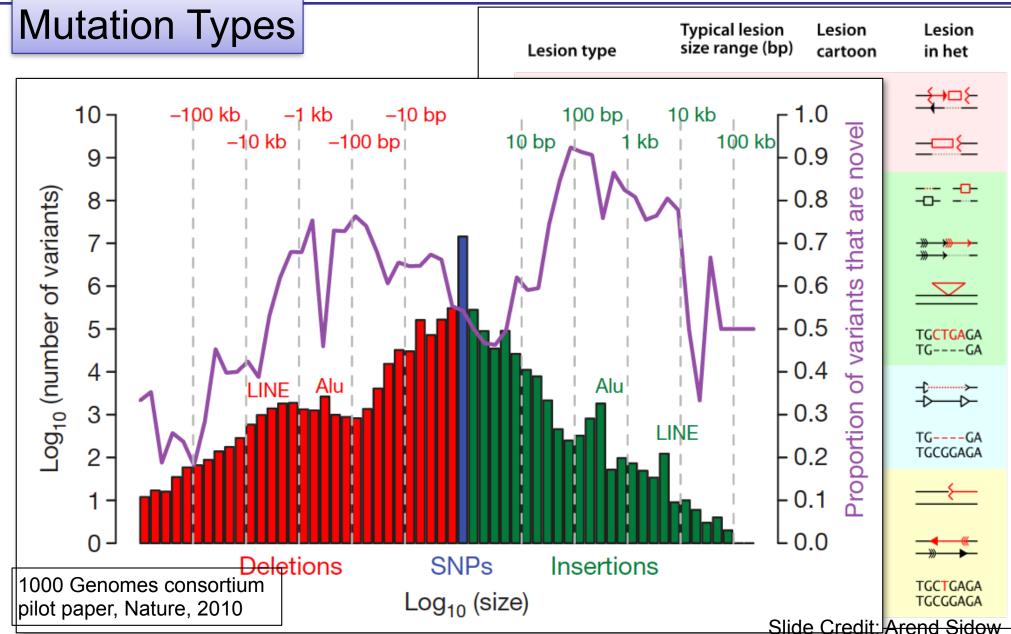


## **Read Mapping**





#### Slide Credit: Arend Sidow

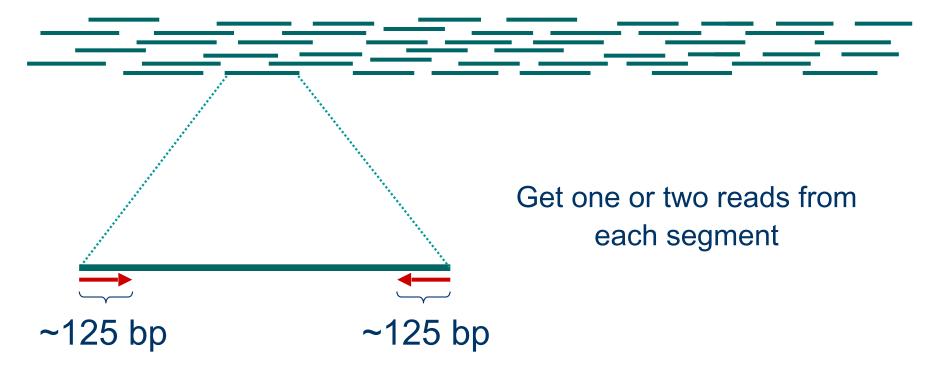

### Variation Discovery



| 8 III            | ≎ ∣          | chr6:        | 52,174, | 914-5        | 52,17        | 5,003        | 3            |              | SI           | now          | ing | 89 I         | ър           |              |              |              |       |        | ¢      | ·->  | >            | e            | )(           | 9          | 10G          | 100<br>I   | M 11         | A 1 | DK 1 | 100          | •            | Ð            | )   | Во           | okm          | ark) | Т            | rack | 5            | 0   | وtior        | ns           |     | ?<br>Hel     | lp           |
|------------------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|--------------|--------------|--------------|--------------|--------------|-------|--------|--------|------|--------------|--------------|--------------|------------|--------------|------------|--------------|-----|------|--------------|--------------|--------------|-----|--------------|--------------|------|--------------|------|--------------|-----|--------------|--------------|-----|--------------|--------------|
| 52,174           | 920          |              | 52,174  | 1,930        | )            |              | 52           | 2,174        | 1,94         | 0            |     | 5            | 52,1         | 74,9         | 50           |              |       | (Ru    | ller 7 | 4,9  | 60           |              |              | 5          | 2,17         | 4,9        | 70           |     |      | 52           | 2,17         | 4,98<br>I    | 30  |              |              | 52   | ,174         | 1,99 | 90           |     |              | 5            | 2,1 | 75,          | 00           |
| стотссс          | CACT         | стт          | TAT     | TT           | GA           | CC           | ТТ           | °CC          | CC           | GA           | ۱A  | GG           | сс           | GT           | G            | GG           | A٨    | Refe   | renc   | 2A   | CG           | G            | AA           | GG         | GC /         | AG         | GΑ           | T   | GC   | СС           | C            | ١G           | GG  | СС           | T            | ГΤ   | G A          | ١T   | CA           | С   | ٩T           | C            | ΤC  | :C           | A            |
| <del>~~~~</del>  | $\leftarrow$ | $\leftarrow$ | Hoxa9   | $\leftarrow$ | <   | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | -6    | efSe   | Gen    | 185  | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | ~          | $\leftarrow$ | <          | $\leftarrow$ | Ho  | xa9  | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | <   | $\leftarrow$ | $\leftarrow$ | ~    | $\leftarrow$ | ~    | $\leftarrow$ | ~   | $\leftarrow$ | $\leftarrow$ | <   | $\leftarrow$ | $\leftarrow$ |
| ctgtccc          | 0 0 0 t      | 0 + +        | + - +   | + +          | ā a          |              | + +          |              |              | ā            |     |              | ~ ~          | <b>a</b> t   | ā.           | F1_5         | -4 ro | vd 8/* | 8/10   | Alig | nmer         | it.          |              | ā          |              | - ā        | ~            |     |      |              |              |              |     |              |              |      |              | +    | ~ ~          | ~   | - +          |              | + / | c            | _            |
| ctgtccc          | cact         | ctt          | tat     | tt           | ga           | cc           | tt           | : c c        | Cg           | ga           | аа  | 55<br>gg     | cc           | at           | g            | 5 5<br>g g   | a a   | c t    | c      | cg   | 0 8          | -            | a a<br>a a   | 5 8<br>g g | t C          | аg<br>ag   | g            |     |      |              |              |              |     |              |              |      |              | Ľ    | c a          | 0   |              |              |     | : C          |              |
| ctgtccc          | cact         | ctt          | tat     | tt           | ga           | сс           | t t          | сс           | cg           | ga           | aa  | gg           | сс           | a t          | g            | gg           | a a   | i c t  | c      | cg   | cg           | - 1          | a a          | gg         | ç c          | a g        | g            |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| ctgtccc          |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              | i t | g c  |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  | t            | ctt          | tat     | tt           | g a          | сс           | t t          | сс           | c g          | ga           | аа  | g g          | сс           | a t          | g            | g g          | a a   | i c t  | ¢      | сg   | сg           | 5 -          | a a          | g g        | ç c          | a g        | g a          | ۱t  | g c  | сс           | с            | a g          | g g | СС           | t :          | t t  | g a          | ۱t   | c a          | C   | a t          | С            | t c | c c          |              |
|                  |              | t t          | tat     | tt           | g a          | сс           | t t          | сс           | сg           | ga           | аа  | g g          | с с          | a t          | g            | g g          | a a   | i c t  | С      | c g  | сg           | 5 -          | a a          | g g        | ç c          | a g        | g a          | ı t | g c  | СС           | с            | a g          | g g | СС           | t            | t t  | g a          | ۱t   | c a          | C   | a t          | С            | t c | с            | а            |
|                  |              |              |         | t t          | g a          |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  |              |              |         |              |              | С            | t t          | сс           | сg           | ga           | аа  | g g          | сс           | a t          | g            | g g          | a a   | i c t  | ¢      | c g  | сg           | ; -          | a a          | g g        | ç c          | a g        | g a          | ιt  | g c  | сс           | с            | a g          | g g | сс           | t            | t t  | g a          | l t  | c a          | C   | a t          | c            | t c | с            | а            |
| tgtccc           |              |              |         |              |              |              | t t          | сс           |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              | g            | g a          |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     | g g          | сс           |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              | _            |              |              |              |              |              |     |              |              |              | _            |              |       | i c t  |        | _    |              |              |              | _          |              | _          | _            |     |      |              |              | _            |     |              |              |      | _            |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | ctt          | tat     | tt           | g a          | сс           | t t          | сс           | сg           | g a          | аа  | g            |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | C      |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       | i c t  |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  |              |              |         |              |              |              |              |              |              |              |     |              |              |              | g            | g g          | a a   | i c t  | ¢      | сg   |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              | -            |              |              |              | _            | _            |     | ~ ~          |              | -            |              |              |       |        |        |      | g            | _            |              | _          |              | _          | g a          |     | -    |              |              | _            |     |              |              |      | _            |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            | g a          |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | CUU          | tat     |              | g a          | СС           | t t          | CC           | Cg           | g            | аа  | g g          | СС           | g            |              |              |       |        |        |      |              |              |              |            |              |            | g a          |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | CLL          | tat     |              | g a          | CC           | L L          |              | Cg           | g            | aa  | g g          | CC           | g<br>a t     | ~            |              |       |        |        |      |              |              |              |            |              |            | g a          |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      | C g          | 5 5          | a a          | 88         | , c          | a g        | g a          | i L | gc   | C C          |              | a g          | 55  | C C          |              | ιι   | g e          | I L  | c a          | C i | aı           | C            | L L |              | a            |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              | _            |              |              |              | _            | _            |     |              |              | _            | _            | ~            |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        | ~ ~  | ~ ~          |              |              | ~          |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc<br>tgtccc | cact         | c + +        | t a t   | ++           | . g d        | 00           | ++           | 000          |              | 0            | 22  | 55           | 00           | δ L<br>σ +   | 5            | 5 5<br>0 0   | 2 2   |        |        | c a  | 0.0          | 5            | ad           | 5          |              | a          |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | c + +        | tat     | ++           | 50           | 00           | ++           |              |              | 0 0          | 22  | 55<br>5 0    | 20           | 5 1          | 5            | 5 5<br>0 0   | aa    |        | č.     | c a  | C 8          | 5<br>7 0     | aa           | 58         |              | a o        |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | c t t        | tat     | + +          | 0 2          | 00           | t t          | 00           | C e          | 0 2          | a   | 55<br>55     | с с          | ot t         | 6<br>0       | 8 8<br>0 0   | aa    | i c t  | c      | c a  | ~ 8<br>C 0   | 05           | a a          | 55         |              | ч б<br>а g |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              | t   |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | ctt          | tat     | tt           | ga           | C C          | t t          | 0.0          | C P          | g :          | a   | 0 0<br>0 0   | c c          | gt           | g            | 0 0<br>0 0   | ta    | i c f  | c      | c a  | ~ 6<br>C 9   | g            | aa           | 00         | r c          | a ø        | ga           | t   |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     |      |              |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
|                  |              |              |         |              |              |              |              |              |              |              |     |              |              |              |              |              |       |        |        |      |              |              |              |            |              |            |              |     | ~ ~  | ~ ~          |              |              |     |              |              |      |              |      |              |     |              |              |     |              |              |
| tgtccc           | cact         | ctt          | tat     | ιtt          | g a          | СС           | ττ           | CC           | C 2          | . <u>K</u> 6 | 10  | <u> </u>     | CC           | <u>x</u> u   | <u> </u>     | 5, 5,        | a a   |        |        |      |              |              | 0 0          | 2 2        |              | aε         | 5 0          |     | ĸс   | CC           | . C .        | a g          |     |              |              |      |              |      |              |     |              |              |     |              | S            |

Slide Credit: Arend Sidow

### Amount of variation – types of lesions




### Method to sequence longer regions



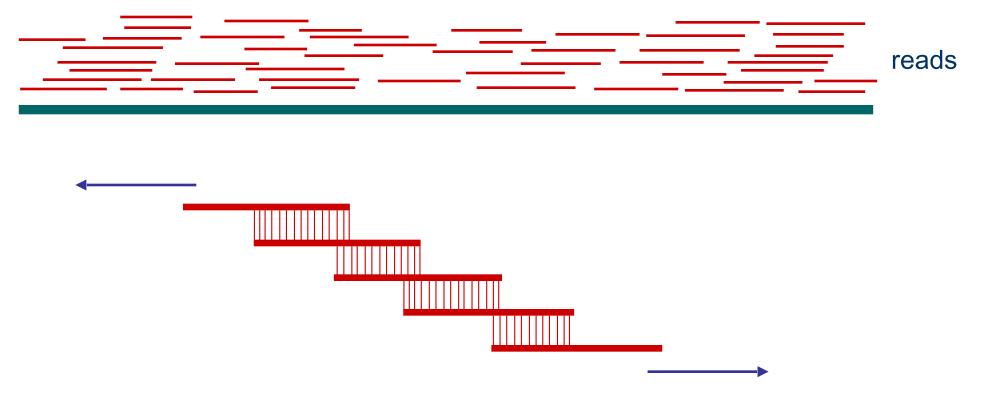
genomic segment





### Two main assembly problems

- De Novo Assembly
- Resequencing








# Reconstructing the Sequence (De Novo Assembly)





Cover region with high redundancy

Overlap & extend reads to reconstruct the original genomic region

### **Definition of Coverage**





| Length of genomic segment: | G  |
|----------------------------|----|
| Number of reads:           | Ν  |
| Length of each read:       | L. |

**Definition:** Coverage C = N L / G

How much coverage is enough?

**Lander-Waterman model: Prob[ not covered bp ] = e<sup>-C</sup>** Assuming uniform distribution of reads, C=10 results in 1 gapped region /1,000,000 nucleotides

### Repeats



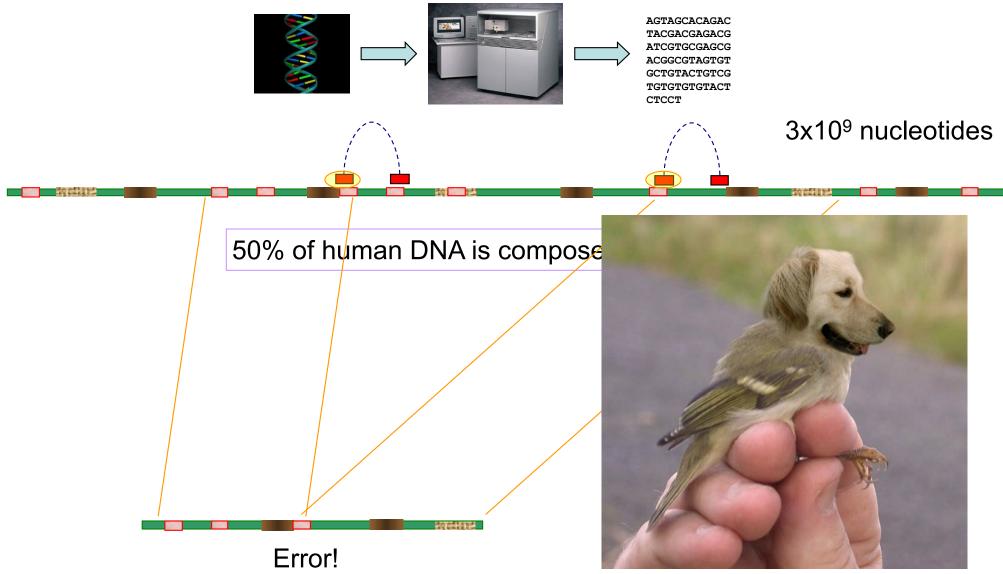
### Bacterial genomes:5% Mammals:

50%

#### Repeat types:

- Low-Complexity DNA (e.g. ATATATATACATA...)
- Microsatellite repeats  $(a_1...a_k)^N$  where k ~ 3-6

...a<sub>k</sub>)<sup>N</sup> where k ~ 3-6 (e.g. CAGCAGTAGCAGCACCAG)


#### • Transposons

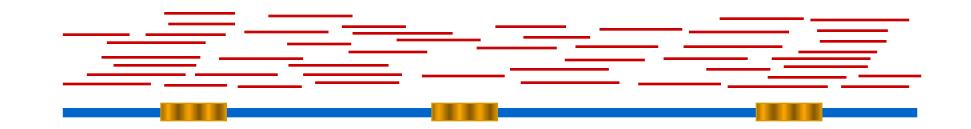
- SINE
- LINE
- LTR retroposons

(Short Interspersed Nuclear Elements) e.g., ALU: ~300-long, 10<sup>6</sup> copies (Long Interspersed Nuclear Elements) ~4000-long, 200,000 copies (Long Terminal Repeats (~700 bp) at each end) cousins of HIV

- Gene Families genes duplicate & then diverge (paralogs)
- **Recent duplications** ~100,000-long, very similar copies

### Sequencing and Fragment Assembly




Glued together two distant regions

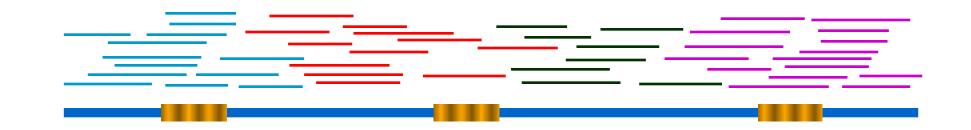
### What can we do about repeats?



Two main approaches:

• Cluster the reads




Link the reads

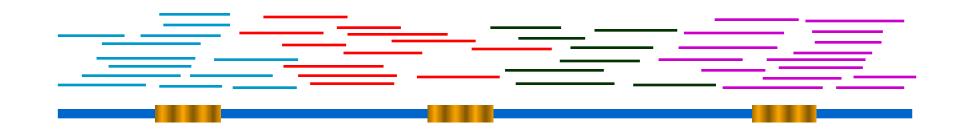
### What can we do about repeats?



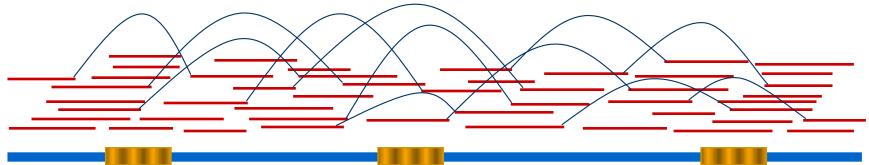
Two main approaches:

• Cluster the reads




Link the reads

### What can we do about repeats?



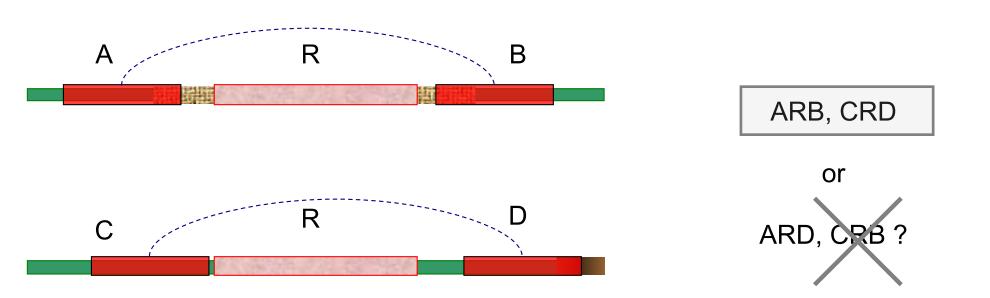

Two main approaches:

• Cluster the reads



Link the reads




### Sequencing and Fragment Assembly






3x10<sup>9</sup> nucleotides

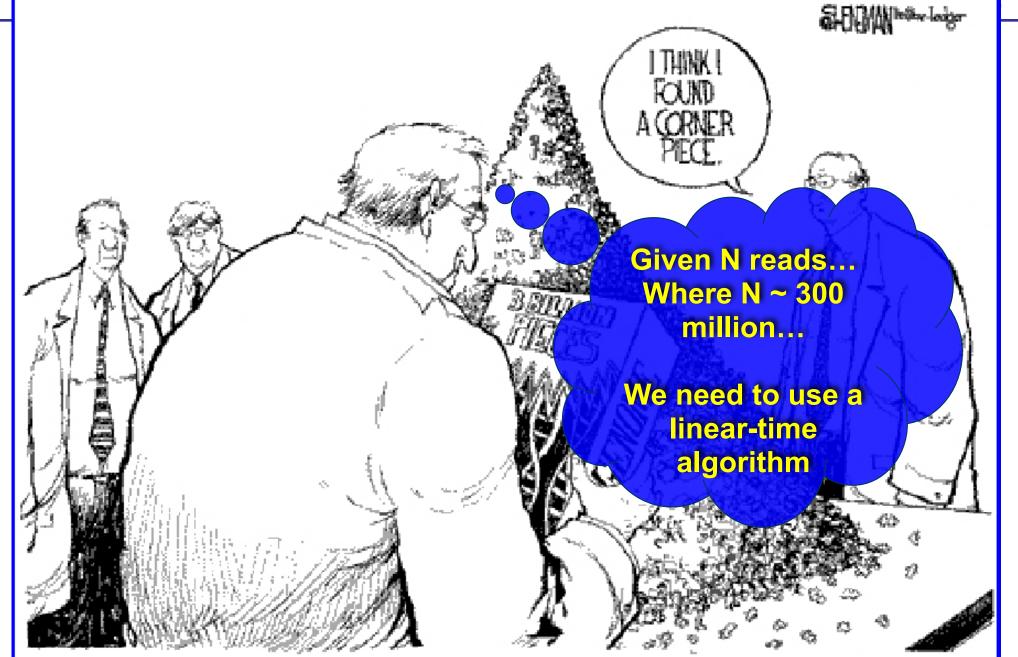




### Sequencing and Fragment Assembly








AAAAA

### Fragment Assembly (in whole-genome shotgun sequencing)

### **Fragment Assembly**





### Steps to Assemble a Genome Some Terminology a 500-900 long word that comes read out of sequencer *mate pair* a pair of reads from two ends of the same insert fragment contig a contiguous sequence formed by several overlapping reads with no gaps *supercontig* an ordered and oriented set (scaffold) of contigs, usually by mate pairs →..ACGATTACAATAGGTT... sequence derived from the \_ consensus multiple alignment of reads sequene in a contig





aaactgcagtacggatct aaactgcag aactgcagt

gtacggatct tacggatct gggcccaaactgcagtac gggcccaaa ggcccaaa

actgcagta ctgcagtac gtacggatctactacaca gtacggatc tacggatct

> ctactacac tactacaca

(read, pos., word, orient.)
aaactgcag
aactgcagt
actgcagta

gtacggatc tacggatct gggcccaaa ggcccaaac gcccaaact

actgcagta ctgcagtac gtacggatc tacggatct acggatcta

ctactacac tactacaca

(word, read, orient., pos.) aaactgcag aactgcagt acggatcta actgcagta actgcagta cccaaactg cggatctac ctactacac ctgcagtac. ctgcagtac gcccaaact ggcccaaac gggcccaaa gtacggatc gtacggatc tacqqatct cacggatet tactacaca



- Find pairs of reads sharing a k-mer, k ~ 24
- Extend to full alignment throw away if not >98% similar



- Caveat: repeats
  - A k-mer that occurs N times, causes O(N<sup>2</sup>) read/read comparisons
  - ALU k-mers could cause up to 1,000,000<sup>2</sup> comparisons
- Solution:
  - Discard all k-mers that occur "too often"
    - Set cutoff to balance sensitivity/speed tradeoff, according to genome at hand and computing resources available



Create local multiple alignments from the overlapping reads



Correct errors using multiple alignment

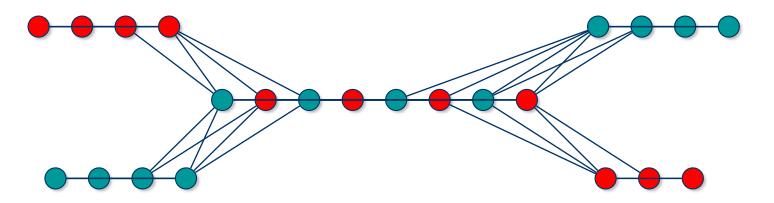


insert A

replace T with C



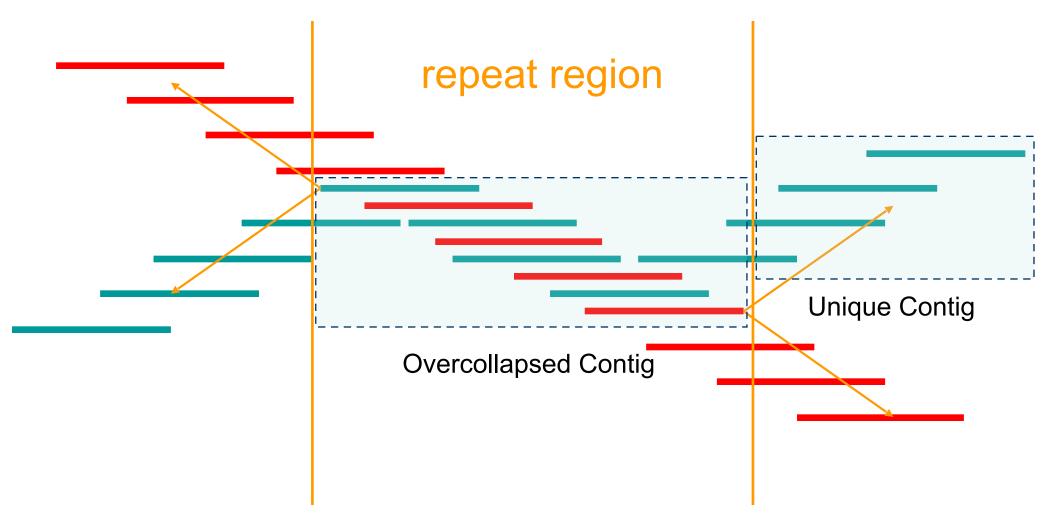
correlated errors probably caused by repeats ⇒ disentangle overlaps


TAGATTACACAGATTACTGA TAGATTACACAGATTACTGA TAGATTACACAGATTACTGA

In practice, error correction removes up to 98% of the errors



- Overlap graph:
  - Nodes: reads r<sub>1</sub>....r<sub>n</sub>
  - Edges: overlaps (r<sub>i</sub>, r<sub>i</sub>, shift, orientation, score)


Reads that come from two regions of the genome (blue and red) that contain the same repeat



Note: of course, we don't know the "color" of these nodes



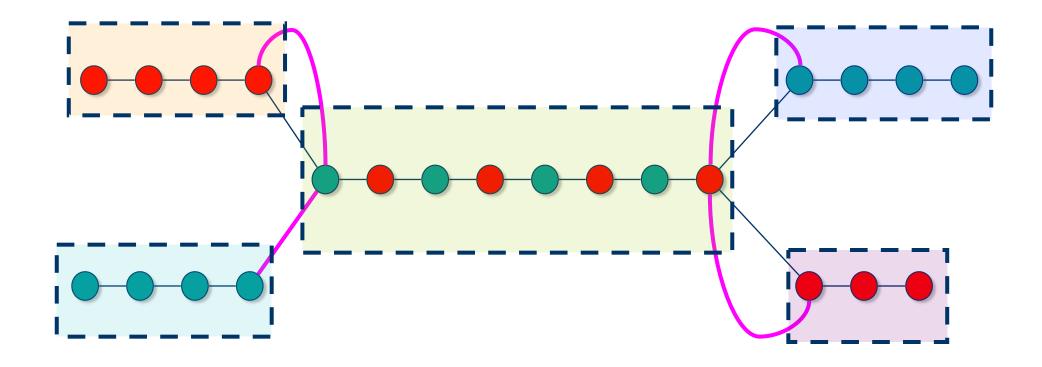




We want to merge reads up to potential repeat boundaries



 $r_1$ 


 $\mathbf{r}_2$ 

 $r_3$ 

• Remove transitively inferable overlaps

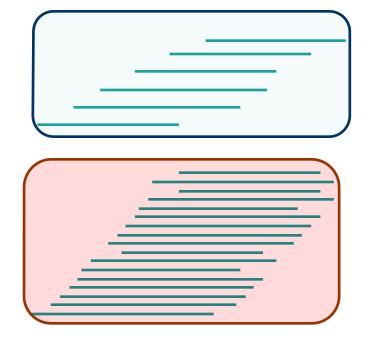
If read r overlaps to the right reads r<sub>1</sub>, r<sub>2</sub>, and r<sub>1</sub> overlaps r<sub>2</sub>, then (r, r<sub>2</sub>) can be inferred by (r, r<sub>1</sub>) and (r<sub>1</sub>, r<sub>2</sub>)





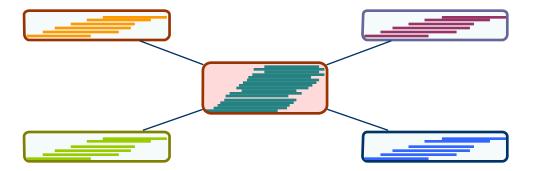


- Repeats shorter than read length are easily resolved
  - Read that spans across a repeat disambiguates order of flanking regions
- Repeats with more base pair diffs than sequencing error rate are OK
  - We throw overlaps between two reads in different copies of the repeat
- To make the genome **appear** less repetitive, try to:
  - Increase read length
  - Decrease sequencing error rate


#### **Role of error correction:**

Discards up to 98% of single-letter sequencing errors decreases error rate

- $\Rightarrow$  decreases effective repeat content
- $\Rightarrow$  increases contig length


## 3. Link Contigs into Supercontigs







Too dense  $\Rightarrow$  Overcollapsed



Inconsistent links  $\Rightarrow$  Overcollapsed?

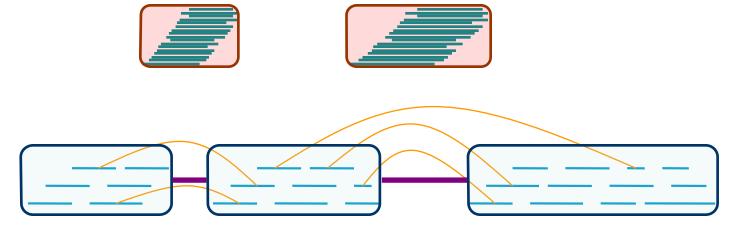
## 3. Link Contigs into Supercontigs



Find all links between unique contigs

Connect contigs incrementally, if  $\geq 2$  forward-reverse links

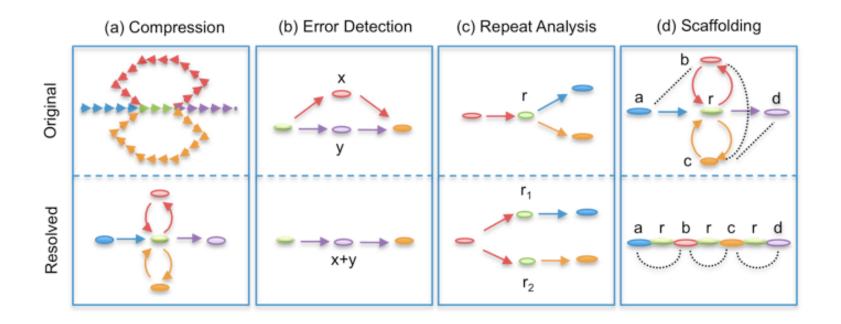



supercontig (aka scaffold)

# 3. Link Contigs into Supercontigs

Fill gaps in supercontigs with paths of repeat contigs

Complex algorithmic step


- Exponential number of paths
- Forward-reverse links







Given sequence x<sub>1</sub>...x<sub>N</sub>, k-mer length k,
 Graph of 4<sup>k</sup> vertices,
 Edges between words with (k-1)-long overlap





### 4. Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

(Alternative: take maximum-quality letter)