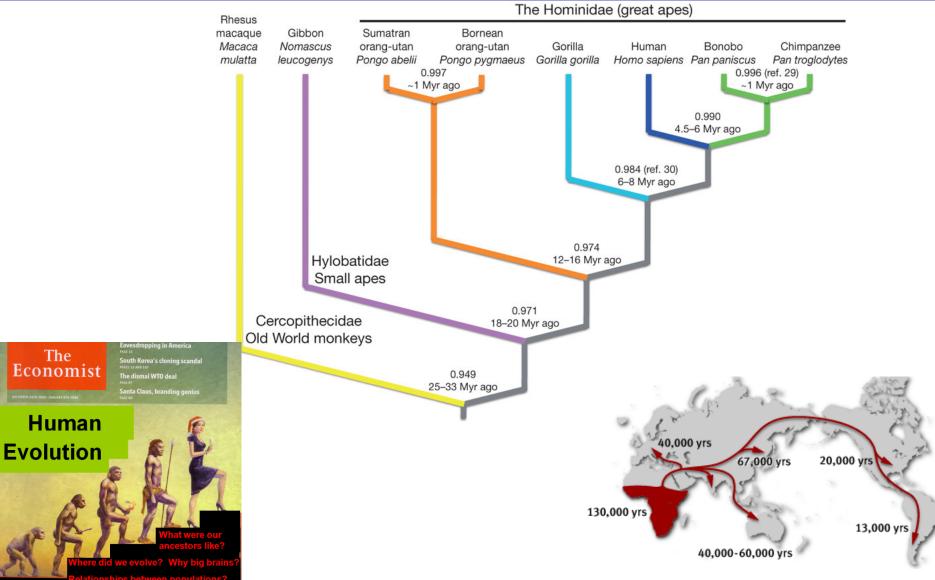


Human Genome Diversity, Coalescence & Haplotypes

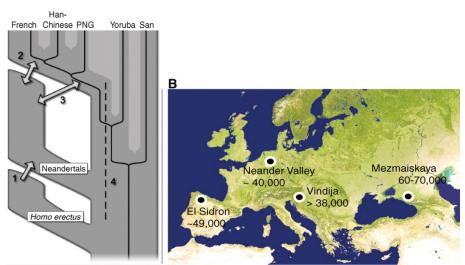
The Hominid Lineage

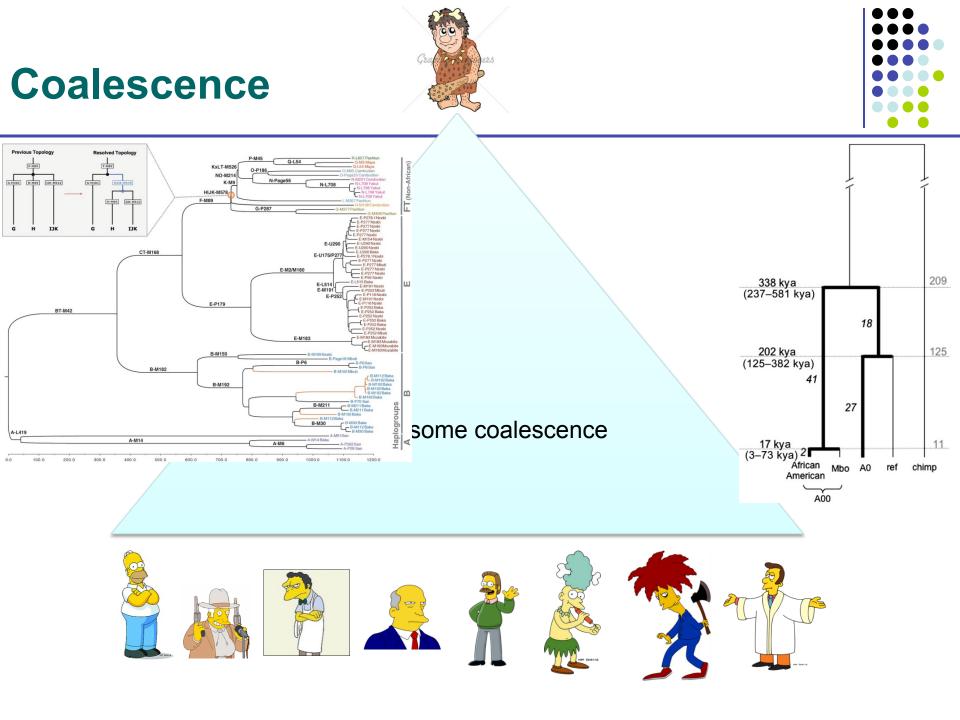


Human population migrations

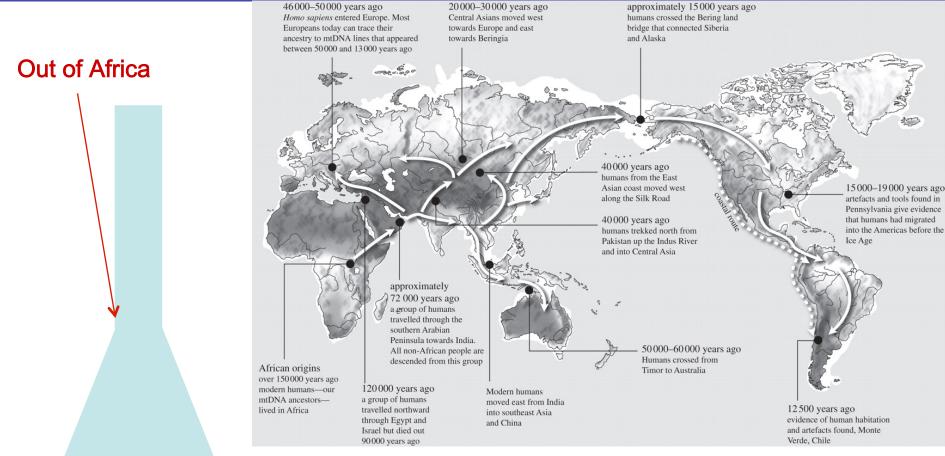
- Out of Africa, Replacement
 - Single mother of all humans (Eve)
 ~99,000 150,000yr
 - Single father of all humans (Adam)
 ~120,000 340,000yr
 - Humans out of Africa ~50000 years ago replaced others (e.g., Neandertals)

- Multiregional Evolution
 - Generally debunked, however,
 - ~5% of human genome in Europeans, Asians is Neanderthal, Denisova





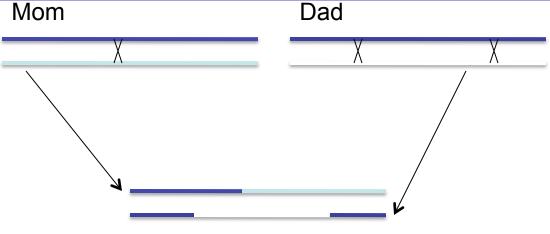
Why humans are so similar



Oppenheimer S Phil. Trans. R. Soc. B 2012;367:770-784

Some Key Definitions

Mary: AGCC G/G CG John: AGCC G/G CG Josh: AGCC G/T CG Kate: AGCC G/G CG Pete: AGCC G/G CG Anne: AGCC G/G CG Mimi: AGCC G/G CG Mike: AGCC T/T CG Olga: AGCC T/G CG



Heterozygosity: Prob[2 alleles picked at random with replacement are different] Recombinations: At least 1/chromosome On average ~1/100 Mb

Major Allele: G

Minor Allele: T

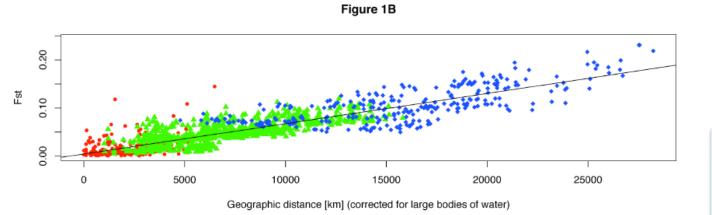
Alleles: G, T

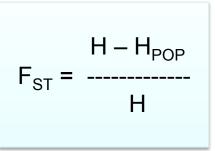
2*.75*.25 = .375

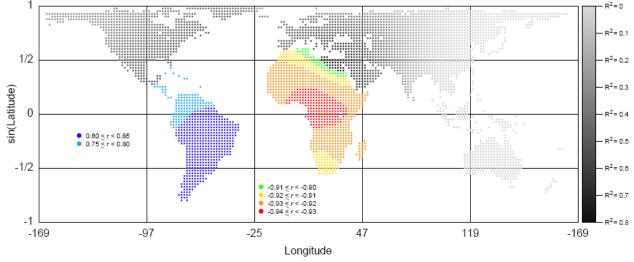
H = 4Nu/(1+4Nu)

Linkage Disequilibrium: The degree of correlation between two SNP locations

The Fall in Heterozygosity







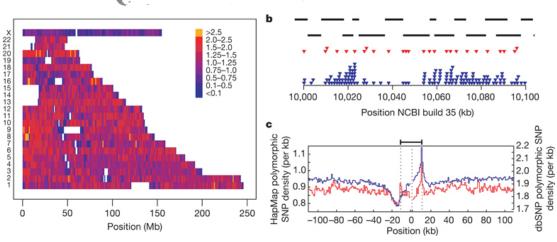
The HapMap Project

$\bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet$

ASW	African ancestry in Southwest USA	90		
CEU	Northern and Western Europeans (Utah)	180		
CHB	Han Chinese in Beijing, China	90		
CHD	Chinese in Metropolitan Denver			
GIH	Gujarati Indians in Houston, Texas	100		
JPT	Japanese in Tokyo, Japan	91		
LWK	Luhya in Webuye, Kenya	100		
MXL	Mexican ancestry in Los Angeles	90		
MKK	Maasai in Kinyawa, Kenya	180		
TSI	Toscani in Italia	100		
YRI	Yoruba in Ibadan, Nigeria	100		

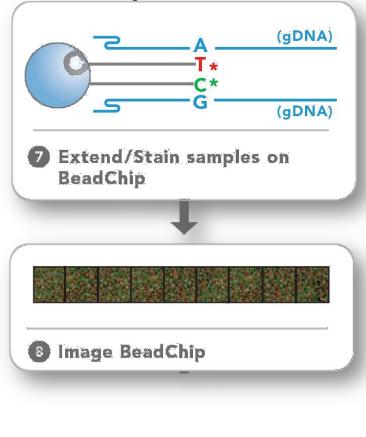
а

Chromosome



Genotyping:

Probe a limited number (~1M) of known highly variable positions of the human genome



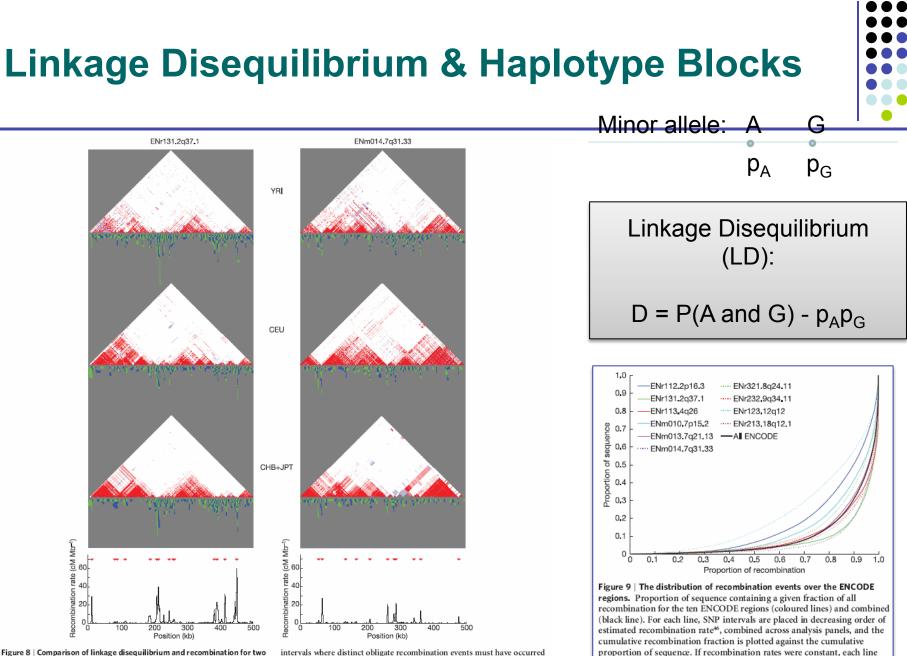


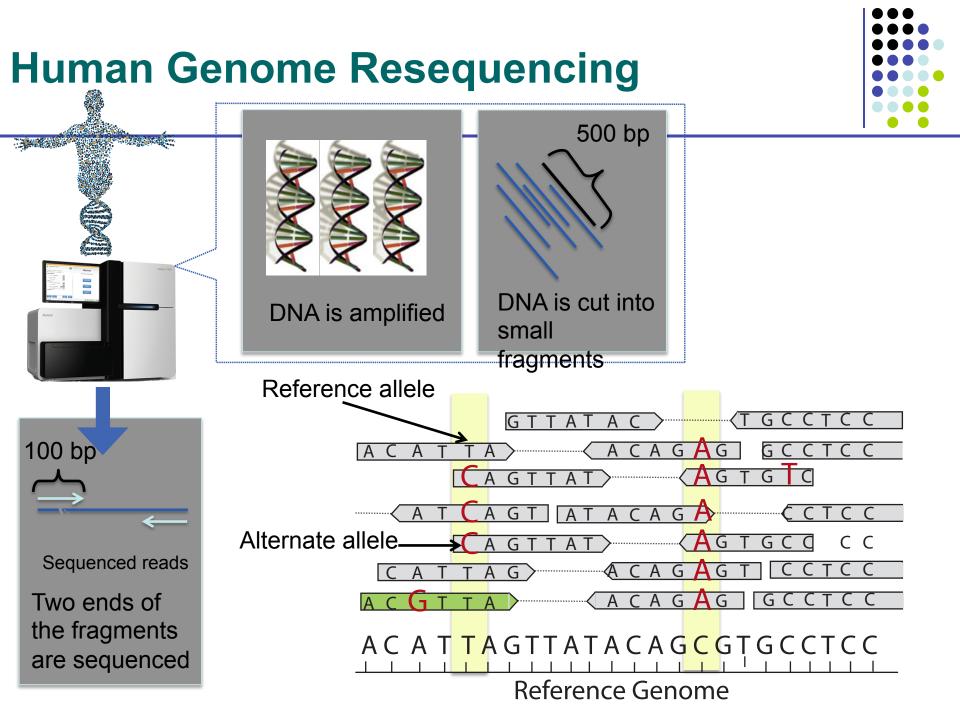
Figure 8 | Comparison of linkage disequilibrium and recombination for two ENCODE regions. For each region (ENr1 31.2q37.1 and ENm014.7q31.33), D' plots for the YRI, CEU and CHB+JPT analysis panels are shown: white, D' < 1 and LOD < 2; pink, D' < 1 and LOD < 2; pink, D' < 1 and $LOD \geq 2$; red, D' = 1 and $LOD \geq 2$. Below each of these plots is shown the

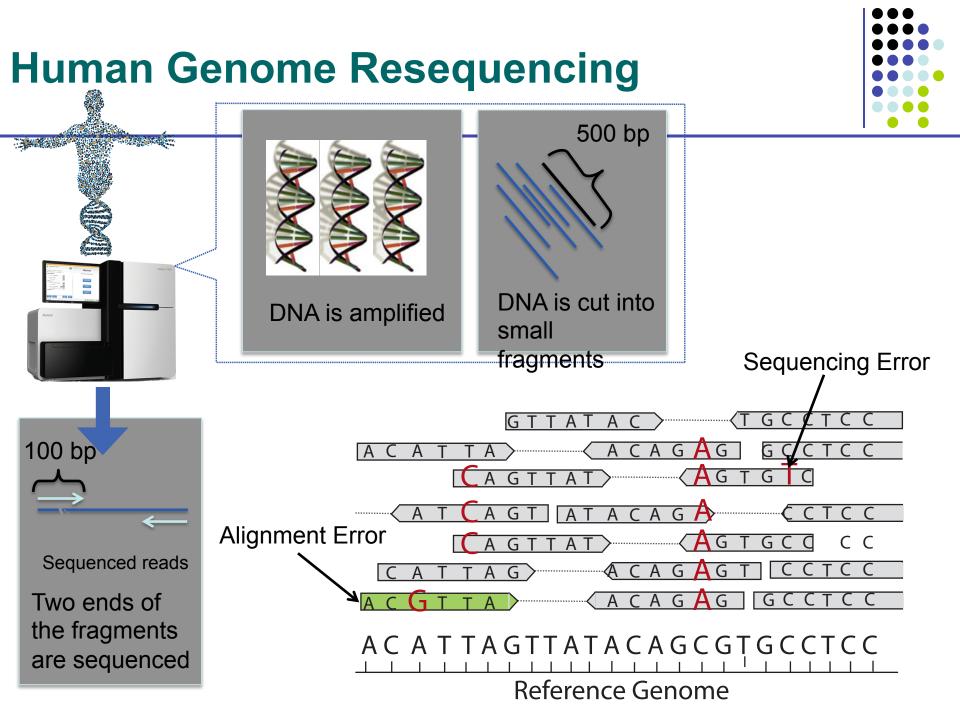
intervals where distinct obligate recombination events must have occurred (blue and green indicate adjacent intervals). Stacked intervals represent regions where there are multiple recombination events in the sample history. The bottom plot shows estimated recombination rates, with hotspots shown as red triangles⁴⁶.

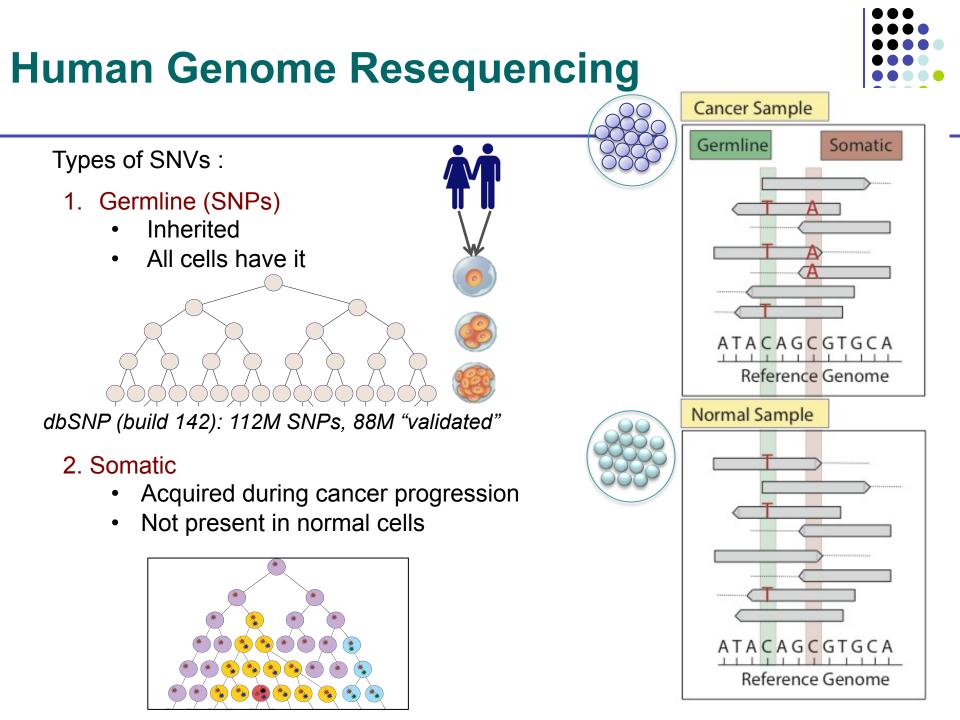
would lie exactly along the diagonal, and so lines further to the right reveal

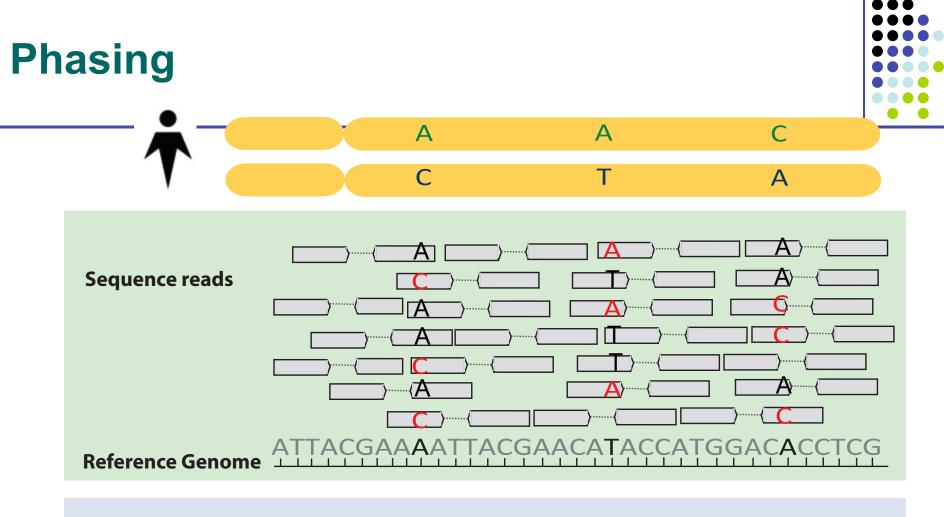
the fraction of regions where recombination is more strongly locally

concentrated.





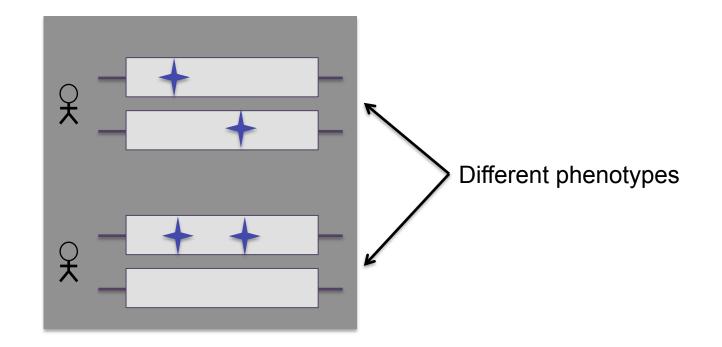




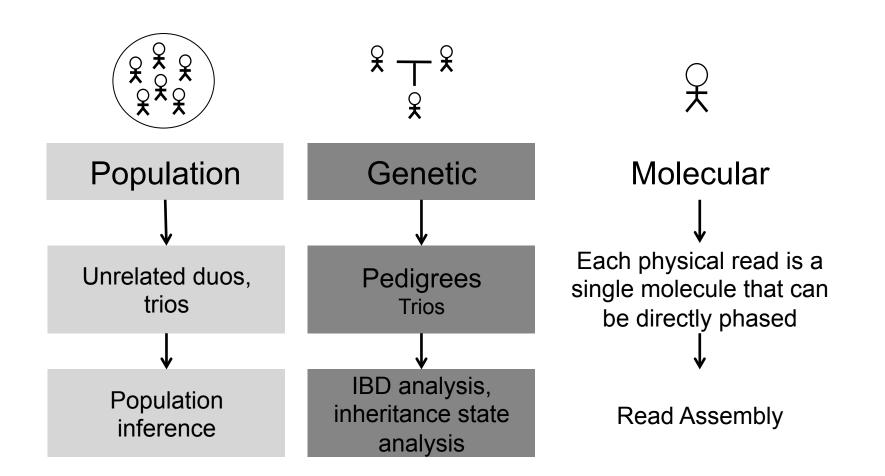
Genotype	A/C	A/T	A/C
	A	A	C
Haplotypes	C	T	A

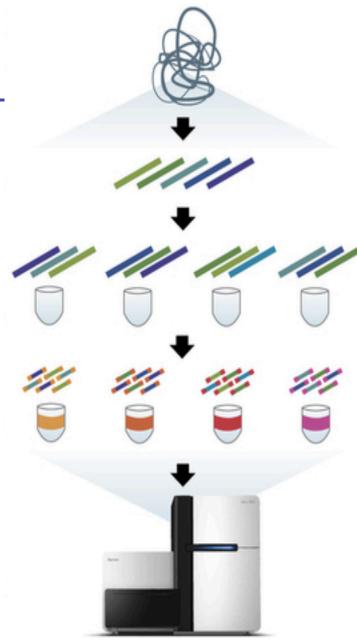
Phasing is the process of recovering haplotypes from genotype data

Phasing – Compound Heterozygosity



Phasing – Different Approaches





Moleculo Overview

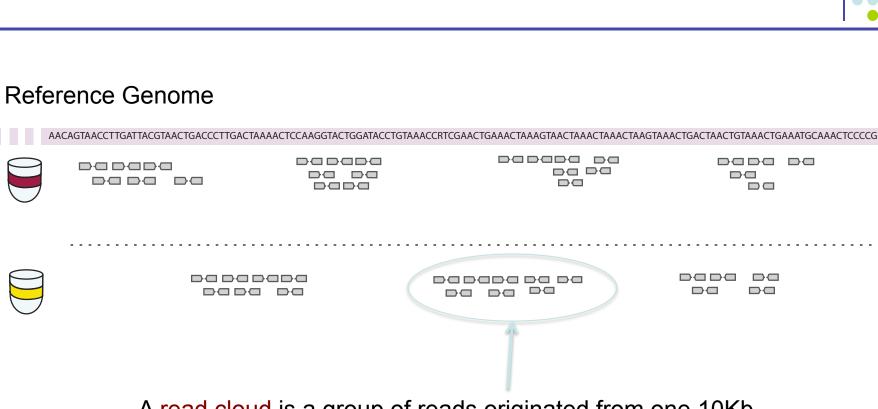
1. The sample DNA is sheared into fragments of about 10 kbp

2. The fragments are diluted and placed into 384 wells

3. Fragments are amplified through long-range PCR, cut into short fragments and barcoded

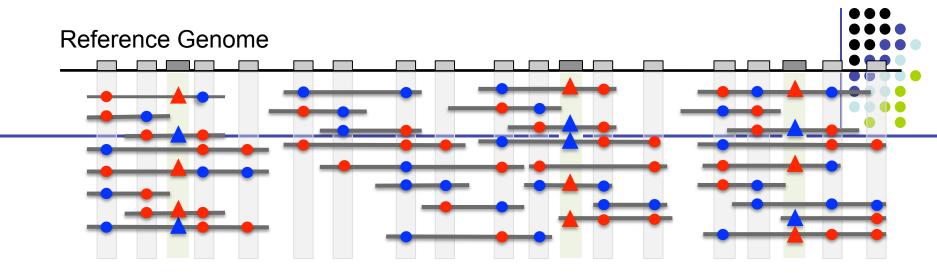
4. Short fragments are pooled together and sequenced

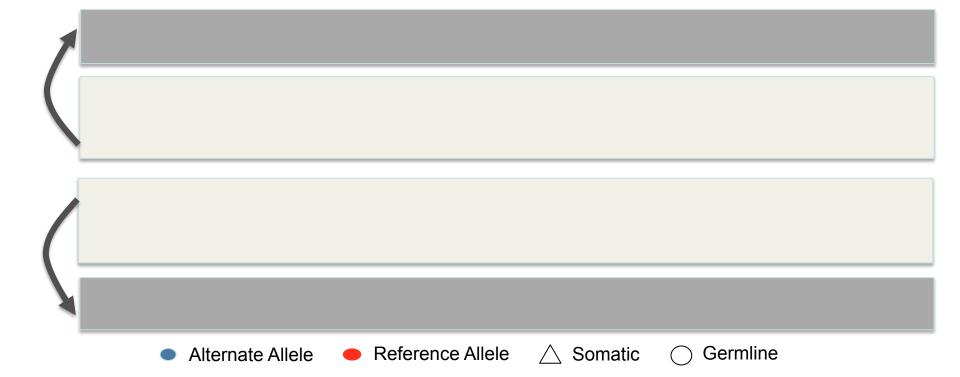
Nature Biotechnology 32, 261-266 (2014)



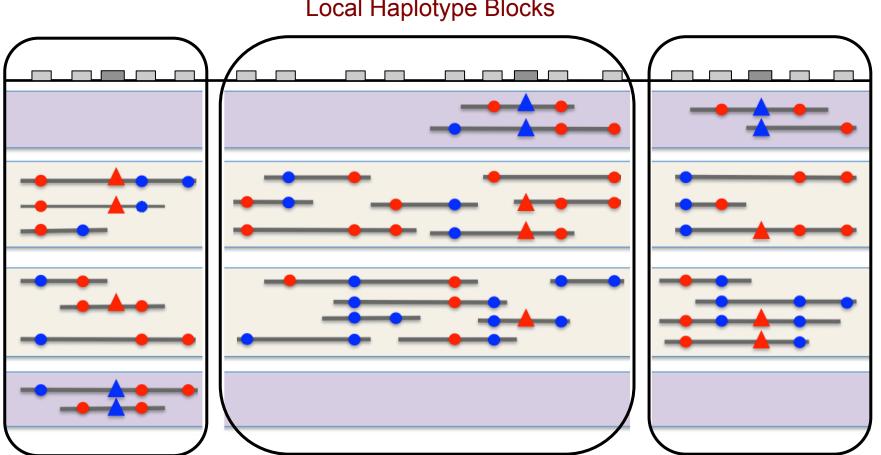
Read Clouds

A read cloud is a group of reads originated from one 10Kb fragment.





There can be gaps between some neighboring SNVs.

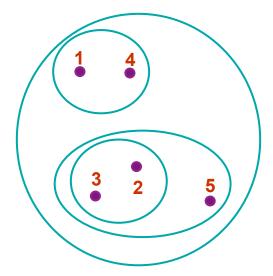


Alternate Allele

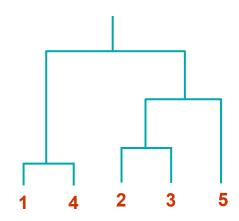
Reference Allele

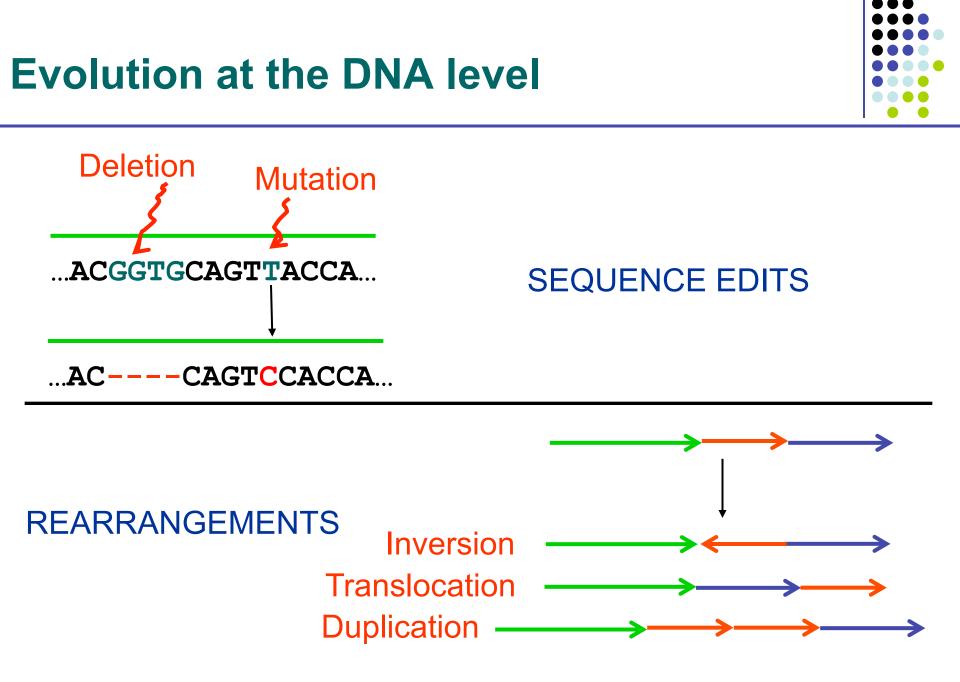
 \triangle Somatic

Germline

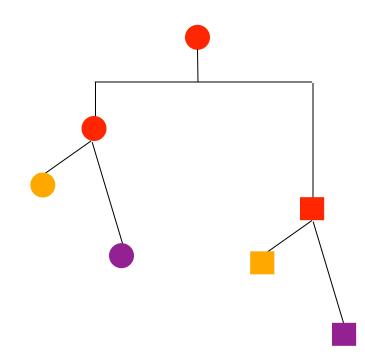


Molecular Evolution and Phylogenetic Tree Reconstruction

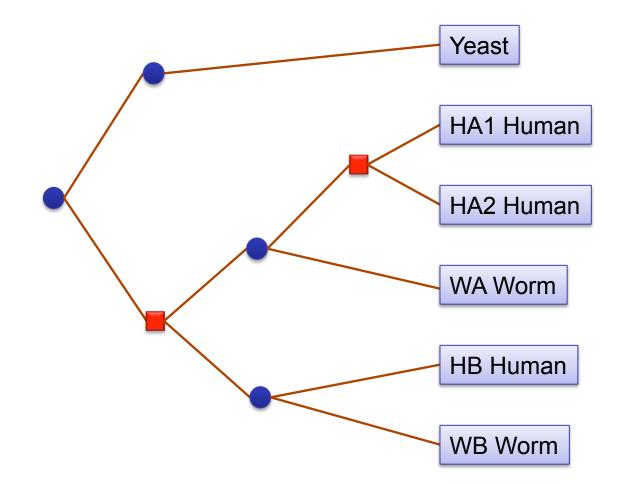




Proteins (genes) evolve by both duplication and species divergence



Orthology and Paralogy



Orthologs: Derived by speciation

Paralogs: *Everything else*

Orthology, Paralogy, Inparalogs, Outparalogs

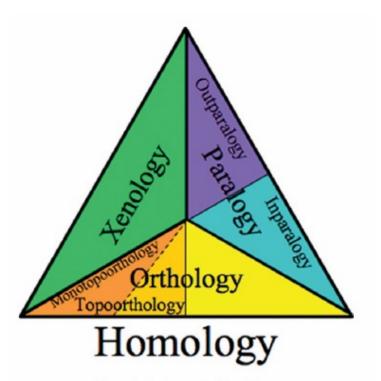


Figure 1. Refinements of homology.

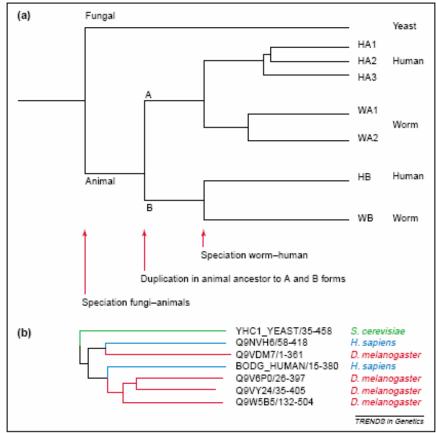
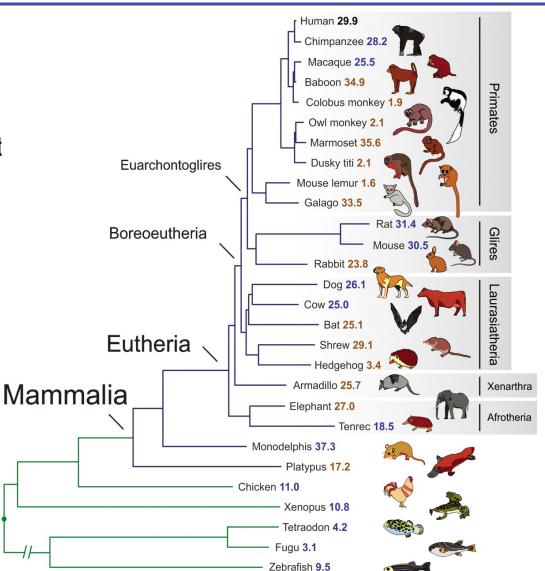


Fig. 1. The definition of inparalogs and outparalogs. (a) Consider an ancient gene inherited in the yeast, worm and human lineages. The gene was duplicated early in the animal lineage, before the human-worm split, into genes A and B. After the human-worm split, the A form was in turn duplicated independently in the human and worm lineages. In this scenario, the yeast gene is orthologous to all worm and human genes, which are all co-orthologous to all genes in the HA* set are co-orthologous to all genes in the WA* set. The genes HA* are hence 'inparalogs' to each other when comparing human to worm. By contrast, the genes HB and HA* are 'outparalogs' when comparing human with worm...However, HB and HA*, and WB and WA* are inparalogs when comparing why yeast, because the animal-yeast split pre-dates the HA*-HB duplication. (b) Real-life example of inparalogs: γ-butyrobetaine hydroxylases. The points of speciation and duplication are easily identifiable. The alignment is a subset of Pfam:PF03322 and the tree was generated by neighborjoining in Belvu. All nodes have a bootstrap support exceeding 95%.

Phylogenetic Trees

- Nodes: species
- Edges: time of independent evolution
- Edge length represents evolution time
 - AKA genetic distance
 - Not necessarily chronological time



Inferring Phylogenetic Trees

Trees can be inferred by several criteria:

- Morphology of the organisms
 - Can lead to mistakes
- Sequence comparison

Example:

Inferring Phylogenetic Trees

- Sequence-based methods
 - Deterministic (Parsimony)
 - Probabilistic (SEMPHY)
- Distance-based methods
 - UPGMA
 - Neighbor-Joining
- Can compute distances from sequences

Basic principle:

Distance proportional to degree of independent sequence evolution

Given sequences xⁱ, x^j,

d_{ij} = distance between the two sequences

One possible definition:

 d_{ij} = fraction f of sites u where $x^{i}[u] \neq x^{j}[u]$

Better scores are derived by modeling evolution as a continuous change process

Modeling sequence substitution:

Consider what happens at a position for time Δt ,

- P(t) = vector of probabilities of {A,C,G,T} at time t
- μ_{AC} = rate of transition from A to C per unit time
- $\mu_A = \mu_{AC} + \mu_{AG} + \mu_{AT}$ rate of transition out of A
- $p_A(t+\Delta t) = p_A(t) p_A(t) \mu_A \Delta t + p_C(t) \mu_{CA} \Delta t + p_G(t) \mu_{GA} \Delta t + p_T(t) \mu_{TA} \Delta t$

In matrix/vector notation, we get

$$\mathsf{P}(\mathsf{t}+\Delta\mathsf{t}) = \mathsf{P}(\mathsf{t}) + \mathsf{Q} \; \mathsf{P}(\mathsf{t}) \; \Delta\mathsf{t}$$

where Q is the substitution rate matrix

$$Q = \begin{pmatrix} -\mu_A & \mu_{GA} & \mu_{CA} & \mu_{TA} \\ \mu_{AG} & -\mu_G & \mu_{CG} & \mu_{TG} \\ \mu_{AC} & \mu_{GC} & -\mu_C & \mu_{TC} \\ \mu_{AT} & \mu_{GT} & \mu_{CT} & -\mu_T \end{pmatrix}$$

• This is a differential equation:

P'(t) = Q P(t)

- Q => prob. distribution over {A,C,G,T} at each position, stationary (equilibrium) frequencies π_A , π_C , π_G , π_T
- Each Q is an evolutionary model
 - Some work better than others

Evolutionary Models

- Jukes-Cantor
- Kimura

• HKY

• Felsenstein

$$Q = \begin{pmatrix} * & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & * \end{pmatrix}$$

$$Q = \begin{pmatrix} * & \kappa & 1 & 1 \\ \kappa & * & 1 & 1 \\ 1 & 1 & * & \kappa \\ 1 & 1 & \kappa & * \end{pmatrix}$$

$$Q = \begin{pmatrix} * & \pi_T & \pi_T & \pi_T \\ \pi_C & * & \pi_C & \pi_C \\ \pi_A & \pi_A & * & \pi_A \\ \pi_G & \pi_G & \pi_G & * \end{pmatrix}$$

$$Q = \begin{pmatrix} * & \kappa\pi_T & \pi_T & \pi_T \\ \kappa\pi_C & * & \pi_C & \pi_C \\ \pi_A & \pi_A & * & \kappa\pi_A \\ \pi_G & \pi_G & \kappa\pi_G & * \end{pmatrix}$$

• Solve the differential equation and compute expected evolutionary time given sequences

$$\mathsf{P}'(\mathsf{t}) = \mathsf{Q} \; \mathsf{P}(\mathsf{t})$$

Jukes-Cantor:

Let
$$P_{AA}(t) = P_{CC}(t) = P_{CC}(t) = P_{CC}(t) = r$$

 $P_{AC}(t) = \dots = P_{TG}(t) = s$

Then,

$$\begin{aligned} \mathsf{r}'(t) &= - \frac{3}{4} \, \mathsf{r}(t) \, \mu + \frac{3}{4} \, \mathsf{s}(t) \, \mu \\ \mathsf{s}'(t) &= - \frac{1}{4} \, \mathsf{s}(t) \, \mu + \frac{1}{4} \, \mathsf{r}(t) \, \mu \end{aligned}$$

Which is satisfied by

$$r(t) = \frac{1}{4} (1 + 3e^{-\mu t})$$

s(t) = $\frac{1}{4} (1 - e^{-\mu t})$

Estimating Distances

• Solve the differential equation and compute expected evolutionary time given sequences

$$\mathsf{P}'(t) = \mathsf{Q} \mathsf{P}(t)$$

Jukes-Cantor:

$$P = \begin{pmatrix} \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\\\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\\\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\\\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \end{pmatrix}$$

Estimating Distances

- Let p = probability a base is different between two sequences, Solve to find **t**
- Jukes-Cantor $r(t) = 1 p = \frac{1}{4} (1 + 3e^{-\mu t})$

$$p = \frac{3}{4} - \frac{3}{4} e^{-\mu t}$$

$$\frac{3}{4} - p = \frac{3}{4} e^{-\mu t}$$

$$1 - \frac{4p}{3} = e^{-\mu t}$$

Therefore,

$$\mu t = -\ln(1 - 4p/3)$$

Letting

d = ¾ µt, denoting substitutions per site, $d = -\frac{3}{4}\ln(1-\frac{4}{3}p)$

d: Branch length in terms of substitutions per site

Jukes-Cantor

$$d=-\frac{3}{4}\ln(1-\frac{4}{3}p)$$

Kimura

$$d = -\frac{1}{2}\ln(1 - 2P - Q) - \frac{1}{4}\ln(1 - 2Q)$$

UPGMA (unweighted pair group method using arithmetic averages) Or the **Average Linkage Method**

Given two disjoint clusters C_i, C_i of sequences,

$$d_{ij} = \frac{1}{|C_i| \times |C_j|} \Sigma_{\{p \in Ci, q \in Cj\}} d_{pq}$$

Claim that if $C_k = C_i \cup C_i$, then distance to another cluster C_i is:

 $d_{kl} = \frac{d_{il} |C_i| + d_{jl} |C_j|}{|C_i| + |C_j|}$

Algorithm: Average Linkage

Initialization:

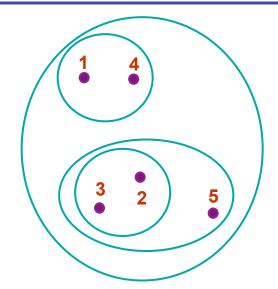
Assign each x_i into its own cluster C_i Define one leaf per sequence, height 0

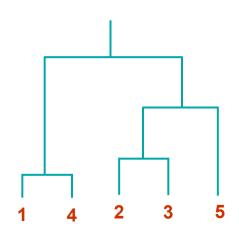
Iteration:

Find two clusters C_i , C_j s.t. d_{ij} is min Let $C_k = C_i \cup C_j$ Define node connecting C_i , C_j , and place it at height $d_{ij}/2$ Delete C_i , C_j

Termination:

When two clusters i, j remain, place root at height $d_{ij}/2$





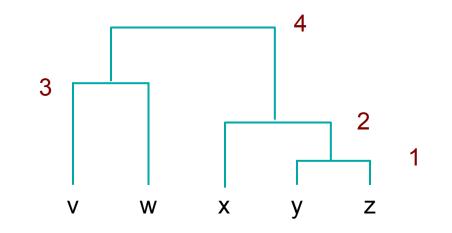
Average Linkage Example

	v	w	x	У	z
v	0	6	8	8	8
w		0	8	8	8
x			0	4	4
У				0	2
z					0

	v	w	X	yz
V	0	6	8	8
W		0	8	8
X			0	4
yz				0

	V	w	xyz
v	0	6	8
w		0	8
xyz			0

	vw	xyz
vw	0	8
xyz		0



Ultrametric Distances and Molecular Clock

Definition:

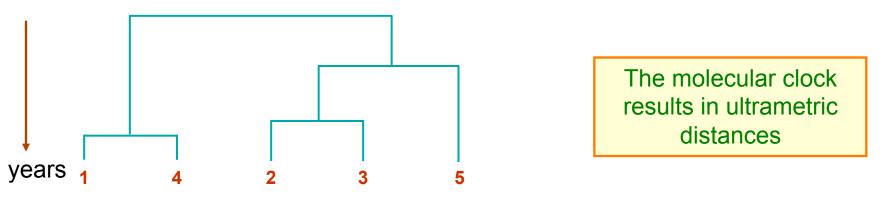
A distance function d(.,.) is ultrametric if for any three distances $d_{ij} \le d_{ik} \le d_{ij}$, it is true that

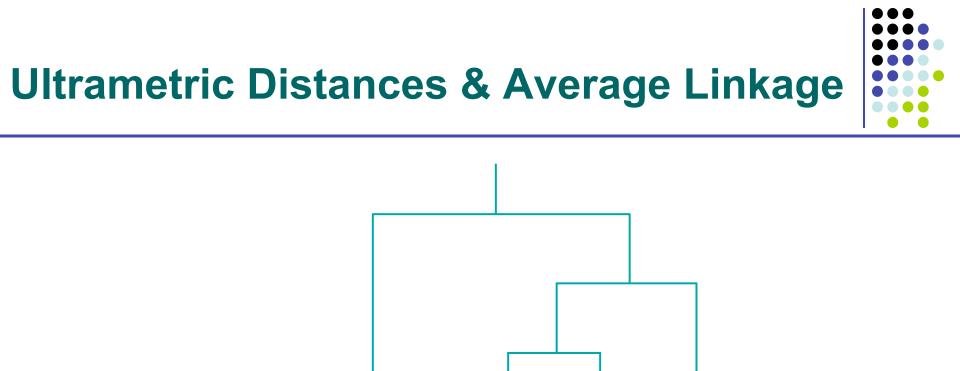
$$d_{ij} \le d_{ik} = d_{jk}$$

The Molecular Clock:

The evolutionary distance between species x and y is 2× the Earth time to reach the nearest common ancestor

That is, the molecular clock has constant rate in all species





Average Linkage is guaranteed to reconstruct correctly a binary tree with ultrametric distances

2

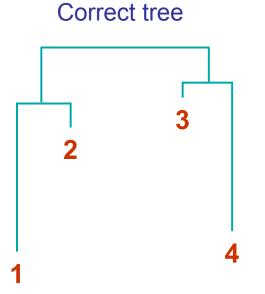
3

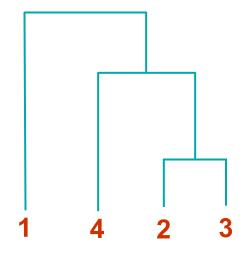
Proof: Exercise

Molecular clock: all species evolve at the same rate (Earth time)

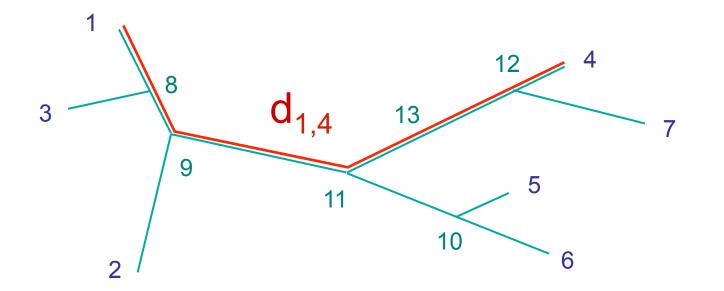
However, certain species (e.g., mouse, rat) evolve much faster

Example where UPGMA messes up:





Additive Distances

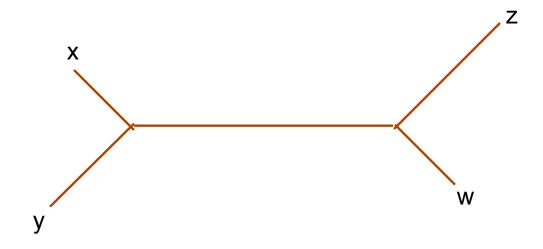


Given a tree, a distance measure is **additive** if the distance between any pair of leaves is the sum of lengths of edges connecting them

Given a tree T & additive distances d_{ii}, can uniquely reconstruct edge lengths:

- Find two neighboring leaves i, j, with common parent k
- Place parent node k at distance $d_{km} = \frac{1}{2} (d_{im} + d_{im} d_{ij})$ from any node m $\neq i, j$

Additive Distances



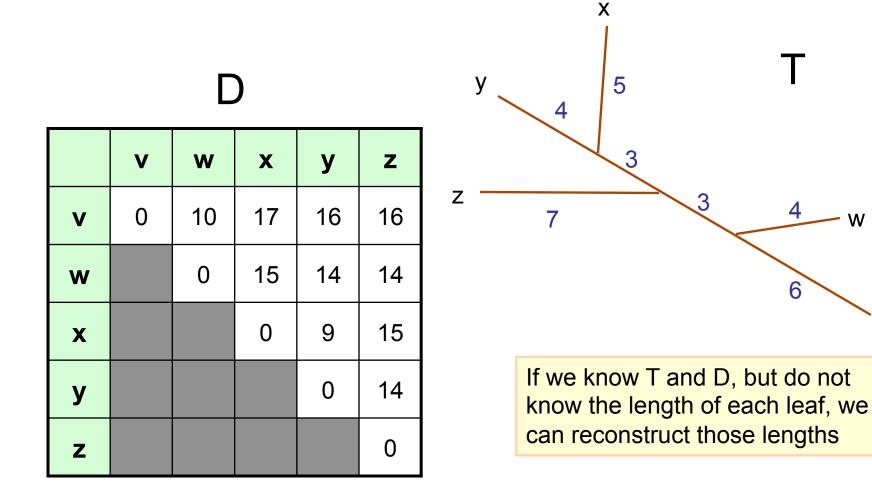
For any four leaves x, y, z, w, consider the three sums

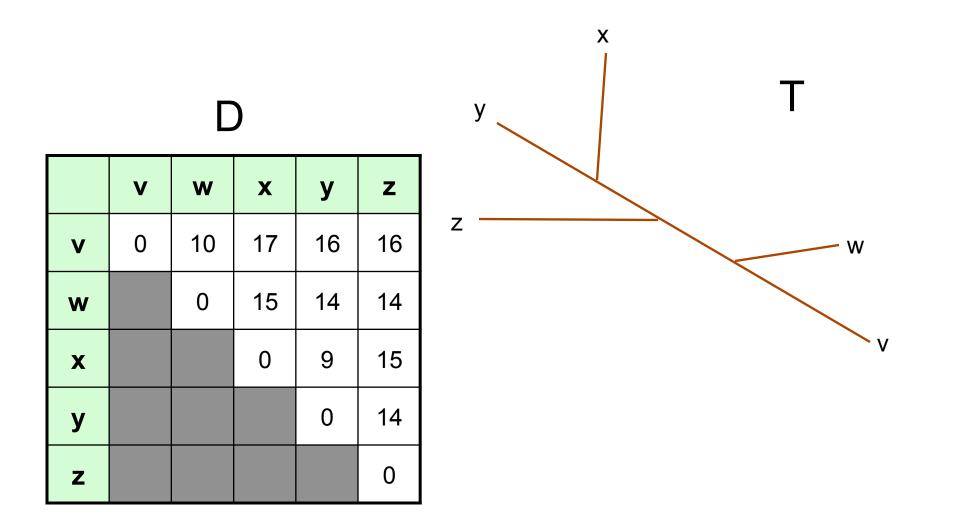
d(x, y) + d(z, w) d(x, z) + d(y, w)d(x, w) + d(y, z)

One of them is smaller than the other two, which are equal

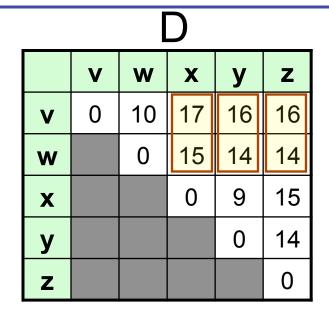
d(x, y) + d(z, w) < d(x, z) + d(y, w) = d(x, w) + d(y, z)

W

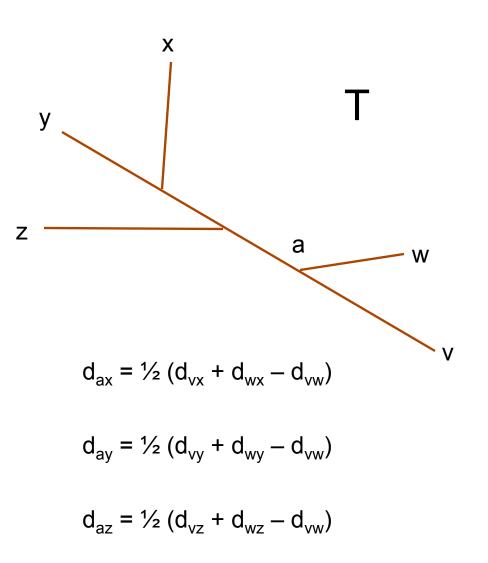




Reconstructing Additive Distances Given T



D ₁				
	а	X	у	z
а	0	11	10	10
X		0	9	15
У			0	14
z				0



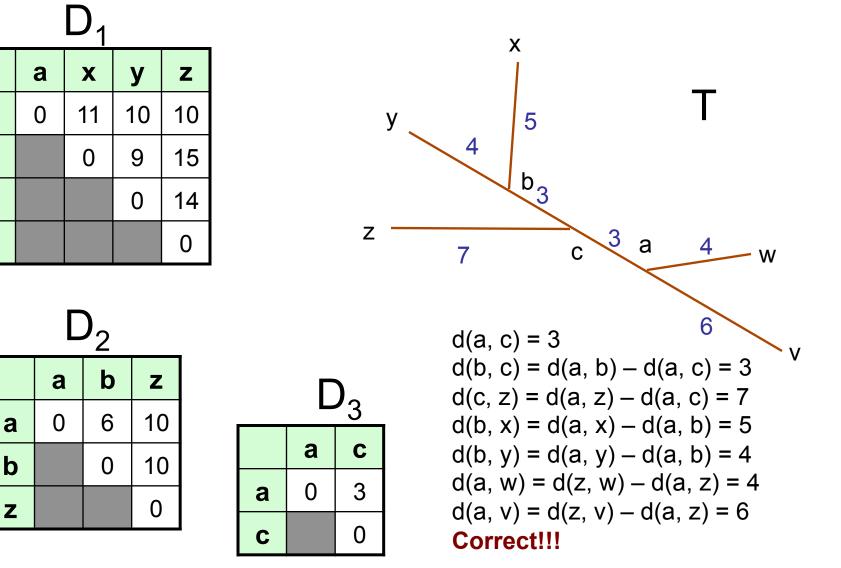
Reconstructing Additive Distances Given T

а

Χ

У

Ζ



May produce a good tree even when distance is not additive

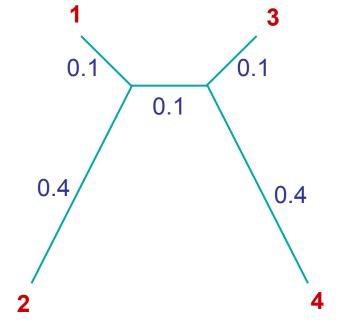
Guaranteed to produce the correct tree if distance is additive

<u>Step 1</u>: Finding neighboring leaves

Define

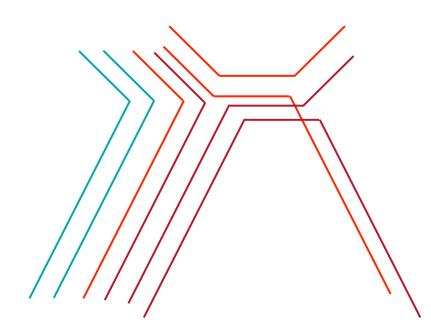
$$D_{ij} = (N - 2) d_{ij} - \sum_{k \neq i} d_{ik} - \sum_{k \neq j} d_{jk}$$

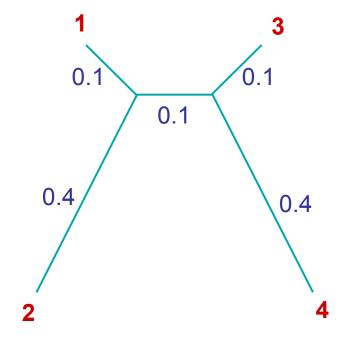
<u>Claim</u>: The above "magic trick" ensures that i, j are neighbors if D_{ii} is minimal



Neighbor-Joining

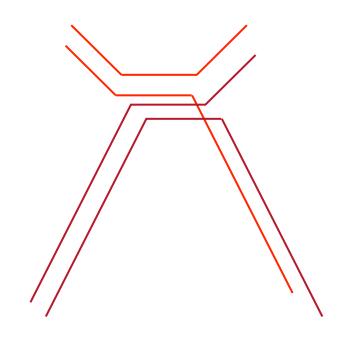
$$D_{ij} = (N - 2) d_{ij} - \sum_{k \neq i} d_{ik} - \sum_{k \neq j} d_{jk}$$

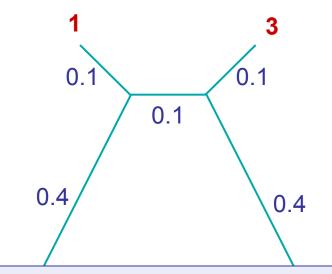




Neighbor-Joining

$$D_{ij} = (N - 2) d_{ij} - \sum_{k \neq i} d_{ik} - \sum_{k \neq j} d_{jk}$$





- All leaf edges appear negatively exactly twice
- All other edges appear negatively once for every path from each of the two leaves i, j, to leaves k ≠ i, j

