## DNA Sequencing

## Definition of Coverage



Length of genomic segment:
G
Number of reads:
N
Length of each read:
L
Definition: Coverage $\quad C=N L / G$
How much coverage is enough?
Lander-Waterman model: $\operatorname{Prob}\left[\right.$ not covered bp ] $=e^{-c}$ Assuming uniform distribution of reads, $\mathrm{C}=10$ results in 1 gapped region $/ 1,000,000$ nucleotides

## Repeats

## Repeat types:

$$
\begin{aligned}
& \text { Bacterial genomes:5\% } \\
& \text { Mammals: }
\end{aligned}
$$

- Low-Complexity DNA (e.g. ATATATATACATA...)
- Microsatellite repeats $\left(a_{1} \ldots a_{k}\right)^{N}$ where $k \sim 3-6$
(e.g. CAGCAGTAGCAGCACCAG)
- Transposons
- SINE
- LINE
- LTR retroposons
(Short Interspersed Nuclear Elements) e.g., ALU: ~300-long, $10^{6}$ copies
(Long Interspersed Nuclear Elements)
$\sim 4000$-long, 200,000 copies
(Long Terminal Repeats ( $\sim 700 \mathrm{bp}$ ) at each end) cousins of HIV
- Gene Families genes duplicate \& then diverge (paralogs)
- Recent duplications ~100,000-long, very similar copies


## Sequencing and Fragment Assembly



Glued together two distant regions

## What can we do about repeats?

Two main approaches:

- Cluster the reads

- Link the reads


## What can we do about repeats?

Two main approaches:

- Cluster the reads

- Link the reads


## What can we do about repeats?

Two main approaches:

- Cluster the reads

- Link the reads



## Sequencing and Fragment Assembly



ARB, CRD

$3 \times 10^{9}$ nucleotides
AGTAGCACAGAC TACGACGAGACG ATCGTGCGAGCG ACGGCGTAGTGI GCTGTACTGTCG TGTGTGTGTACT СТССт


## Sequencing and Fragment Assembly



Fragment Assembly
(in whole-genome shotgun sequencing)

## Fragment Assembly



## Steps to Assemble a Genome



## 1. Find Overlapping Reads

(read, pos., word, orient.) (word, read, orient., pos.)
aaactgcag aactgcagt actgcagta
gtacggatc tacggatct gggcccaaa ggcccaaac gcccaaact
actgcagta
ctgcagtac gtacggatc tacggatct acggatcta
ctactacac tactacaca
aaactgcag aactgcagt acggatcta ซでgeagta actgcagta cccaaactg cggatctac ctactacac ctgcagtac ctgcagtac| beccaaact ggcccaaac gggcccaaa gtacggatc $\overline{\mathrm{p}} \overline{\mathrm{ac}} \bar{g} \overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{c}}$ tacggatct t"̄वggatct tactacaca

## 1. Find Overlapping Reads

- Find pairs of reads sharing a k-mer, k~24
- Extend to full alignment - throw away if not $>98 \%$ similar

TACA TAGATTACACAGATTACT GA


TAGT TAGATTACACAGATTACTAGA

- Caveat: repeats
- A k-mer that occurs N times, causes $\mathrm{O}\left(\mathrm{N}^{2}\right)$ read/read comparisons
- ALU k-mers could cause up to 1,000,000² comparisons
- Solution:
- Discard all k-mers that occur "too often"
- Set cutoff to balance sensitivity/speed tradeoff, according to genome at hand and computing resources available


## 1. Find Overlapping Reads

Create local multiple alignments from the overlapping reads


## 1. Find Overlapping Reads

- Correct errors using multiple alignment

insert A
replace $T$ with $C$

correlated errorsprobably caused by repeats
$\Rightarrow$ disentangle overlaps

TAGATTACACAGATTACTGA TAGATTACACAGATTACTGA TAGATTACACAGATMACTGA

In practice, error correction removes up to $98 \%$ of the errors

TAG-TTACACAGATTATTGA TAG-TMACACAGATMATMGA

## 2. Merge Reads into Contigs

- Overlap graph:
- Nodes: reads $r_{1} \ldots \ldots r_{n}$
- Edges: overlaps ( $\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}$, shift, orientation, score)


Reads that come from two regions of the genome (blue and red) that contain the same repeat


Note:
of course, we don't know the "color" of these nodes

## 2. Merge Reads into Contigs



We want to merge reads up to potential repeat boundaries

## 2. Merge Reads into Contigs



- Remove transitively inferable overlaps
- If read $r$ overlaps to the right reads $r_{1}, r_{2}$, and $r_{1}$
 overlaps $r_{2}$, then ( $r, r_{2}$ ) can be inferred by ( $r, r_{1}$ ) and ( $r_{1}, r_{2}$ )



## 2. Merge Reads into Contigs



## Repeats, errors, and contig lengths

- Repeats shorter than read length are easily resolved
- Read that spans across a repeat disambiguates order of flanking regions
- Repeats with more base pair diffs than sequencing error rate are OK
- We throw overlaps between two reads in different copies of the repeat
- To make the genome appear less repetitive, try to:
- Increase read length
- Decrease sequencing error rate

Role of error correction:
Discards up to $98 \%$ of single-letter sequencing errors
decreases error rate
$\Rightarrow$ decreases effective repeat content
$\Rightarrow$ increases contig length

## 3. Link Contigs into Supercontigs



Normal density


Too dense
$\Rightarrow$ Overcollapsed


Inconsistent links
$\Rightarrow$ Overcollapsed?

## 3. Link Contigs into Supercontigs

Find all links between unique contigs

Connect contigs incrementally, if $\geq 2$ forward-reverse links


## 3. Link Contigs into Supercontigs

Fill gaps in supercontigs with paths of repeat contigs
Complex algorithmic step

- Exponential number of paths
- Forward-reverse links



## De Brujin Graph formulation

 -- Given sequence $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N}}$, k-mer length k , Graph of $4^{\mathrm{k}}$ vertices,
Edges between words with ( $k-1$ )-long overlap
(a) Compression

(b) Error Detection

(c) Repeat Analysis

(d) Scaffolding



## 4. Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGGGTAA CTA


TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting
(Alternative: take maximum-quality letter)

## Quality of assemblies-mouse






Figure 1 The mouse genome in 88 sequence-based ultracontigs. The position and extent of the 88 ultracontigs of the MGSCv3 assembly are shown adjacent to ideograms of the mouse chromosomes. All mouse chromosomes are acrocentric, with the centromeric end at the top of each chromosome. The supercontigs of the sequence assembly were anchored to the mouse chromosomes using the MIT genetic map. Neighbouring supercontigs were linked together into ultracontigs using information from single BAC links and the fingerprint and radiation-hybrid maps, resulting in 88 ultracontigs containing $95 \%$ of the bases in the euchromatic genome.

| N50 length (kb)* | Bases (Gb) | Bases plus gaps (Gb) | Percantage of genome |
| :---: | :---: | :---: | :---: |
| 25.9 | 2.372 | 2.372 | 94.9 |
| 18,600 | 2.372 | 2.477 | 99.1 |
| 50,600 | 2.372 | 2.493 | 99.7 |
| 2.3 | 0.106 | 0.106 | - |
| 18,700 | 2.352 | 2.455 | 98.2 |
| 22,900 | 1.955 | 2.039 | 81.6 |

Jes spanned gaps.
ercontigs with an N 50 value of 3.4 kb . The N 50 velue for all contigs is 24.8 kb , and for all superoontigs is $16,900 \mathrm{~kb}$ (excluding gaps to gaps in the ultracontigs and are thus accounted for in the 'bases plus gaps' estimate.

## Terminology: N50 contig length

If we sort contigs from largest to smallest, and start Covering the genome in that order, N50 is the length Of the contig that just covers the $50^{\text {th }}$ percentile.


## Panda Genome



Table 1 | Summary of the panda genome sequencing and assembly

| Step | Paired-end insert size (bp)* | Sequence coverage ( $\times$ ) $\dagger$ | Physical coverage ( $\times$ ) $\dagger$ | N50 (bp) $\ddagger$ | N90 (bp) $\ddagger$ | Total length (bp) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Initial contig |  |  |  | 1,483 | 224 | 2,021,639,596 |
| Scaffold 1 | 110-230; 380-570 | 38.5 | 96 | 32,648 | 7,780 | 2,213,848,409 |
| Scaffold 2 | Add 1,700-2,800 | 8.4 | 151 | 229,150 | 45,240 | 2,250,442,210 |
| Scaffold 3 | Add 3,700-7,500 | 6.5 | 450 | 581,933 | 127,336 | 2,297,100,301 |
| Scaffold 4 | Add 9,200-12,300 | 2.6 | 373 | 1,281,781 | 312,670 | 2,299,498,912 |
| Final contig | All | 56.0 | 1,070 | 39,886 | 9,848 | 2,245,302,481 |

Add denotes accumulative; for example, scaffold 2 uses data of 110-230, 380-570 and 1,700-2,800.

* Approximate average insert size of Illumina Genome A nalyser sequencing libraries. The sizes were estimated by mapping the reads onto the assembled genome sequences.
$\dagger$ High-quality read sequences that were used in assembly. Coverage was estimated assuming a genome size of 2.4 Gb . Sequence coverage refers to the total length of generated reads, and physical coverage refers to the total length of sequenced clones of the libraries.
$\ddagger$ N50 size of contigs or scaffold swas calculated by ordering all sequences then adding the lengths from longest to shortest until the summed length exceeded $50 \%$ of the total length of all sequences. N90 is similarly defined.


## Hominid lineage



## Orangutan genome



## Assemblathon



Table 1 Assemblathon 2 participating team details
Team name Team identifier Number of assemblies Sequence data used Institutional affilition

|  |  | Bird | Fish | Snake |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABL | ABL | 1 | 0 | 0 | $4+1$ | Wayne State University | HyDA |
| ABySS | ABYSS | 0 | 1 | 1 |  | Genome Sciences Centre, British Columbia Cancer Agency | ABySS and Anchor |
| Alpaths | ALLP | 1 | 1 | 0 | 1 | Broad Institute | ALPPATHS-LG |
| BCM-HGSC | BCM | 2 | 1 | 1 | $4+1+p^{1}$ | Baylor College of Medicine Human Genome Sequencing Center | SeqPrep, KmerFreq, Quake, BWA, Newbler, ALLPATHS-LG, Atlas-Link, Atlas-GapFill, Phrap, Cross Match, Velvet, BLAST, and BLASR |
| CBCB | CBCB | 1 | 0 | 0 | $4+1+p$ | University of Maryland, National Biodefense Analysis and Countermeasures Center | Celera assembler and PacBio Corrected Reads (PBCR) |
| Cobig ${ }^{2}$ | COBIG | 1 | 0 | 0 | 4 | University of Lisbon | 4Pipe4 pipeline, Seqclean, Mira, Bambus2 |
| CRACS | CRACS | 0 | 0 | 1 |  | Institute for Systems and Computer Engineering of Porto TEC, European Bioinformatics Institute | ABySS, SSPACE, Bowtie, and FASTX |
| CSHL | CSHL | 0 | 3 | 0 |  | Cold Spring Harbor Laboratory, Yale University, University of Notre Dame | Metassembler, ALLPATHS, SOAPdenovo |
| CTD | CTD | 0 | 3 | 0 |  | National Research University of Information Technologies, Mechanics, and Optics | Unspecified |
| Curtain | CURT | 0 | 0 | 1 |  | European Bioinformatics Institute | SOAPdenovo, fastx_toolkit, bwa, samtools, velvet, and curtain |
| GAM | GAM | 0 | 0 | 1 |  | Institute of Applied Genomics, University of Udine, KTH Royal Institute of Technology | GAM, CLC and ABySS |
| IOBUGA | $10 B$ | 0 | 2 | 0 |  | University of Georgia, Institute of Aging Research | ALPPATHS-LG and SOAPdenovo |
| MLK Group | MLK | 1 | 0 | 0 | 1 | UC Berkeley | ABySS |
| Meraculous | MERAC | 1 | 1 | 1 | 1 | DOE Joint Genome Institute, UC Berkeley | meraculous |
| Newbler-454 | NEWB | 1 | 0 | 0 | 4 | 454 Life Sciences | Newbler |
| Phusion | PHUS | 1 | 0 | 1 | 1 | Wellcome Trust Sanger Institute | Phusion2, SOAPdenovo, SSPACE |
| PRICE | PRICE | 0 | 0 | 1 |  | UC San Francisco | PRICE |
| Ray | RAY | 1 | 1 | 1 | 1 | CHUQ Research Center, Laval University | Ray |
| SGA | SGA | 1 | 1 | 1 | 1 | Wellcome Trust Sanger Institute | SGA |
| SOAPdenovo | SOAP | 3 | 1 | 1 | $1^{2}$ | BGI-Shenzhen, HKU-BGI | SOAPdenovo |
| Symbiose | SYMB | 0 | 1 | 1 |  | ENS Cacharv/RISA, INRIA, CNRS/ Symbiose | Monument, SSPACE, SuperScaffolder, and GapCloser |

## Assemblathon



Figure 12 Short-range scaffold accuracy assessment via Validated Fosmid Regions. First, validated Fosmid regions (VFRs) were identified ( 86 in bird and 56 in snake, see text). Then VFRs were divided into non-overlapping $1,000 \mathrm{nt}$ fragments and pairs of 100 nt 'tags' were extracted from ends of each fragment and searched (using BLAST) against all scaffolds from each assembly. A summary score for each assembly was calculated as the product of a) the number of pairs of tags that both matched the same scaffold in an assembly (at any distance apart) and b) the percentage of only the uniquely matching tag pairs that matched at the expected distance ( $\pm 2 \mathrm{nt}$ ). Theoretical maximum scores, which assume that all tag-pairs would map uniquely to a single scaffold, are indicated by red dashed line ( 988 for bird and 350 for snake).


Figure 1 NG graph showing an overview of bird assembly scaffold lengths. The NG saffold length (see text) is calculated at integer thresholds ( $1 \%$ to $100 \%$ ) and the scaffold length (in bp) for that particular threshold is shown on the $y$-xasis. The dotted vertical line indicates the NG50 scaffold length: if all scaffold lengths are summed from longest to the shortest, this is the length at which the sum length accounts for
$50 \% 6$ of the estimated genome size. Y-axis is ploted on a log scale. Bird estimated genome size $=\sim 12 \mathrm{Gbp}$.


Figure 1 NG graph showing an overview of bird assembly scaffold lengths. The NG scaffold length (see text) is calculated at integer thresholds ( $1 \%$ to 100\%) and the scaffold length (in bp) for that particular threshold is shown on the $y$-axis. The dotted vertical line indicates the NG50 scaffold length: if all scaffoid lengths are summed from longest to the shortest, this is the length at which the sum length accounts for $50 \%$ of the extimated genome size. $Y$-zxis is plotted on a log scale. Bird estimated genome size $=\sim 1.2 \mathrm{Gbp}$.


## History of WGA



1997


Gene Myers

