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Goals of this course 

•  Introduction to Computational Biology & Genomics 

§  Basic concepts and scientific questions 

§  Why does it matter? 

§  Basic biology for computer scientists 

§  In-depth coverage of algorithmic techniques 

§  Current active areas of research 

 
•   Useful algorithms 

§  Dynamic programming 

§  String algorithms 

§  HMMs and other graphical models for sequence analysis 



Topics in CS262 

Part 1:  Basic Algorithms 
 

§  Dynamic Programming & sequence alignment 
§  HMMs, CRFs & sequence modeling 
§  Sequence indexing; Burrows-Wheeler transform, De Brujin graphs 

Part 2: Topics in computational genomics and areas of active research 
 

§  DNA sequencing and assembly 
§  Comparative genomics 
§  Human genome resequencing 

•  Alignment 
•  Compression 
•  Human genome variation 

§  Cancer genomics 
§  Functional genomics 
§  Population genomics 



Course responsibilities 

•  Homeworks      

§  4 challenging problem sets, 4-5 problems/pset 
•  Due at beginning of class 
•  Up to 3 late days (24-hr periods) for the quarter 

§  Collaboration allowed – please give credit 
•  Teams of 2 or 3 students 
•  Individual writeups 
•  If individual (no team) then drop score of worst problem per problem set 

•  (Optional) Scribing 

§  Due one week after the lecture, except special permission 

§  Scribing grade replaces 2 lowest problems from all problem sets 
•  First-come first-serve, email staff list to sign up 



Reading material 

•  Main Reading: 
§  Lecture notes 
§  Papers 

•  Optional: 
§  “Biological sequence analysis” by Durbin, Eddy, Krogh, Mitchison 

•  Chapters 1-4, 6, 7-8, 9-10 



Birth of Molecular Biology 
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Genetics in the 20th Century 



Human Genome Project 

1990: Start 

2000: Bill Clinton: 
2001: Draft 

2003: Finished $3 billion 
3 billion basepairs 

“most	
  important	
  
scien.fic	
  discovery	
  
in	
  the	
  20th	
  century”	
  

now what? 



Sequencing Growth 

Cost of one human genome 
•  2004:  $30,000,000 
•  2008:  $100,000 
•  2010:  $10,000 
•  2014:  “$1,000” 
•  ???:   $300 

How much would you 
pay for a smartphone? 



•  Medicine 
§  Prenatal/Mendelian diseases 

§  Drug dosage (eg. Warfarin) 
§  Disease risk 
§  Diagnosis of infections 
§  … 

•  Ancestry 
•  Genealogy 
•  Nutrition? 
•  Psychology? 
•  Baby Engineering???... 

•  Ethical Issues 

Uses of Genomes 



•  Cost 
•  Killer apps 
•  Roadblocks? 

How soon will we all be sequenced? 

Time 

2015? 
2020? 

Cost 

Applications 



Intro to Biology 



Sequence Alignment 



Evolution 

CT Amemiya et al. Nature 496, 311-316 (2013) 
doi:10.1038/nature12027 



Evolution at the DNA level 

…ACGGTGCAGTTACCA… 

…AC----CAGTCCACCA… 

Mutation 

SEQUENCE EDITS 

REARRANGEMENTS 

Deletion 

Inversion 
Translocation 
Duplication 



Evolutionary Rates 
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Sequence conservation implies function 

Alignment is the key to 
•    Finding important regions 
•    Determining function 
•    Uncovering evolutionary events 



Sequence Alignment 

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC 

Definition 
 Given two strings  x = x1x2...xM,  y = y1y2…yN, 

 
 an alignment is an assignment of gaps to positions 
 0,…, N in x, and 0,…, N in y, so as to line up each 
 letter in one sequence with either a letter, or a gap 
 in the other sequence 

AGGCTATCACCTGACCTCCAGGCCGATGCCC 
TAGCTATCACGACCGCGGTCGATTTGCCCGAC 



What is a good alignment? 

AGGCTAGTT,   
AGCGAAGTTT 
 
AGGCTAGTT-   6 matches, 3 mismatches, 1 gap 
AGCGAAGTTT 
 
AGGCTA-GTT-   7 matches, 1 mismatch, 3 gaps 
AG-CGAAGTTT 
 
 
AGGC-TA-GTT-   7 matches, 0 mismatches, 5 gaps 
AG-CG-AAGTTT 
 



Scoring Function 

•  Sequence edits: 
     AGGCCTC 

§  Mutations    AGGACTC 

§  Insertions    AGGGCCTC 

§  Deletions    AGG . CTC 
 
Scoring Function: 

 Match:  +m 
 Mismatch:  -s 
 Gap:  -d 

 
 Score  F = (# matches) × m - (# mismatches) × s – (#gaps) × d 

Alternative definition: 
 

minimal edit distance 
 

“Given two strings x, y, 
find minimum # of edits 
(insertions, deletions, 

mutations) to transform 
one string to the other” 



How do we compute the best alignment? 

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA 
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Too many possible 
alignments: 
 

 >> 2N 

 
(exercise) 



Alignment is additive 

Observation: 
 The score of aligning   x1……xM 
      y1……yN 
 is additive 

 
Say that    x1…xi   xi+1…xM  
aligns to    y1…yj   yj+1…yN 
 
The two scores add up: 

  
 F(x[1:M], y[1:N]) =  F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N]) 



Dynamic Programming 

•  There are only a polynomial number of subproblems 
§  Align x1…xi to y1…yj 

•  Original problem is one of the subproblems 
§  Align x1…xM to y1…yN 

•  Each subproblem is easily solved from smaller subproblems 
§  We will show next 

•  Then, we can apply Dynamic Programming!!! 
 

Let  
 F(i, j)   =   optimal score of aligning 
  x1……xi 

    y1……yj 

F is the DP “Matrix” or “Table” 
 

“Memoization” 



Dynamic Programming (cont’d) 

Notice three possible cases: 
 
1.  xi aligns to yj 

 x1……xi-1   xi 
  y1……yj-1   yj 

 
2.  xi aligns to a gap 

 x1……xi-1   xi 
  y1……yj     - 

 
3.  yj aligns to a gap 

 x1……xi     - 
  y1……yj-1   yj 

             m, if xi = yj 
F(i, j) = F(i – 1, j – 1) +  

             -s, if not 

           
F(i, j) = F(i – 1, j) – d  

   

           
F(i, j) = F(i, j – 1) – d  

   



Dynamic Programming (cont’d) 

How do we know which case is correct? 
 
Inductive assumption: 

 F(i, j – 1), F(i – 1, j), F(i – 1, j – 1)  are optimal 
 
Then, 

      F(i – 1, j – 1) + s(xi, yj) 
 F(i, j) = max     F(i – 1, j) – d 
      F(i, j – 1) – d 

 
Where   s(xi, yj) = m, if xi = yj;  -s, if not 



G 
 - 

A G T A 

0 -1 -2 -3 -4 

A -1 1 0 -1 -2 

T -2 0 0 1 0 

A -3 -1 -1 0 2 

F(i,j)       i = 0     1       2      3      4 

Example 

x = AGTA      m =  1 
y = ATA       s  = -1 

       d  = -1 

j = 0 

1 
2 

3 

F(1, 1) =  
max{F(0,0) + s(A, A), 
        F(0, 1) – d, 
        F(1, 0) – d} = 
 
max{0 + 1, 
        -1 – 1, 
        -1 – 1} = 1 

A 
A 

T 
T 

A 
A 

Procedure to output  
Alignment 
 
•  Follow the backpointers 

•  When diagonal, 
OUTPUT xi, yj 

•  When up, 
OUTPUT yj 
 

•  When left, 
OUTPUT xi 



The Needleman-Wunsch Matrix 
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Every nondecreasing 
path  
 
from (0,0) to (M, N)  
 
corresponds to  
an alignment  
of the two sequences 
 

An optimal alignment is composed 
of optimal subalignments 



The Needleman-Wunsch Algorithm 

Initialization. 
F(0, 0)   =  0 
F(0, j)  = - j × d 
F(i, 0)  = - i × d 

 
Main Iteration. Filling-in partial alignments 

For each    i = 1……M 
  For each   j = 1……N 
      F(i – 1,j – 1) + s(xi, yj)    [case 1] 
   F(i, j)   =   max   F(i – 1, j) – d        [case 2] 
      F(i, j – 1) – d        [case 3] 

 
     DIAG,    if  [case 1] 
   Ptr(i, j)  =  LEFT,  if  [case 2] 

      UP,  if  [case 3] 
 
3.  Termination. F(M, N) is the optimal score, and 

 from Ptr(M, N) can trace back optimal alignment 



Performance 

•  Time: 
    O(NM) 

•  Space: 
    O(NM) 

•  Later we will cover more efficient methods 



A variant of the basic algorithm: 

•  Maybe it is OK to have an unlimited # of gaps in the 
beginning and end: 

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC 
          |||||||  |||| |  || || 
GCGAGTTCATCTATCAC--GACCGC--GGTCG-------------- 

•  Then, we don’t want to penalize gaps in the ends 



Different types of overlaps 

Example: 
2 overlapping“reads” from a  
sequencing project  

Example: 
Search for a mouse gene 
within a human chromosome 



The Overlap Detection variant 

Changes: 
 
1.  Initialization 

For all i, j, 
 F(i, 0) = 0 
 F(0, j) = 0 

 
2.  Termination 

               maxi F(i, N) 
FOPT = max 

               maxj F(M, j) 
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The local alignment problem 

Given two strings   x = x1……xM,  
     y = y1……yN 

 
Find substrings x’, y’ whose similarity  

 (optimal global alignment value) 
 is maximum 

 
  x = aaaacccccggggtta 
  y = ttcccgggaaccaacc 



Why local alignment 

•  Genes are shuffled between genomes 



Cross-species genome similarity 

•  98% of genes are conserved between any two mammals 
•  >70% average similarity in protein sequence 

 
hum_a : GTTGACAATAGAGGGTCTGGCAGAGGCTC--------------------- @ 57331/400001 
mus_a : GCTGACAATAGAGGGGCTGGCAGAGGCTC--------------------- @ 78560/400001 
rat_a : GCTGACAATAGAGGGGCTGGCAGAGACTC--------------------- @ 112658/369938 
fug_a : TTTGTTGATGGGGAGCGTGCATTAATTTCAGGCTATTGTTAACAGGCTCG @ 36008/68174 
  
hum_a : CTGGCCGCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 57381/400001 
mus_a : CTGGCCCCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 78610/400001 
rat_a : CTGGCCCCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 112708/369938 
fug_a : TGGGCCGAGGTGTTGGATGGCCTGAGTGAAGCACGCGCTGTCAGCTGGCG @ 36058/68174 
 
  
hum_a : AGCGCACTCTCCTTTCAGGCAGCTCCCCGGGGAGCTGTGCGGCCACATTT @ 57431/400001 
mus_a : AGCGCACTCG-CTTTCAGGCCGCTCCCCGGGGAGCTGAGCGGCCACATTT @ 78659/400001 
rat_a : AGCGCACTCG-CTTTCAGGCCGCTCCCCGGGGAGCTGCGCGGCCACATTT @ 112757/369938 
fug_a : AGCGCTCGCG------------------------AGTCCCTGCCGTGTCC @ 36084/68174 
  
hum_a : AACACCATCATCACCCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 57481/400001 
mus_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 78708/400001 
rat_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 112806/369938 
fug_a : CCGAGGACCCTGA------------------------------------- @ 36097/68174 

“atoh” enhancer in 
human, mouse, 
rat, fugu fish 



The Smith-Waterman algorithm 

Idea: Ignore badly aligning regions 
 
Modifications to Needleman-Wunsch: 
 
Initialization:  F(0, j) = F(i, 0) = 0 

      
     0   

Iteration:  F(i, j) = max  F(i – 1, j) – d 
     F(i, j – 1) – d 
     F(i – 1, j – 1) + s(xi, yj)   



The Smith-Waterman algorithm 

Termination: 
 
1.  If we want the best local alignment… 

  
   FOPT = maxi,j F(i, j) 
  
 Find FOPT and trace back 

2.  If we want all local alignments scoring > t  
 
??   For all i, j find F(i, j) > t, and trace back? 
 
Complicated by overlapping local alignments 
 
 
Waterman–Eggert ’87: find all non-overlapping local alignments with 

       minimal recalculation of the DP matrix  



Scoring the gaps more accurately 

Current model: 
  
 Gap of length  n 
 incurs penalty  n×d 

 
However, gaps usually occur in bunches 
 
Concave gap penalty function γ(n) 
(aka Convex -γ(n)): 
 

 γ(n):   
 for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1)  

γ(n) 

γ(n) 



Convex gap dynamic programming 

Initialization:  same 
 
Iteration: 

     F(i – 1, j – 1) + s(xi, yj) 
   F(i, j)  = max  maxk=0…i-1F(k, j) – γ(i – k)  
     maxk=0…j-1F(i, k) – γ(j – k) 

 
Termination:  same 
 
Running Time:  O(N2M)   (assume N>M) 
Space:   O(NM) 



Compromise: affine gaps 

γ(n) = d + (n – 1)×e 
      |   | 
    gap            gap 
    open        extend 

 
To compute optimal alignment, 
 
At position i, j, need to “remember”   best score if gap is open 

      best score if gap is not open 
 
F(i, j):  score of alignment x1…xi to y1…yj 

  if xi aligns to yj   
 
G(i, j):  score if xi aligns to a gap after yj 
H(i, j):     score if yj aligns to a gap after xi 
 
V(i, j) =   best score of alignment x1…xi to y1…yj 
 

d 
e 

γ(n) 



Needleman-Wunsch with affine gaps 

Why do we need matrices F, G, H? 
 
•  xi aligns to yj 

  x1……xi-1  xi   xi+1 

  y1……yj-1  yj     - 

 
•  xi aligns to a gap after yj 

  x1……xi-1  xi   xi+1 

  y1……yj …-      - 

Add -d 

Add -e 

G(i+1, j) = F(i, j) – d  

G(i+1, j) = G(i, j) – e  

Because, perhaps 
 
G(i, j) < V(i, j) 
 
(it is best to align xi to yj if we were aligning 
only x1…xi to y1…yj and not the rest of x, y), 
 
but on the contrary 
 
G(i, j) – e > V(i, j) – d  
 
(i.e., had we “fixed” our decision that xi aligns 
to yj, we could regret it at the next step when 
aligning x1…xi+1 to y1…yj) 



Needleman-Wunsch with affine gaps 

Initialization:  V(i, 0) = d + (i – 1)×e 
   V(0, j) = d + (j – 1)×e 

 
Iteration: 

   V(i, j) = max{ F(i, j), G(i, j), H(i, j) } 
 

   F(i, j) =   V(i – 1, j – 1) + s(xi, yj) 
     
     V(i – 1, j) – d  
   G(i, j) = max     
     G(i – 1, j) – e 

 
     V(i, j – 1) – d  
   H(i, j) = max     
     H(i, j – 1) – e 

 
Termination:  V(i, j) has the best alignment 

Time? 
Space? 



To generalize a bit… 

… think of how you would compute optimal alignment with 
this gap function 

….in time O(MN) 

γ(n) 



Bounded Dynamic Programming 

Assume we know that x and y are very similar 
 
Assumption:  # gaps(x, y)  < k(N)    
 

   xi  
 Then,  |  implies    | i – j | < k(N) 
    yj 

 
 
We can align x and y more efficiently: 
 

 Time, Space:   O(N × k(N))  << O(N2) 



Bounded Dynamic Programming 
Initialization: 

 F(i,0), F(0,j) undefined for i, j > k 
 
Iteration: 
 
For i = 1…M 
  For j = max(1, i – k)…min(N, i+k) 
 

   F(i – 1, j – 1)+ s(xi, yj) 
 F(i, j) = max  F(i, j – 1) – d, if j > i – k(N) 
   F(i – 1, j) – d, if j < i + k(N) 

 
Termination:  same 
 
Easy to extend to the affine gap case 
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Outline 

•  Linear-Space Alignment 

•  BLAST – local alignment search 

•  Ultra-fast alignment for (human) genome 
resequencing 



Linear-Space Alignment 



Subsequences and Substrings 

Definition  A string x’ is a substring of a string x, 
   if x = ux’v for some prefix string u and suffix string v 
    
   (similarly, x’ = xi…xj, for some 1 ≤ i ≤ j ≤ |x|) 

 
   A string x’ is a subsequence of a string x 

   if x’ can be obtained from x by deleting 0 or more letters 
 

   (x’ = xi1…xik, for some 1 ≤ i1 ≤ … ≤ ik ≤ |x|) 
 

   Note: a substring is always a subsequence 
 

  Example:  x = abracadabra 
    y = cadabr;  substring 
    z = brcdbr;  subseqence, not substring 



Hirschberg’s algortihm 

Given a set of strings x, y,…, a common subsequence is a string u that 
is a subsequence of all strings x, y, … 

•  Longest common subsequence 
§  Given strings x = x1 x2 … xM, y = y1 y2 … yN, 
§  Find longest common subsequence u = u1 … uk 

•  Algorithm: 
   F(i – 1, j) 

•  F(i, j)  = max  F(i, j – 1) 
   F(i – 1, j – 1) + [1, if xi = yj; 0 otherwise] 

•  Ptr(i, j)  = (same as in N-W) 

•  Termination:   trace back from Ptr(M, N), and prepend a letter to u whenever  
•  Ptr(i, j) = DIAG  and  F(i – 1, j – 1) < F(i, j) 

•  Hirschberg’s original algorithm solves this in linear space 



F(i,j) 

Introduction: Compute optimal score 

It is easy to compute F(M, N) in linear space 

Allocate ( column[1] ) 
Allocate ( column[2] ) 
 
For    i = 1….M 

 If   i > 1, then: 
  Free( column[ i – 2 ] ) 
  Allocate( column[ i ] ) 
 For   j = 1…N 
  F(i, j) = …  
  



Linear-space alignment 

To compute both the optimal score and the optimal alignment: 
 
Divide & Conquer approach: 
 
Notation: 
 

 xr, yr: reverse of x, y 
 E.g.  x  = accgg; 
  xr = ggcca 

 
 Fr(i, j): optimal score of aligning xr

1…xr
i  &  yr

1…yr
j 

      same as aligning xM-i+1…xM & yN-j+1…yN 



Linear-space alignment 

Lemma: (assume M is even) 
 

  F(M, N) = maxk=0…N( F(M/2, k) + Fr(M/2, N – k) ) 

x 

y 

M/2 

k* 

F(M/2, k) Fr(M/2, N – k) 

Example: 
    ACC-GGTGCCCAGGACTG--CAT 
    ACCAGGTG----GGACTGGGCAG 

 
k* = 8 



Linear-space alignment 

•  Now, using 2 columns of space, we can compute 
 for k = 1…M, F(M/2, k), Fr(M/2, N – k) 
  
 PLUS the backpointers 

x1 … xM/2 

y1 

xM 

yN 

x1 … xM/2+1 xM 

… 

y1 

yN 

… 



Linear-space alignment 

•  Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k) 

•  Also, we can trace the path exiting column M/2 from k*  

k* 
k*+1 

0     1     ……    M/2  
         M/2+1   ……  M   M+1 



Linear-space alignment 

•  Iterate this procedure to the left and right! 

N-k* 

M/2 M/2 

k* 



Linear-space alignment 

Hirschberg’s Linear-space algorithm: 
 
MEMALIGN(l, l’, r, r’):   (aligns xl…xl’ with yr…yr’) 
 
1.  Let h = ⎡(l’-l)/2⎤ 
2.  Find (in Time O((l’ – l) × (r’ – r)), Space O(r’ – r)) 

 the optimal path,  Lh, entering column h – 1, exiting column h 
 Let k1 = pos’n at column h – 2 where Lh enters 
  k2 = pos’n at column h + 1 where Lh exits 

 
3.  MEMALIGN(l, h – 2, r, k1) 

4.  Output Lh 

5.  MEMALIGN(h + 1, l’, k2, r’) 

Top level call: MEMALIGN(1, M, 1, N) 



Linear-space alignment 

Time, Space analysis of Hirschberg’s algorithm:  
To compute optimal path at middle column, 

 For box of size M × N, 
  Space:    2N 
  Time:   cMN,  for some constant c 

 
Then, left, right calls cost c( M/2 × k* + M/2 × (N – k*) ) = cMN/2 
 
All recursive calls cost  

 Total Time:  cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN) 
 

 Total Space: O(N) for computation, 
    O(N + M) to store the optimal alignment 


