Welcome to CS262: Computational Genomics

Instructor:

Serafim Batzoglou

<u>TA:</u>

Paul Chen

email: cs262-win2015-staff@lists.stanford.edu

Tuesdays & Thursdays 12:50-2:05pm Clark S361

http://cs262.stanford.edu

Goals of this course

- Introduction to Computational Biology & Genomics
 - Basic concepts and scientific questions
 - Why does it matter?
 - Basic biology for computer scientists
 - In-depth coverage of algorithmic techniques
 - Current active areas of research
- Useful algorithms
 - Dynamic programming
 - String algorithms
 - HMMs and other graphical models for sequence analysis

Topics in CS262

Part 1: Basic Algorithms

- Dynamic Programming & sequence alignment
- HMMs, CRFs & sequence modeling
- Sequence indexing; Burrows-Wheeler transform, De Brujin graphs

Part 2: Topics in computational genomics and areas of active research

- DNA sequencing and assembly
- Comparative genomics
- Human genome resequencing
 - Alignment
 - Compression
 - Human genome variation
- Cancer genomics
- Functional genomics
- Population genomics

Course responsibilities

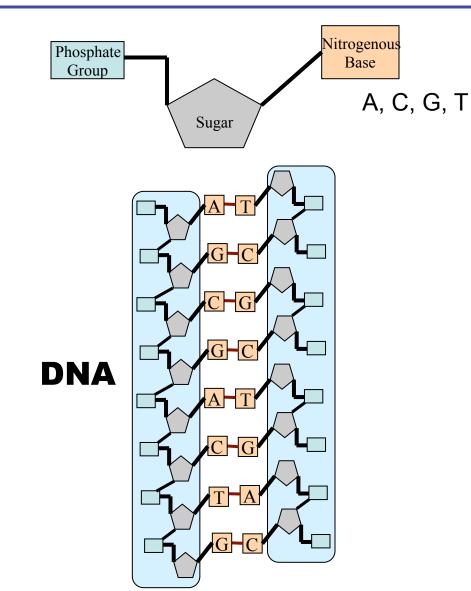
Homeworks

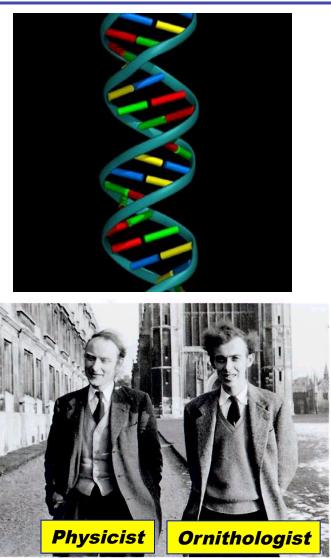
- 4 challenging problem sets, 4-5 problems/pset
 - Due at beginning of class
 - Up to 3 late days (24-hr periods) for the quarter
- Collaboration allowed please give credit
 - Teams of 2 or 3 students
 - Individual writeups
 - If individual (no team) then drop score of worst problem per problem set
- (Optional) Scribing
 - Due one week after the lecture, except special permission
 - Scribing grade replaces 2 lowest problems from all problem sets
 - First-come first-serve, email staff list to sign up

Reading material

- Main Reading:
 - Lecture notes
 - Papers
- Optional:
 - "Biological sequence analysis" by Durbin, Eddy, Krogh, Mitchison
 - Chapters 1-4, 6, 7-8, 9-10

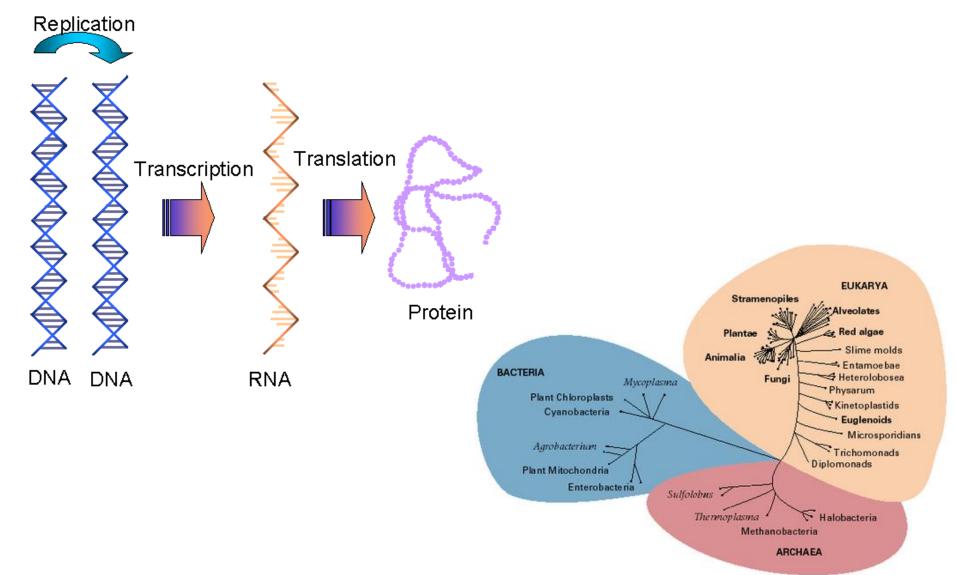
Birth of Molecular Biology





Courtesy of Cold Spring Harbor Laboratory Archives. Noncommercial, educational use only.

Genetics in the 20th Century



Human Genome Project

3 billion basepairs \$3 billion

1990: Start

2000: Bill Clinton: scientific discovery 2001: Draft

"most important in the 20th century"

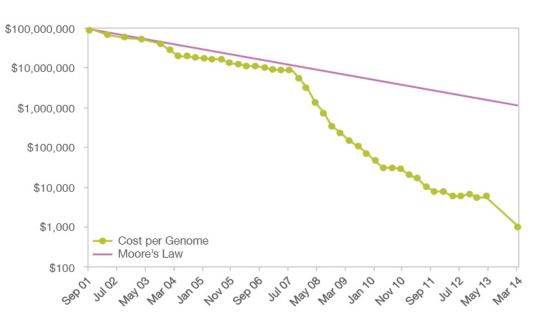
2003: Finished

now what?

Sequencing Growth

Cost of one human genome

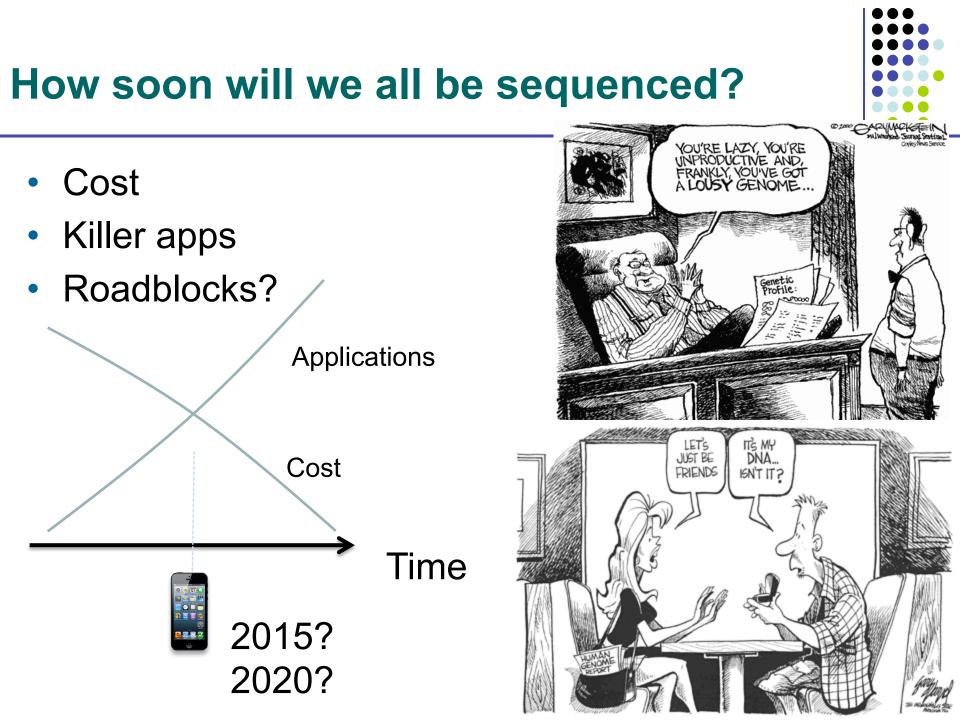
- 2004: \$30,000,000
- 2008: \$100,000
- 2010: \$10,000
- **2014**: "\$1,000"
- ???: \$300



How much would you pay for a smartphone?

Uses of Genomes

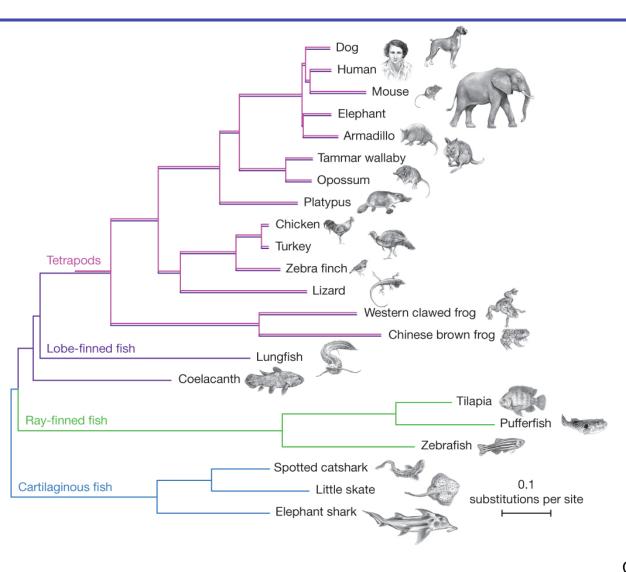
- Medicine
 - Prenatal/Mendelian diseases
 - Drug dosage (eg. Warfarin)
 - Disease risk
 - Diagnosis of infections
 - ...
- Ancestry
- Genealogy
- Nutrition?
- Psychology?
- Baby Engineering???...
- Ethical Issues



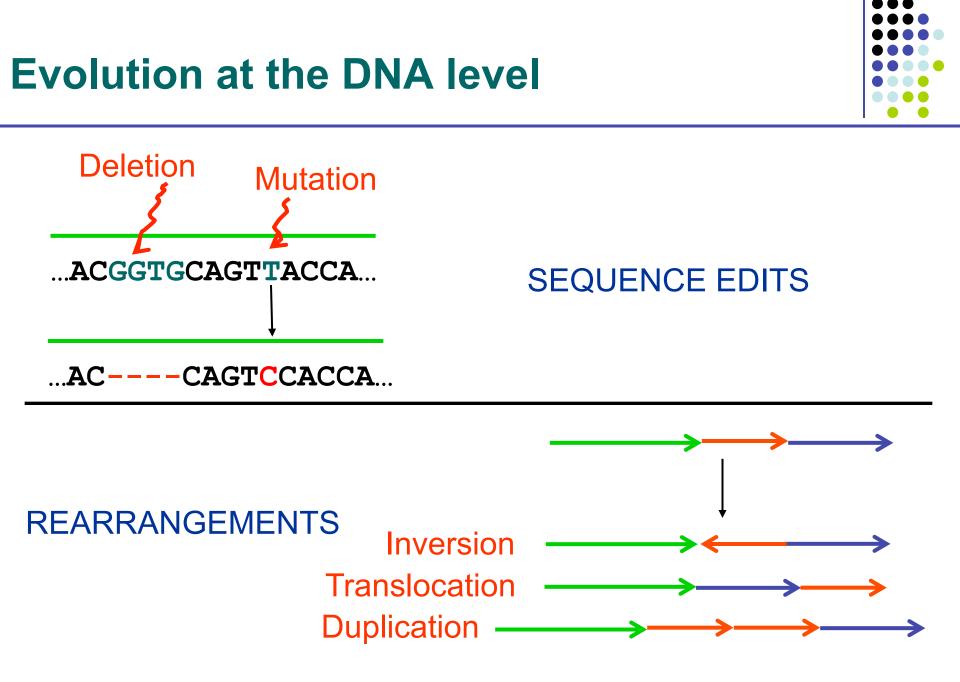
Intro to Biology

Sequence Alignment

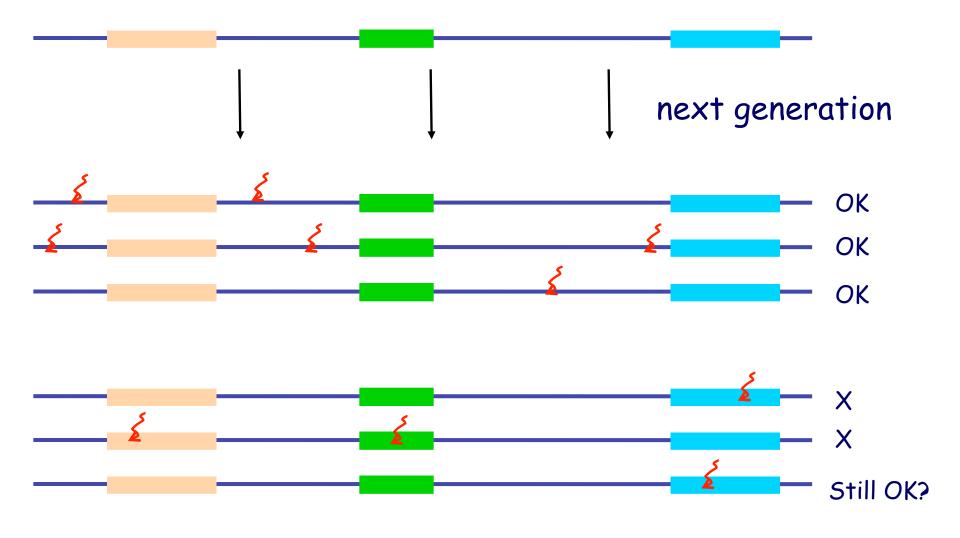
Evolution

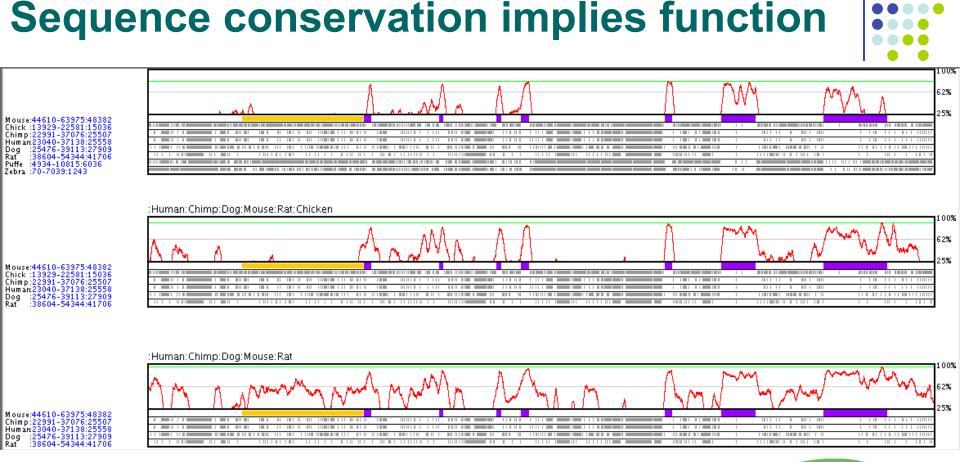


CT Amemiya *et al. Nature* **496**, 311-316 (2013) doi:10.1038/nature12027



Evolutionary Rates





Alignment is the key to

- Finding important regions
- Determining function
- Uncovering evolutionary events

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition

Given two strings $x = x_1 x_2 \dots x_M$, $y = y_1 y_2 \dots y_N$,

an <u>alignment</u> is an assignment of gaps to positions 0,..., N in x, and 0,..., N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence

What is a good alignment?

AGGCTAGTT, AGCGAAGTTT

AGGCTAGTT-AGCGAAGTTT 6 matches, 3 mismatches, 1 gap

AGGCTA-GTT-AG-CGAAGTTT 7 matches, 1 mismatch, 3 gaps

AGGC-TA-GTT-AG-CG-AAGTTT 7 matches, 0 mismatches, 5 gaps

Scoring Function

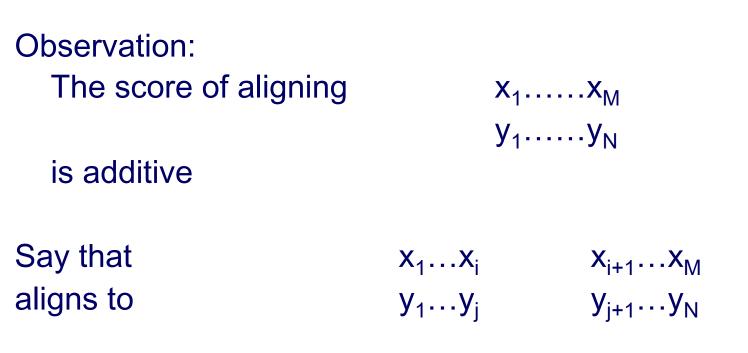
Sequence edite:

 Sequence e 	uns.	AGGCCTC	
 Mutations 	6	AGGACTC	
 Insertions 	;	AGGGCCTC	Alternative definition:
 Deletions 		AGG.CTC	minimal edit distance
<u>Scoring Functio</u> Match: Mismatch: Gap:	<u>on:</u> +m -s -d		"Given two strings x, y, find minimum # of edits (insertions, deletions, mutations) to transform one string to the other"

Score $F = (\# matches) \times m - (\# mismatches) \times s - (\# gaps) \times d$

How do we compute the best alignment?

Alignment is additive



The two scores add up:

F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

Dynamic Programming

- There are only a polynomial number of subproblems
 - Align $x_1...x_i$ to $y_1...y_j$
- Original problem is one of the subproblems
 - Align $x_1...x_M$ to $y_1...y_N$
- Each subproblem is easily solved from smaller subproblems
 - We will show next
- Then, we can apply Dynamic Programming!!!

Let F(i, j) = optimal score of aligning $x_1....x_i$ $y_1....y_j$

F is the DP "Matrix" or "Table"

"Memoization"

Dynamic Programming (cont'd)

Notice three possible cases:

1. x_i aligns to y_j x_1, \dots, x_{i-1} x_i y_1, \dots, y_{j-1} y_j

$$F(i, j) = F(i - 1, j - 1) + \begin{cases} m, \text{ if } x_i = y_j \\ -s, \text{ if not} \end{cases}$$

- 2. x_i aligns to a gap $x_1....x_{i-1}$ x_i $y_1....y_j$ -
- 3. y_j aligns to a gap x_1, \dots, x_i y_1, \dots, y_{j-1} y_j

F(i, j) = F(i - 1, j) - d

$$F(i, j) = F(i, j - 1) - d$$

Dynamic Programming (cont'd)

How do we know which case is correct?

Inductive assumption:

$$F(i, j - 1), F(i - 1, j), F(i - 1, j - 1)$$
 are optimal

Then,

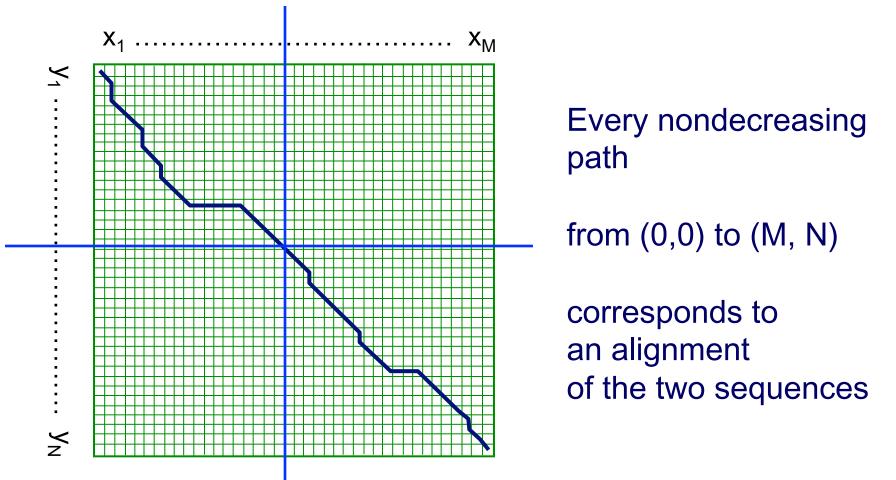
$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i - 1, j) - d \\ F(i, j - 1) - d \end{cases}$$

Where $s(x_i, y_j) = m$, if $x_i = y_j$; -s, if not

Example

x = AGTA**Procedure to output** y = ATA**Alignment** Follow the backpointers i = 0F(i,j) 1 2 3 4 • When diagonal, G Т Α Α OUTPUT x_i, y_i i = 0• When up, OUTPUT y_i Α 1 • When left, 2 Т OUTPUT x_i AGTA 3 A A-TA

The Needleman-Wunsch Matrix



An optimal alignment is composed of optimal subalignments

Initialization.

F(0, 0)	= 0
F(0, j)	= - j × d
F(i, 0)	= - i × d

Main Iteration. Filling-in partial alignments

For each
$$i = 1.....N$$

For each $j = 1....N$
 $F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) & [case 1] \\ F(i - 1, j) - d & [case 2] \\ F(i, j - 1) - d & [case 3] \end{cases}$
Ptr(i, j) =
$$\begin{cases} DIAG, & \text{if } [case 1] \\ LEFT, & \text{if } [case 2] \\ UP, & \text{if } [case 3] \end{cases}$$

3. <u>Termination.</u> F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal alignment

Performance

• Time:

O(NM)

• Space:

O(NM)

Later we will cover more efficient methods

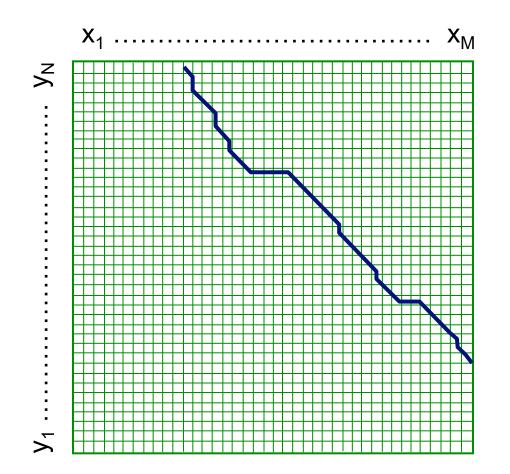
 Maybe it is OK to have an unlimited # of gaps in the beginning and end:

-----CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC

• Then, we don't want to penalize gaps in the ends

Different types of overlaps

The **Overlap Detection** variant



Changes:

- 1. Initialization For all i, j, F(i, 0) = 0F(0, j) = 0
- 2. <u>Termination</u> $F_{OPT} = max \begin{cases} max_i F(i, N) \\ max_j F(M, j) \end{cases}$

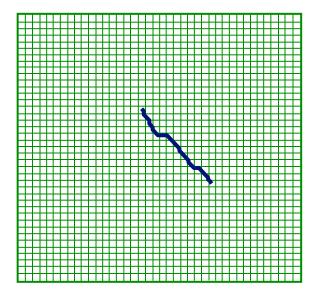
The local alignment problem

Given two strings

$$\mathbf{x} = \mathbf{x}_1 \dots \mathbf{x}_M,$$

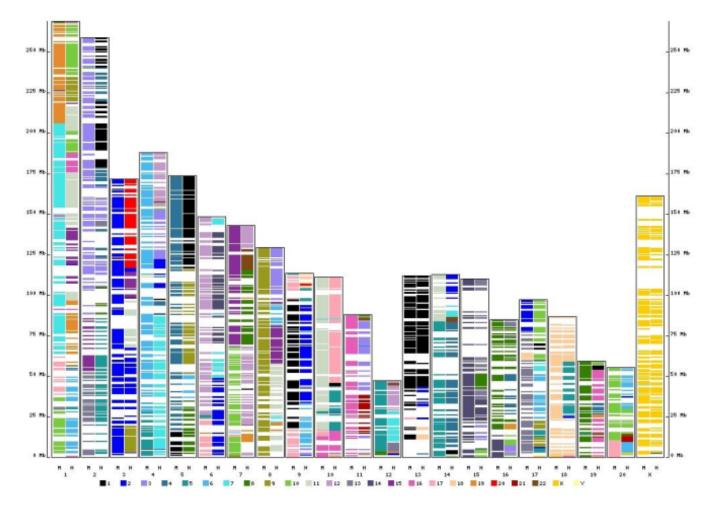
 $\mathbf{y} = \mathbf{y}_1 \dots \mathbf{y}_N$

Find substrings x', y' whose similarity (optimal global alignment value) is maximum



Why local alignment

Genes are shuffled between genomes



Cross-species genome similarity

- 98% of genes are conserved between any two mammals
- >70% average similarity in protein sequence

<pre>mus_a : GCTGACAATAGAGGGGCTGGCAGAGGGCTC</pre>	 6 57381/400001 6 78610/400001 6 112708/369938 6 36058/68174 6 atoh" entresidada 	nancer in 1, mouse,
<pre>fug_a : AGCGCTCGCGAGTCCCTGCCGTGTCC hum_a : AACACCATCATCACCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG mus_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG rat_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG</pre>	 @ 78659/400001 @ 112757/369938 @ 36084/68174 @ 57481/400001 @ 78708/400001 	ju fish

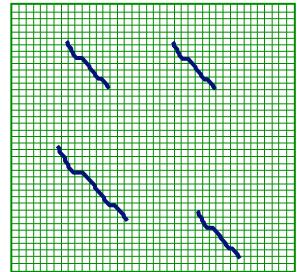
The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: F(0, j) = F(i, 0) = 0

$$\begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$$



The Smith-Waterman algorithm

Termination:

1. If we want the best local alignment...

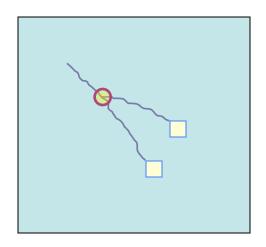
 $F_{OPT} = max_{i,j} F(i, j)$

Find F_{OPT} and trace back

- 2. If we want all local alignments scoring > t
 - ?? For all i, j find F(i, j) > t, and trace back?

Complicated by overlapping local alignments

Waterman–Eggert '87: find all non-overlapping local alignments with minimal recalculation of the DP matrix



Scoring the gaps more accurately

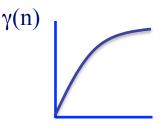
Current model:

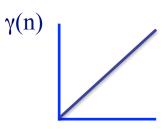
Gap of length n incurs penalty n×d

However, gaps usually occur in bunches

Concave gap penalty function $\gamma(n)$ (aka Convex - $\gamma(n)$):

$$\gamma(n)$$
:
for all n, $\gamma(n + 1) - \gamma(n) \le \gamma(n) - \gamma(n - 1)$





Convex gap dynamic programming

Initialization: same

Iteration:

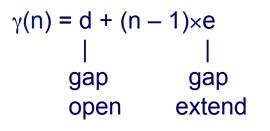
$$\begin{split} \mathsf{F}(\mathsf{i},\mathsf{j}) &= \max \begin{cases} \mathsf{F}(\mathsf{i}-1,\mathsf{j}-1) + \mathsf{s}(\mathsf{x}_\mathsf{i},\mathsf{y}_\mathsf{j}) \\ \max_{\mathsf{k}=0\ldots\mathsf{i}-1}\mathsf{F}(\mathsf{k},\mathsf{j}) - \gamma(\mathsf{i}-\mathsf{k}) \\ \max_{\mathsf{k}=0\ldots\mathsf{j}-1}\mathsf{F}(\mathsf{i},\mathsf{k}) - \gamma(\mathsf{j}-\mathsf{k}) \end{cases} \end{split}$$

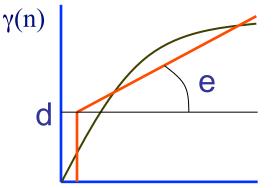
Termination: same

Running Time:O(N²M)Space:O(NM)

(assume N>M)

Compromise: <u>affine gaps</u>





To compute optimal alignment,

At position i, j, need to "remember" best score if gap is open best score if gap is not open

- F(i, j): score of alignment $x_1...x_i$ to $y_1...y_j$ <u>if</u> x_i aligns to y_j
- G(i, j): score **<u>if</u>** x_i aligns to a gap after y_i
- H(i, j): score **<u>if</u>** y_j aligns to a gap after x_i

V(i, j) = best score of alignment $x_1...x_i$ to $y_1...y_j$

Why do we need matrices F, G, H?

```
Because, perhaps
```

G(i, j) < V(i, j)

(it is best to align x_i to y_j if we were aligning only $x_1...x_i$ to $y_1...y_i$ and not the rest of x, y),

```
but on the contrary
```

G(i, j) - e > V(i, j) - d

(i.e., had we "fixed" our decision that x_i aligns to y_j , we could regret it at the next step when aligning $x_1...x_{i+1}$ to $y_1...y_j$)

Add -d G(i+1, j) = F(i, j) - dAdd -e G(i+1, j) = G(i, j) - e

Needleman-Wunsch with affine gaps

Initialization:

$$V(i, 0) = d + (i - 1) \times e$$

 $V(0, j) = d + (j - 1) \times e$

Iteration:

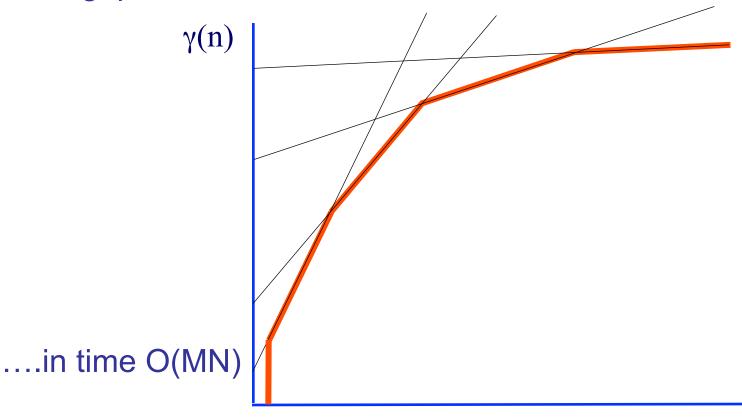
 $V(i, j) = \max\{F(i, j), G(i, j), H(i, j)\}$ $F(i, j) = V(i - 1, j - 1) + s(x_i, y_j)$ $G(i, j) = \max \begin{cases} V(i - 1, j) - d \\ G(i - 1, j) - e \end{cases}$ $H(i, j) = \max \begin{cases} V(i, j - 1) - d \\ H(i, j - 1) - e \end{cases}$

<u>Termination:</u> V(i, j) has the best alignment

Time? Space?

To generalize a bit...

... think of how you would compute optimal alignment with this gap function



Assume we know that x and y are very similar

Assumption: # gaps(x, y) < k(N)

Then,
$$x_i$$

 y_j y_j $|i-j| < k(N)$

We can align x and y more efficiently:

Time, Space: $O(N \times k(N)) << O(N^2)$

Bounded Dynamic Programming

Initialization:

F(i,0), F(0,j) undefined for i, j > k

Iteration:

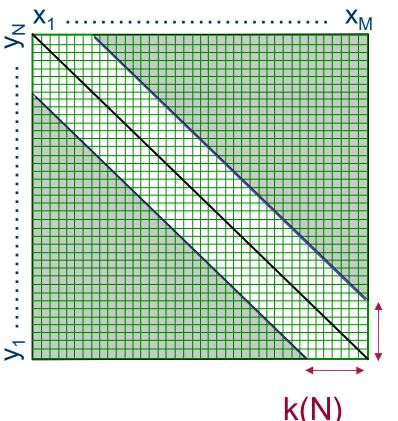
For i = 1...MFor j = max(1, i - k)...min(N, i+k)

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i, j - 1) - d, \text{ if } j > i - k(N) \\ F(i - 1, j) - d, \text{ if } j < i + k(N) \end{cases}$$

k(N)

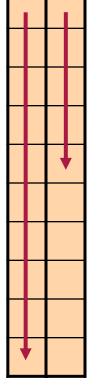
Termination: same

Easy to extend to the affine gap case



• BLAST – local alignment search

Ultra-fast alignment for (human) genome resequencing



<u>Definition</u> A string x' is a *substring* of a string x,

if x = ux'v for some prefix string u and suffix string v

(similarly, $x' = x_j \dots x_j$, for some $1 \le i \le j \le |x|$)

A string x' is a *subsequence* of a string x if x' can be obtained from x by deleting 0 or more letters

 $(x' = x_{i1}...x_{ik}, \text{ for some } 1 \le i_1 \le ... \le i_k \le |x|)$

Note: a substring is always a subsequence

Exam	<u>ple:</u>	x = abracadabra	
		y = cadabr;	substring
	2	z = brcdbr;	subseqence, not substring

Hirschberg's algortihm

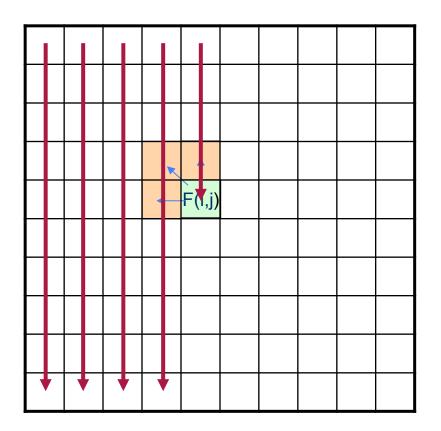
Given a set of strings x, y,..., a *common subsequence* is a string u that is a subsequence of all strings x, y, ...

- Longest common subsequence
 - Given strings $x = x_1 x_2 \dots x_M$, $y = y_1 y_2 \dots y_N$,
 - Find longest common subsequence u = u₁ ... u_k
- Algorithm:

•
$$F(i, j) = max \begin{cases} F(i - 1, j) \\ F(i, j - 1) \\ F(i - 1, j - 1) + [1, if x_i = y_j; 0 \text{ otherwise}] \end{cases}$$

- Ptr(i, j) = (same as in N-W)
- <u>Termination</u>: trace back from Ptr(M, N), and prepend a letter to u whenever
 Ptr(i, j) = DIAG <u>and</u> F(i 1, j 1) < F(i, j)
- Hirschberg's original algorithm solves this in linear space

It is easy to compute F(M, N) in linear space



Allocate (column[1]) Allocate (column[2])

For i = 1....M If i > 1, then: Free(column[i - 2]) Allocate(column[i]) For j = 1...N F(i, j) = ...

To compute both the optimal score **<u>and</u>** the optimal alignment:

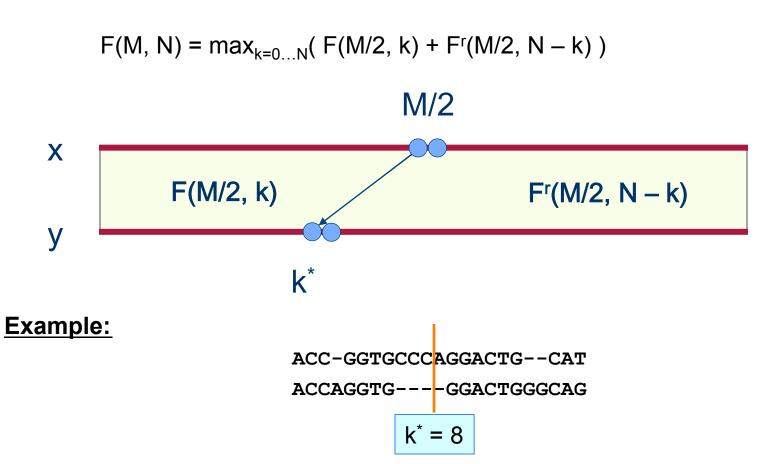
Divide & Conquer approach:

Notation:

x^r, y^r: reverse of x, y
E.g. x = accgg;
x^r = ggcca

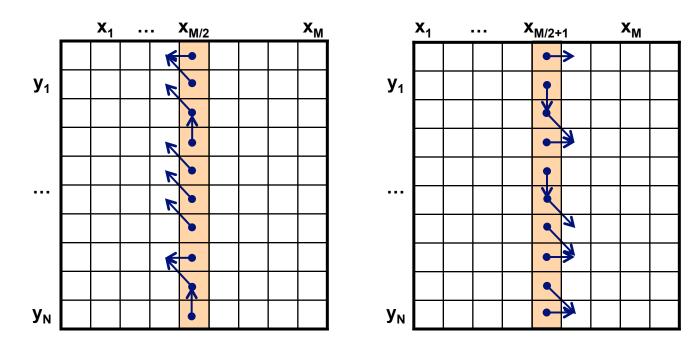
F^r(i, j): optimal score of aligning $x_{1}^{r}...x_{i}^{r} \& y_{1}^{r}...y_{j}^{r}$ same as aligning $x_{M-i+1}...x_{M} \& y_{N-j+1}...y_{N}$

Lemma: (assume M is even)

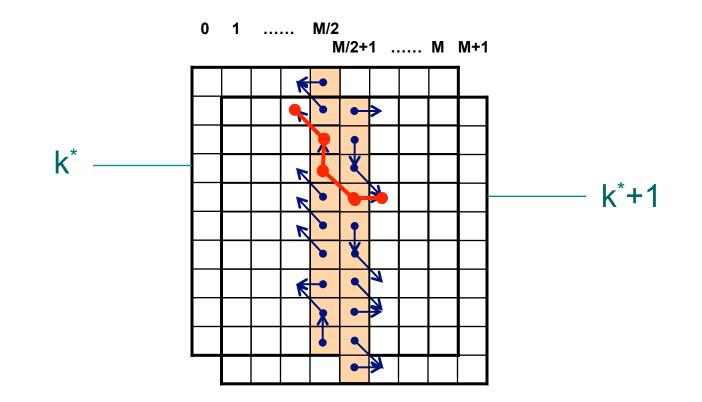


 Now, using 2 columns of space, we can compute for k = 1...M, F(M/2, k), F^r(M/2, N – k)

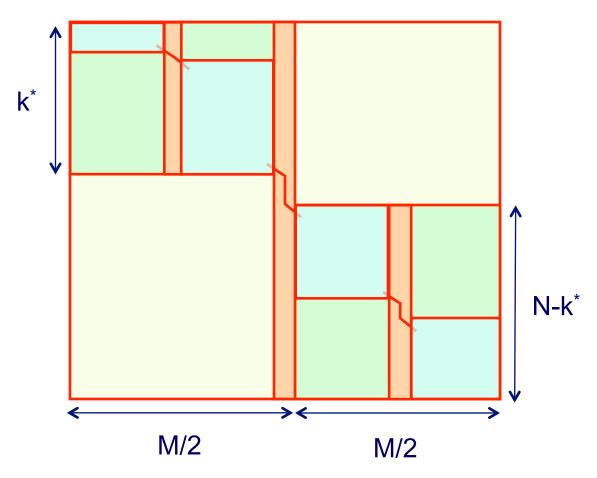
PLUS the backpointers



- Now, we can find k^{*} maximizing F(M/2, k) + F^r(M/2, N-k)
- Also, we can trace the path exiting column M/2 from k^{*}



Iterate this procedure to the left and right!



Hirschberg's Linear-space algorithm:

 $MEMALIGN(I, I', r, r'): \qquad (aligns x_1...x_{I'} with y_r...y_{r'})$

- 1. Let h = [(l'-l)/2]
- 2. Find (in Time O((l' l) × (r' r)), Space O(r' r)) the optimal path, L_h, entering column h – 1, exiting column h Let k₁ = pos'n at column h – 2 where L_h enters k₂ = pos'n at column h + 1 where L_h exits
- 3. MEMALIGN(I, h 2, r, k_1)
- 4. Output L_h
- 5. MEMALIGN(h + 1, l', k_2 , r')

Top level call: MEMALIGN(1, M, 1, N)

Time, Space analysis of Hirschberg's algorithm:

To compute optimal path at middle column,

For box of size $M \times N$,

Space:2NTime:cMN, for some constant c

Then, left, right calls cost c($M/2 \times k^* + M/2 \times (N - k^*)$) = cMN/2

All recursive calls cost

Total Time: $cMN + cMN/2 + cMN/4 + \dots = 2cMN = O(MN)$

Total Space: O(N) for computation, O(N + M) to store the optimal alignment