
Welcome to
CS262: Computational

Genomics

Instructor:

Serafim Batzoglou

TA:

Paul Chen

email: cs262-win2015-staff@lists.stanford.edu

Tuesdays & Thursdays 12:50-2:05pm
Clark S361

http://cs262.stanford.edu

Goals of this course

•  Introduction to Computational Biology & Genomics

§  Basic concepts and scientific questions

§  Why does it matter?

§  Basic biology for computer scientists

§  In-depth coverage of algorithmic techniques

§  Current active areas of research

•  Useful algorithms

§  Dynamic programming

§  String algorithms

§  HMMs and other graphical models for sequence analysis

Topics in CS262

Part 1: Basic Algorithms

§  Dynamic Programming & sequence alignment
§  HMMs, CRFs & sequence modeling
§  Sequence indexing; Burrows-Wheeler transform, De Brujin graphs

Part 2: Topics in computational genomics and areas of active research

§  DNA sequencing and assembly
§  Comparative genomics
§  Human genome resequencing

•  Alignment
•  Compression
•  Human genome variation

§  Cancer genomics
§  Functional genomics
§  Population genomics

Course responsibilities

•  Homeworks

§  4 challenging problem sets, 4-5 problems/pset
•  Due at beginning of class
•  Up to 3 late days (24-hr periods) for the quarter

§  Collaboration allowed – please give credit
•  Teams of 2 or 3 students
•  Individual writeups
•  If individual (no team) then drop score of worst problem per problem set

•  (Optional) Scribing

§  Due one week after the lecture, except special permission

§  Scribing grade replaces 2 lowest problems from all problem sets
•  First-come first-serve, email staff list to sign up

Reading material

•  Main Reading:
§  Lecture notes
§  Papers

•  Optional:
§  “Biological sequence analysis” by Durbin, Eddy, Krogh, Mitchison

•  Chapters 1-4, 6, 7-8, 9-10

Birth of Molecular Biology

T

C

A

C

T

G

G

C

G

A

G

T

C

A

G

C

DNA

Phosphate
Group

Sugar

Nitrogenous
Base

A, C, G, T

Physicist Ornithologist

Genetics in the 20th Century

Human Genome Project

1990: Start

2000: Bill Clinton:
2001: Draft

2003: Finished $3 billion
3 billion basepairs

“most	 important	
scien.fic	 discovery	
in	 the	 20th	 century”	

now what?

Sequencing Growth

Cost of one human genome
•  2004: $30,000,000
•  2008: $100,000
•  2010: $10,000
•  2014: “$1,000”
•  ???: $300

How much would you
pay for a smartphone?

•  Medicine
§  Prenatal/Mendelian diseases

§  Drug dosage (eg. Warfarin)
§  Disease risk
§  Diagnosis of infections
§  …

•  Ancestry
•  Genealogy
•  Nutrition?
•  Psychology?
•  Baby Engineering???...

•  Ethical Issues

Uses of Genomes

•  Cost
•  Killer apps
•  Roadblocks?

How soon will we all be sequenced?

Time

2015?
2020?

Cost

Applications

Intro to Biology

Sequence Alignment

Evolution

CT Amemiya et al. Nature 496, 311-316 (2013)
doi:10.1038/nature12027

Evolution at the DNA level

…ACGGTGCAGTTACCA…

…AC----CAGTCCACCA…

Mutation

SEQUENCE EDITS

REARRANGEMENTS

Deletion

Inversion
Translocation
Duplication

Evolutionary Rates

OK

OK

OK

X
X

Still OK?

next generation

Sequence conservation implies function

Alignment is the key to
•  Finding important regions
•  Determining function
•  Uncovering evolutionary events

Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
 Given two strings x = x1x2...xM, y = y1y2…yN,

 an alignment is an assignment of gaps to positions
 0,…, N in x, and 0,…, N in y, so as to line up each
 letter in one sequence with either a letter, or a gap
 in the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

What is a good alignment?

AGGCTAGTT,
AGCGAAGTTT

AGGCTAGTT- 6 matches, 3 mismatches, 1 gap
AGCGAAGTTT

AGGCTA-GTT- 7 matches, 1 mismatch, 3 gaps
AG-CGAAGTTT

AGGC-TA-GTT- 7 matches, 0 mismatches, 5 gaps
AG-CG-AAGTTT

Scoring Function

•  Sequence edits:
 AGGCCTC

§  Mutations AGGACTC

§  Insertions AGGGCCTC

§  Deletions AGG . CTC

Scoring Function:

 Match: +m
 Mismatch: -s
 Gap: -d

 Score F = (# matches) × m - (# mismatches) × s – (#gaps) × d

Alternative definition:

minimal edit distance

“Given two strings x, y,
find minimum # of edits
(insertions, deletions,

mutations) to transform
one string to the other”

How do we compute the best alignment?

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

A
G
T
G
A
C
C
T
G
G
G
A
A
G
A
C
C
C
T
G
A
C
C
C
T
G
G
G
T
C
A
C
A
A
A
A
C
T
C

Too many possible
alignments:

 >> 2N

(exercise)

Alignment is additive

Observation:
 The score of aligning x1……xM
 y1……yN
 is additive

Say that x1…xi xi+1…xM
aligns to y1…yj yj+1…yN

The two scores add up:

 F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

Dynamic Programming

•  There are only a polynomial number of subproblems
§  Align x1…xi to y1…yj

•  Original problem is one of the subproblems
§  Align x1…xM to y1…yN

•  Each subproblem is easily solved from smaller subproblems
§  We will show next

•  Then, we can apply Dynamic Programming!!!

Let
 F(i, j) = optimal score of aligning
 x1……xi

 y1……yj

F is the DP “Matrix” or “Table”

“Memoization”

Dynamic Programming (cont’d)

Notice three possible cases:

1.  xi aligns to yj

 x1……xi-1 xi
 y1……yj-1 yj

2. xi aligns to a gap

 x1……xi-1 xi
 y1……yj -

3.  yj aligns to a gap

 x1……xi -
 y1……yj-1 yj

 m, if xi = yj
F(i, j) = F(i – 1, j – 1) +

 -s, if not

F(i, j) = F(i – 1, j) – d

F(i, j) = F(i, j – 1) – d

Dynamic Programming (cont’d)

How do we know which case is correct?

Inductive assumption:

 F(i, j – 1), F(i – 1, j), F(i – 1, j – 1) are optimal

Then,

 F(i – 1, j – 1) + s(xi, yj)
 F(i, j) = max F(i – 1, j) – d
 F(i, j – 1) – d

Where s(xi, yj) = m, if xi = yj; -s, if not

G
 -

A G T A

0 -1 -2 -3 -4

A -1 1 0 -1 -2

T -2 0 0 1 0

A -3 -1 -1 0 2

F(i,j) i = 0 1 2 3 4

Example

x = AGTA m = 1
y = ATA s = -1

 d = -1

j = 0

1
2

3

F(1, 1) =
max{F(0,0) + s(A, A),
 F(0, 1) – d,
 F(1, 0) – d} =

max{0 + 1,
 -1 – 1,
 -1 – 1} = 1

A
A

T
T

A
A

Procedure to output
Alignment

•  Follow the backpointers

•  When diagonal,
OUTPUT xi, yj

•  When up,
OUTPUT yj

•  When left,
OUTPUT xi

The Needleman-Wunsch Matrix

x1 ……………………………… xM

y
1 …

…
…

…
…

…
…

…
…

…
…

…
 y

N

Every nondecreasing
path

from (0,0) to (M, N)

corresponds to
an alignment
of the two sequences

An optimal alignment is composed
of optimal subalignments

The Needleman-Wunsch Algorithm

Initialization.
F(0, 0) = 0
F(0, j) = - j × d
F(i, 0) = - i × d

Main Iteration. Filling-in partial alignments

For each i = 1……M
 For each j = 1……N
 F(i – 1,j – 1) + s(xi, yj) [case 1]
 F(i, j) = max F(i – 1, j) – d [case 2]
 F(i, j – 1) – d [case 3]

 DIAG, if [case 1]
 Ptr(i, j) = LEFT, if [case 2]

 UP, if [case 3]

3.  Termination. F(M, N) is the optimal score, and

 from Ptr(M, N) can trace back optimal alignment

Performance

•  Time:
 O(NM)

•  Space:
 O(NM)

•  Later we will cover more efficient methods

A variant of the basic algorithm:

•  Maybe it is OK to have an unlimited # of gaps in the
beginning and end:

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
 ||||||| |||| | || ||
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

•  Then, we don’t want to penalize gaps in the ends

Different types of overlaps

Example:
2 overlapping“reads” from a
sequencing project

Example:
Search for a mouse gene
within a human chromosome

The Overlap Detection variant

Changes:

1.  Initialization

For all i, j,
 F(i, 0) = 0
 F(0, j) = 0

2.  Termination

 maxi F(i, N)
FOPT = max

 maxj F(M, j)

x1 ……………………………… xM

y 1
 …

…
…

…
…

…
…

…
…

…
…

…
 y

N

The local alignment problem

Given two strings x = x1……xM,
 y = y1……yN

Find substrings x’, y’ whose similarity

 (optimal global alignment value)
 is maximum

 x = aaaacccccggggtta
 y = ttcccgggaaccaacc

Why local alignment

•  Genes are shuffled between genomes

Cross-species genome similarity

•  98% of genes are conserved between any two mammals
•  >70% average similarity in protein sequence

hum_a : GTTGACAATAGAGGGTCTGGCAGAGGCTC--------------------- @ 57331/400001
mus_a : GCTGACAATAGAGGGGCTGGCAGAGGCTC--------------------- @ 78560/400001
rat_a : GCTGACAATAGAGGGGCTGGCAGAGACTC--------------------- @ 112658/369938
fug_a : TTTGTTGATGGGGAGCGTGCATTAATTTCAGGCTATTGTTAACAGGCTCG @ 36008/68174

hum_a : CTGGCCGCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 57381/400001
mus_a : CTGGCCCCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 78610/400001
rat_a : CTGGCCCCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 112708/369938
fug_a : TGGGCCGAGGTGTTGGATGGCCTGAGTGAAGCACGCGCTGTCAGCTGGCG @ 36058/68174

hum_a : AGCGCACTCTCCTTTCAGGCAGCTCCCCGGGGAGCTGTGCGGCCACATTT @ 57431/400001
mus_a : AGCGCACTCG-CTTTCAGGCCGCTCCCCGGGGAGCTGAGCGGCCACATTT @ 78659/400001
rat_a : AGCGCACTCG-CTTTCAGGCCGCTCCCCGGGGAGCTGCGCGGCCACATTT @ 112757/369938
fug_a : AGCGCTCGCG------------------------AGTCCCTGCCGTGTCC @ 36084/68174

hum_a : AACACCATCATCACCCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 57481/400001
mus_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 78708/400001
rat_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 112806/369938
fug_a : CCGAGGACCCTGA------------------------------------- @ 36097/68174

“atoh” enhancer in
human, mouse,
rat, fugu fish

The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: F(0, j) = F(i, 0) = 0

 0

Iteration: F(i, j) = max F(i – 1, j) – d
 F(i, j – 1) – d
 F(i – 1, j – 1) + s(xi, yj)

The Smith-Waterman algorithm

Termination:

1.  If we want the best local alignment…

 FOPT = maxi,j F(i, j)

 Find FOPT and trace back

2.  If we want all local alignments scoring > t

?? For all i, j find F(i, j) > t, and trace back?

Complicated by overlapping local alignments

Waterman–Eggert ’87: find all non-overlapping local alignments with

 minimal recalculation of the DP matrix

Scoring the gaps more accurately

Current model:

 Gap of length n
 incurs penalty n×d

However, gaps usually occur in bunches

Concave gap penalty function γ(n)
(aka Convex -γ(n)):

 γ(n):
 for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1)

γ(n)

γ(n)

Convex gap dynamic programming

Initialization: same

Iteration:

 F(i – 1, j – 1) + s(xi, yj)
 F(i, j) = max maxk=0…i-1F(k, j) – γ(i – k)
 maxk=0…j-1F(i, k) – γ(j – k)

Termination: same

Running Time: O(N2M) (assume N>M)
Space: O(NM)

Compromise: affine gaps

γ(n) = d + (n – 1)×e
 | |
 gap gap
 open extend

To compute optimal alignment,

At position i, j, need to “remember” best score if gap is open

 best score if gap is not open

F(i, j): score of alignment x1…xi to y1…yj

 if xi aligns to yj

G(i, j): score if xi aligns to a gap after yj
H(i, j): score if yj aligns to a gap after xi

V(i, j) = best score of alignment x1…xi to y1…yj

d
e

γ(n)

Needleman-Wunsch with affine gaps

Why do we need matrices F, G, H?

•  xi aligns to yj

 x1……xi-1 xi xi+1

 y1……yj-1 yj -

•  xi aligns to a gap after yj

 x1……xi-1 xi xi+1

 y1……yj …- -

Add -d

Add -e

G(i+1, j) = F(i, j) – d

G(i+1, j) = G(i, j) – e

Because, perhaps

G(i, j) < V(i, j)

(it is best to align xi to yj if we were aligning
only x1…xi to y1…yj and not the rest of x, y),

but on the contrary

G(i, j) – e > V(i, j) – d

(i.e., had we “fixed” our decision that xi aligns
to yj, we could regret it at the next step when
aligning x1…xi+1 to y1…yj)

Needleman-Wunsch with affine gaps

Initialization: V(i, 0) = d + (i – 1)×e
 V(0, j) = d + (j – 1)×e

Iteration:

 V(i, j) = max{ F(i, j), G(i, j), H(i, j) }

 F(i, j) = V(i – 1, j – 1) + s(xi, yj)

 V(i – 1, j) – d
 G(i, j) = max
 G(i – 1, j) – e

 V(i, j – 1) – d
 H(i, j) = max
 H(i, j – 1) – e

Termination: V(i, j) has the best alignment

Time?
Space?

To generalize a bit…

… think of how you would compute optimal alignment with
this gap function

….in time O(MN)

γ(n)

Bounded Dynamic Programming

Assume we know that x and y are very similar

Assumption: # gaps(x, y) < k(N)

 xi
 Then, | implies | i – j | < k(N)
 yj

We can align x and y more efficiently:

 Time, Space: O(N × k(N)) << O(N2)

Bounded Dynamic Programming
Initialization:

 F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…M
 For j = max(1, i – k)…min(N, i+k)

 F(i – 1, j – 1)+ s(xi, yj)
 F(i, j) = max F(i, j – 1) – d, if j > i – k(N)
 F(i – 1, j) – d, if j < i + k(N)

Termination: same

Easy to extend to the affine gap case

x1 ………………………… xM

y 1
 …

…
…

…
…

…
…

…
…

…
 y

N

k(N)

Outline

•  Linear-Space Alignment

•  BLAST – local alignment search

•  Ultra-fast alignment for (human) genome
resequencing

Linear-Space Alignment

Subsequences and Substrings

Definition A string x’ is a substring of a string x,
 if x = ux’v for some prefix string u and suffix string v

 (similarly, x’ = xi…xj, for some 1 ≤ i ≤ j ≤ |x|)

 A string x’ is a subsequence of a string x

 if x’ can be obtained from x by deleting 0 or more letters

 (x’ = xi1…xik, for some 1 ≤ i1 ≤ … ≤ ik ≤ |x|)

 Note: a substring is always a subsequence

 Example: x = abracadabra
 y = cadabr; substring
 z = brcdbr; subseqence, not substring

Hirschberg’s algortihm

Given a set of strings x, y,…, a common subsequence is a string u that
is a subsequence of all strings x, y, …

•  Longest common subsequence
§  Given strings x = x1 x2 … xM, y = y1 y2 … yN,
§  Find longest common subsequence u = u1 … uk

•  Algorithm:
 F(i – 1, j)

•  F(i, j) = max F(i, j – 1)
 F(i – 1, j – 1) + [1, if xi = yj; 0 otherwise]

•  Ptr(i, j) = (same as in N-W)

•  Termination: trace back from Ptr(M, N), and prepend a letter to u whenever
•  Ptr(i, j) = DIAG and F(i – 1, j – 1) < F(i, j)

•  Hirschberg’s original algorithm solves this in linear space

F(i,j)

Introduction: Compute optimal score

It is easy to compute F(M, N) in linear space

Allocate (column[1])
Allocate (column[2])

For i = 1….M

 If i > 1, then:
 Free(column[i – 2])
 Allocate(column[i])
 For j = 1…N
 F(i, j) = …

Linear-space alignment

To compute both the optimal score and the optimal alignment:

Divide & Conquer approach:

Notation:

 xr, yr: reverse of x, y
 E.g. x = accgg;
 xr = ggcca

 Fr(i, j): optimal score of aligning xr

1…xr
i & yr

1…yr
j

 same as aligning xM-i+1…xM & yN-j+1…yN

Linear-space alignment

Lemma: (assume M is even)

 F(M, N) = maxk=0…N(F(M/2, k) + Fr(M/2, N – k))

x

y

M/2

k*

F(M/2, k) Fr(M/2, N – k)

Example:
 ACC-GGTGCCCAGGACTG--CAT
 ACCAGGTG----GGACTGGGCAG

k* = 8

Linear-space alignment

•  Now, using 2 columns of space, we can compute
 for k = 1…M, F(M/2, k), Fr(M/2, N – k)

 PLUS the backpointers

x1 … xM/2

y1

xM

yN

x1 … xM/2+1 xM

…

y1

yN

…

Linear-space alignment

•  Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)

•  Also, we can trace the path exiting column M/2 from k*

k*
k*+1

0 1 …… M/2
 M/2+1 …… M M+1

Linear-space alignment

•  Iterate this procedure to the left and right!

N-k*

M/2 M/2

k*

Linear-space alignment

Hirschberg’s Linear-space algorithm:

MEMALIGN(l, l’, r, r’): (aligns xl…xl’ with yr…yr’)

1.  Let h = ⎡(l’-l)/2⎤
2.  Find (in Time O((l’ – l) × (r’ – r)), Space O(r’ – r))

 the optimal path, Lh, entering column h – 1, exiting column h
 Let k1 = pos’n at column h – 2 where Lh enters
 k2 = pos’n at column h + 1 where Lh exits

3. MEMALIGN(l, h – 2, r, k1)

4. Output Lh

5.  MEMALIGN(h + 1, l’, k2, r’)

Top level call: MEMALIGN(1, M, 1, N)

Linear-space alignment

Time, Space analysis of Hirschberg’s algorithm:
To compute optimal path at middle column,

 For box of size M × N,
 Space: 2N
 Time: cMN, for some constant c

Then, left, right calls cost c(M/2 × k* + M/2 × (N – k*)) = cMN/2

All recursive calls cost

 Total Time: cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN)

 Total Space: O(N) for computation,
 O(N + M) to store the optimal alignment

