Welcome to
 CS262: Computational Genomics

Instructor:

Serafim Batzoglou

TA:

Paul Chen
email: cs262-win2015-staff@lists.stanford.edu
Tuesdays \& Thursdays 12:50-2:05pm Clark S361
http://cs262.stanford.edu

Goals of this course

- Introduction to Computational Biology \& Genomics
- Basic concepts and scientific questions
- Why does it matter?
- Basic biology for computer scientists
- In-depth coverage of algorithmic techniques
- Current active areas of research
- Useful algorithms
- Dynamic programming
- String algorithms
- HMMs and other graphical models for sequence analysis

Topics in CS262

Part 1: Basic Algorithms

- Dynamic Programming \& sequence alignment
- HMMs, CRFs \& sequence modeling
- Sequence indexing; Burrows-Wheeler transform, De Brujin graphs

Part 2: Topics in computational genomics and areas of active research

- DNA sequencing and assembly
- Comparative genomics
- Human genome resequencing
- Alignment
- Compression
- Human genome variation
- Cancer genomics
- Functional genomics
- Population genomics

Course responsibilities

- Homeworks
- 4 challenging problem sets, 4-5 problems/pset
- Due at beginning of class
- Up to 3 late days (24-hr periods) for the quarter
- Collaboration allowed - please give credit
- Teams of 2 or 3 students
- Individual writeups
- If individual (no team) then drop score of worst problem per problem set
- (Optional) Scribing
- Due one week after the lecture, except special permission
- Scribing grade replaces 2 lowest problems from all problem sets
- First-come first-serve, email staff list to sign up

Reading material

- Main Reading:
- Lecture notes
- Papers
- Optional:
- "Biological sequence analysis" by Durbin, Eddy, Krogh, Mitchison
- Chapters 1-4, 6, 7-8, 9-10

Birth of Molecular Biology

Genetics in the $20^{\text {th }}$ Century

Replication

Human Genome Project

3 billion basepairs
\$3 billion

now what?

Sequencing Growth

Cost of one human genome

- 2004: \$30,000,000
- 2008: \$100,000
- 2010:
- 2014:
- ???:
\$10,000 " $\$ 1,000$ "
\$300

How much would you pay for a smartphone?

Uses of Genomes

23andMe

- Medicine
- Prenatal/Mendelian diseases
- Drug dosage (eg. Warfarin)
- Disease risk
- Diagnosis of infections
- ...
- Ancestry
- Genealogy
- Nutrition?
- Psychology?
- Baby Engineering???...
- Ethical Issues
bino

How soon will we all be sequenced?

- Cost
- Killer apps
- Roadblocks?

Intro to Biology

Sequence Alignment

Evolution

CT Amemiya et al. Nature 496, 311-316 (2013) doi:10.1038/nature12027

Evolution at the DNA level

...ACGGTGCAGTTACCA...

SEQUENCE EDITS

...AC----CAGTCCACCA...

REARRANGEMENTS
Inversion
Translocation
Duplication

Evolutionary Rates

Sequence conservation implies function

Human:Chimp:Dog:Mouse:Rat:Chicken

Human:Chimp:Dog:Mouse:Rat

Alignment is the key to

- Finding important regions
- Determining function
- Uncovering evolutionary events

Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
 TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings $\quad x=x_{1} x_{2} \ldots x_{M}, \quad y=y_{1} y_{2} \ldots y_{N}$,
an alignment is an assignment of gaps to positions $0, \ldots, N$ in x, and $0, \ldots, N$ in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence

What is a good alignment?

AGGCTAGTT, AGCGAAGTTT

AGGCTAGTT-
AGCGAAGTTT

AGGCTA-GTT-
AG-CGAAGTTT

AGGC-TA-GTT-
AG-CG-AAGTTT

6 matches, 3 mismatches, 1 gap

7 matches, 1 mismatch, 3 gaps

7 matches, 0 mismatches, 5 gaps

Scoring Function

- Sequence edits:

AGGCCTC

- Mutations

AGGACTC

- Insertions

AGGGCCTC
AGG . CTC

Scoring Function:

Match: $\quad+\mathrm{m}$
Mismatch: -s
Gap: -d

Alternative definition:

minimal edit distance
"Given two strings x, y, find minimum \# of edits (insertions, deletions, mutations) to transform one string to the other"

Score F = (\# matches) $\times \mathrm{m}-(\#$ mismatches $) \times \mathrm{s}-(\# g a p s) \times \mathrm{d}$

How do we compute the best alignment?

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

Too many possible alignments:

$$
\gg 2^{\mathrm{N}}
$$

(exercise)

Alignment is additive

Observation:
The score of aligning

$$
\begin{aligned}
& x_{1} \ldots \ldots x_{M} \\
& y_{1} \ldots \ldots y_{N}
\end{aligned}
$$

is additive

Say that aligns to

$$
\begin{array}{ll}
x_{1} \ldots x_{i} & x_{i+1} \cdots x_{M} \\
y_{1} \ldots y_{j} & y_{j+1} \cdots y_{N}
\end{array}
$$

The two scores add up:

$$
F(x[1: M], y[1: N])=F(x[1: i], y[1: j])+F(x[i+1: M], y[j+1: N])
$$

Dynamic Programming

- There are only a polynomial number of subproblems
- Align $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}$ to $\mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{j}}$
- Original problem is one of the subproblems
- Align $x_{1} \ldots x_{M}$ to $y_{1} \ldots y_{N}$
- Each subproblem is easily solved from smaller subproblems
- We will show next
- Then, we can apply Dynamic Programming!!!

Let

$$
F(\mathrm{i}, \mathrm{j})=\text { optimal score of aligning }
$$

$x_{1} \ldots . . x_{i}$
$y_{1} \ldots \ldots y_{j}$

F is the DP "Matrix" or "Table"
"Memoization"

Dynamic Programming (cont'd)

Notice three possible cases:

1. x_{i} aligns to y_{j}
$x_{1} \ldots \ldots x_{i-1} \quad x_{i}$
$y_{1} \ldots \ldots y_{j-1} \quad y_{j}$

$$
F(i, j)=F(i-1, j-1)+\left\{\begin{array}{l}
m, \text { if } x_{i}=y_{j} \\
-s, \text { if not }
\end{array}\right.
$$

2. x_{i} aligns to a gap

$$
\begin{array}{ll}
x_{1} \ldots \ldots x_{i-1} & x_{i} \\
y_{1} \ldots \ldots \cdot y_{j} & -
\end{array}
$$

$F(i, j)=F(i-1, j)-d$
3. y_{j} aligns to a gap
$\mathrm{x}_{1} \ldots \ldots \mathrm{x}_{\mathrm{i}}$ -

$$
F(i, j)=F(i, j-1)-d
$$

$y_{1} \ldots \ldots y_{j-1} \quad y_{j}$

Dynamic Programming (cont'd)

How do we know which case is correct?

Inductive assumption:

$$
F(i, j-1), F(i-1, j), F(i-1, j-1) \quad \text { are optimal }
$$

Then,

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right.
$$

Where

$$
s\left(x_{i}, y_{j}\right)=m \text {, if } x_{i}=y_{j} ; \quad-s, \text { if not }
$$

Example

$$
\begin{aligned}
& x=A G T A \\
& y=A T A
\end{aligned}
$$

Procedure to output Alignment

$$
F(i, j) \quad \begin{array}{lllll}
& i=0 & 1 & 2 & 3
\end{array}
$$

- Follow the backpointers
- When diagonal, OUTPUT $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}$
- When up, OUTPUT y_{j}
- When left, OUTPUT x_{i}

The Needleman-Wunsch Matrix

Every nondecreasing path

from $(0,0)$ to (M, N)
corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

The Needleman-Wunsch Algorithm

Initialization.

$F(0,0)$	$=0$
$F(0, j)$	$=-j \times d$
$F(i, 0)$	$=-i \times d$

Main Iteration. Filling-in partial alignments

$$
\begin{aligned}
& \text { For each } \mathrm{i}=1 \ldots \ldots \mathrm{M} \\
& \quad \text { For each } j=1 \ldots . . \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{i}, \mathrm{j})=\max \begin{cases}\mathrm{F}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{s}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) & \text { [case 1] } \\
\mathrm{F}(\mathrm{i}-1, \mathrm{j})-\mathrm{d} & \text { [case 2] } \\
\mathrm{F}(\mathrm{i}, \mathrm{j}-1)-\mathrm{d} & \text { [case 3] }\end{cases} \\
& \operatorname{Ptr}(\mathrm{i}, \mathrm{j})= \begin{cases}\text { DIAG, } & \text { if [case 1] } \\
\text { LEFT, } & \text { if [case 2] } \\
\mathrm{UP}, & \text { if [case 3] }\end{cases}
\end{aligned}
$$

3. Termination. $F(M, N)$ is the optimal score, and from $\operatorname{Ptr}(\mathrm{M}, \mathrm{N})$ can trace back optimal alignment

Performance

- Time:

> O(NM)

- Space:

O(NM)

- Later we will cover more efficient methods

A variant of the basic algorithm:

- Maybe it is OK to have an unlimited \# of gaps in the beginning and end:
-----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
||||||| |||| | || ||
- Then, we don't want to penalize gaps in the ends

Different types of overlaps

Example:
 2 overlapping"reads" from a sequencing project

Example:

Search for a mouse gene within a human chromosome

The Overlap Detection variant

$x_{1} \ldots x_{M}$ Changes:

1. Initialization

For all i, j,
$F(i, 0)=0$
$F(0, j)=0$
2. Termination

$$
\mathrm{F}_{\mathrm{OPT}}=\max \left\{\begin{array}{l}
\max _{\mathrm{i}} \mathrm{~F}(\mathrm{i}, \mathrm{~N}) \\
\max _{\mathrm{j}} \mathrm{~F}(\mathrm{M}, \mathrm{j})
\end{array}\right.
$$

The local alignment problem

Given two strings

$$
\begin{aligned}
& x=x_{1} \ldots \ldots x_{M} \\
& y=y_{1} \ldots \ldots y_{N}
\end{aligned}
$$

Find substrings x^{\prime}, y^{\prime} whose similarity (optimal global alignment value) is maximum

$$
\begin{aligned}
& x=\text { aaaacccccggggtta } \\
& y=\text { ttcccgggaaccaacc }
\end{aligned}
$$

Why local alignment

- Genes are shuffled between genomes

Cross-species genome similarity

- 98% of genes are conserved between any two mammals
- $>70 \%$ average similarity in protein sequence

```
hum_a : GTTGACAATAGAGGGTCTGGCAGAGGCTC---------------------- @ 57331/400001
mus_a : GCTGACAATAGAGGGGCTGGCAGAGGCTC--------------------- @ 78560/400001
rat_a : GCTGACAATAGAGGGGCTGGCAGAGACTC------------------------ @ 112658/369938
fug_a : TTTGTTGATGGGGAGCGTGCATTAATTTCAGGCTATTGTTAACAGGCTCG @ 36008/68174
hum_a : CTGGCCGCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 57381/400001
mus_a : CTGGCCCCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 78610/400001
rat_a : CTGGCCCCGGTGCGGAGCGTCTGGAGCGGAGCACGCGCTGTCAGCTGGTG @ 112708/369938
fug_a : TGGGCCGAGGTGTTGGATGGCCTGAGTGAAGCACGCGCTGTCAGCTGGCG @ 36058/68174
hum a : AGCGCACTCTCСTTTCAGGCAGCTCCCCGGGGAGCTGTGCGGCCACATTT @ 57431/400001
mus_a : AGCGCACTCG-CTTTCAGGCCGCTCCCCGGGGAGCTGAGCGGCCACATTT @ 78659/400001
rat_a : AGCGCACTCG-CTTTCAGGCCGCTCCCCGGGGAGCTGCGCGGCCACATTT @ 112757/369938
fug_a : AGCGCTCGCG---------------------------\TCCCTGCCGTGTCC @ 36084/68174
hum_a : AACACCATCATCACCCCTCCCCGGCCTCСТСААССТСGGССТССТССТСG @ 57481/400001
mus_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 78708/400001
rat_a : AACACCGTCGTCA-CCCTCCCCGGCCTCCTCAACCTCGGCCTCCTCCTCG @ 112806/369938
fug_a : CCGAGGACCCTGA-------------------------------------- @ 36097/68174
```

"atoh" enhancer in human, mouse, rat, fugu fish

The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: $\quad F(0, j)=F(i, 0)=0$

Iteration:

$$
F(\mathrm{i}, \mathrm{j})=\max \left\{\begin{array}{l}
0 \\
\mathrm{~F}(\mathrm{i}-1, \mathrm{j})-\mathrm{d} \\
\mathrm{~F}(\mathrm{i}, \mathrm{j}-1)-\mathrm{d} \\
\mathrm{~F}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{s}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)
\end{array}\right.
$$

The Smith-Waterman algorithm

Termination:

1. If we want the best local alignment...

$$
\mathrm{F}_{\mathrm{OPT}}=\max _{\mathrm{i}, \mathrm{j}} \mathrm{~F}(\mathrm{i}, \mathrm{j})
$$

Find $\mathrm{F}_{\text {OPT }}$ and trace back
2. If we want all local alignments scoring >t

??
For all i, j find $\mathrm{F}(\mathrm{i}, \mathrm{j})>\mathrm{t}$, and trace back?
Complicated by overlapping local alignments

Scoring the gaps more accurately

Current model:

Gap of length n incurs penalty $n \times d$

However, gaps usually occur in bunches

Concave gap penalty function $\gamma(\mathrm{n})$ (aka Convex - $\gamma(\mathrm{n})$):

$\gamma(\mathrm{n})$:
for all $n, \gamma(n+1)-\gamma(n) \leq \gamma(n)-\gamma(n-1)$

Convex gap dynamic programming

Initialization: same

Iteration:

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
\max _{k=0 \ldots j-1} F(k, j)-\gamma(i-k) \\
\max _{k=0 . . j-1} F(i, k)-\gamma(j-k)
\end{array}\right.
$$

Termination: same

Running Time: $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{M}\right)$
(assume $\mathrm{N}>\mathrm{M}$)
Space: \quad O(NM)

Compromise: affine gaps

$$
\begin{aligned}
& \gamma(n)=d+(n-1) \times e \\
& \text { gap } \quad \text { gap } \\
& \text { open extend }
\end{aligned}
$$

To compute optimal alignment,

At position i, j, need to "remember" best score if gap is open best score if gap is not open
$F(i, j)$: score of alignment $x_{1} \ldots x_{i}$ to $y_{1} \ldots y_{j}$ if x_{i} aligns to y_{j}
$G(i, j)$: score if x_{i} aligns to a gap after y_{j}
$H(i, j)$: score if y_{j} aligns to a gap after x_{i}
$V(i, j)=$ best score of alignment $x_{1} \ldots x_{i}$ to $y_{1} \ldots y_{j}$

Needleman-Wunsch with affine gaps

Why do we need matrices $\mathrm{F}, \mathrm{G}, \mathrm{H}$?

Because, perhaps
$\mathbf{G}(\mathrm{i}, \mathrm{j})<\mathbf{V}(\mathrm{i}, \mathrm{j})$
(it is best to align x_{i} to y_{j} if we were aligning only $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}$ to $\mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{j}}$ and not the rest of x, y),
but on the contrary
Add -d

$$
\mathbf{G}(i+1, j)=F(i, j)-d
$$

$$
\mathbf{G}(i, j)-e>\mathbf{V}(i, j)-d
$$

(i.e., had we "fixed" our decision that x_{i} aligns to y_{j}, we could regret it at the next step when aligning $x_{1} \ldots x_{i+1}$ to $y_{1} \ldots y_{j}$)

Add -e

$$
\mathbf{G}(\mathrm{i}+1, \mathrm{j})=\mathbf{G}(\mathrm{i}, \mathrm{j})-\mathrm{e}
$$

Needleman-Wunsch with affine gaps

Initialization: $\quad V(i, 0)=d+(i-1) \times e$

$$
V(0, j)=d+(j-1) \times e
$$

Iteration:

$$
\begin{aligned}
& V(i, j)=\max \{F(i, j), G(i, j), H(i, j)\} \\
& F(i, j)= \\
& G(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
G(i-1, j)-d
\end{array}\right. \\
& H(i, j)=\max \left\{\begin{array}{l}
V(i, j-1)-d \\
H(i, j-1)-e
\end{array}\right.
\end{aligned}
$$

Termination: $\quad V(i, j)$ has the best alignment

$$
\begin{aligned}
& \text { Time? } \\
& \text { Space? }
\end{aligned}
$$

To generalize a bit...

... think of how you would compute optimal alignment with this gap function

Bounded Dynamic Programming

Assume we know that x and y are very similar
Assumption: $\quad \#$ gaps $(\mathrm{x}, \mathrm{y})<\mathrm{k}(\mathrm{N})$

We can align x and y more efficiently:
Time, Space:
$\mathrm{O}(\mathrm{N} \times \mathrm{k}(\mathrm{N})) \ll \mathrm{O}\left(\mathrm{N}^{2}\right)$

Bounded Dynamic Programming

Initialization:

$F(i, 0), F(0, j)$ undefined for $\mathrm{i}, \mathrm{j}>\mathrm{k}$

Iteration:

$$
\text { For } \mathrm{i}=1 \ldots \mathrm{M}
$$

$$
\text { For } j=\max (1, i-k) \ldots \min (N, i+k)
$$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i, j-1)-d, \text { if } j>i-k(N) \\
F(i-1, j)-d, \text { if } j<i+k(N)
\end{array}\right.
$$

$$
\mathrm{k}(\mathrm{~N}) \quad \underline{\text { Termination: }} \text { same }
$$

Easy to extend to the affine gap case

Outline

- Linear-Space Alignment
- BLAST - local alignment search
- Ultra-fast alignment for (human) genome resequencing

Linear-Space Alignment

Subsequences and Substrings

Definition A string x^{\prime} is a substring of a string x,
if $x=u x^{\prime} v$ for some prefix string u and suffix string v
(similarly, $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{i}} \ldots \mathrm{x}_{\mathrm{j}}$, for some $1 \leq \mathrm{i} \leq \mathrm{j} \leq|\mathrm{x}|$)
A string x^{\prime} is a subsequence of a string x
if x^{\prime} can be obtained from x by deleting 0 or more letters

$$
\left(x^{\prime}=x_{i 1} \ldots x_{i k} \text {, for some } 1 \leq i_{1} \leq \ldots \leq i_{k} \leq|x|\right)
$$

Note: a substring is always a subsequence

```
Example: }\quad\textrm{x}=\mathrm{ abracadabra
    y = cadabr; substring
    z = brcdbr; subseqence, not substring
```


Hirschberg's algortihm

Given a set of strings x, y, \ldots, a common subsequence is a string u that is a subsequence of all strings x, y, \ldots

- Longest common subsequence
- Given strings $x=x_{1} x_{2} \ldots x_{M}, y=y_{1} y_{2} \ldots y_{N}$,
- Find longest common subsequence $u=u_{1} \ldots u_{k}$
- Algorithm:

$$
\text { - } F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j) \\
F(i, j-1) \\
F(i-1, j-1)+\left[1, \text { if } x_{i}=y_{j} ; 0 \text { otherwise }\right]
\end{array}\right.
$$

- $\operatorname{Ptr}(\mathrm{i}, \mathrm{j})=($ same as in $\mathrm{N}-\mathrm{W})$
- Termination: trace back from $\operatorname{Ptr}(\mathrm{M}, \mathrm{N})$, and prepend a letter to u whenever - $\operatorname{Ptr}(\mathrm{i}, \mathrm{j})=\operatorname{DIAG}$ and $F(\mathrm{i}-1, \mathrm{j}-1)<F(\mathrm{i}, \mathrm{j})$
- Hirschberg's original algorithm solves this in linear space

Introduction: Compute optimal score

It is easy to compute $F(M, N)$ in linear space

> Allocate (column[1]) Allocate (column[2]) $\begin{aligned} & \text { For } i=1 \ldots . . M \\ & \text { If } \quad i>1, \text { then: } \\ &\text { Free (column }[i-2]) \\ & \text { Allocate }(\operatorname{column}[i]) \\ & \text { For } j=1 \ldots N \\ & F(i, j)=\ldots\end{aligned}$

Linear-space alignment

To compute both the optimal score and the optimal alignment:

Divide \& Conquer approach:

Notation:

$\mathbf{x}^{\mathrm{r}}, \mathbf{y}^{\mathrm{r}}$: reverse of x, y
E.g. $x=$ accgg;

$$
x^{r}=g g c c a
$$

 same as aligning $x_{M-i+1} \ldots x_{M} \& y_{N-j+1} \ldots y_{N}$

Linear-space alignment

Lemma: (assume M is even)

$$
F(M, N)=\max _{k=0 \ldots N}\left(F(M / 2, k)+F^{r}(M / 2, N-k)\right)
$$

Example:

$$
\begin{gathered}
\text { ACC-GGTGCCCAGGACTG--CAT } \\
\text { ACCAGGTG---GGACTGGGCAG } \\
\mathrm{k}^{*}=8
\end{gathered}
$$

Linear-space alignment

- Now, using 2 columns of space, we can compute for $k=1 \ldots M, F(M / 2, k), F^{r}(M / 2, N-k)$

PLUS the backpointers

Linear-space alignment

- Now, we can find k^{*} maximizing $\mathrm{F}(\mathrm{M} / 2, \mathrm{k})+\mathrm{F}^{\mathrm{r}}(\mathrm{M} / 2, \mathrm{~N}-\mathrm{k})$
- Also, we can trace the path exiting column $\mathrm{M} / 2$ from k^{*}

Linear-space alignment

- Iterate this procedure to the left and right!

Linear-space alignment

Hirschberg's Linear-space algorithm:

MEMALIGN(l, $\left.l^{\prime}, r, r^{\prime}\right): \quad$ (aligns $x_{\mid} \ldots x_{r}$ with $y_{r} \ldots y_{r}$)

1. Let $\mathrm{h}=\left\lceil\left(\mathrm{l}^{-}-1\right) / 2\right\rceil$
2. Find (in Time $O\left(\left(l^{\prime}-I\right) \times\left(r^{\prime}-r\right)\right)$, Space $\left.O\left(r^{\prime}-r\right)\right)$
the optimal path, $\quad L_{h}$, entering column $h-1$, exiting column h
Let $k_{1}=$ pos' n at column $\mathrm{h}-2$ where L_{h} enters
$k_{2}=$ pos'n at column $h+1$ where L_{h} exits
3. MEMALIGN $\left(1, h-2, r, k_{1}\right)$
4. Output L_{h}
5. MEMALIGN(h+1, l', $\left.\mathrm{k}_{2}, \mathrm{r}^{\prime}\right)$

Top level call: MEMALIGN(1, M, 1, N)

Linear-space alignment

Time, Space analysis of Hirschberg's algorithm:

To compute optimal path at middle column,
For box of size $M \times N$, Space: 2N
Time: cMN, for some constant c

Then, left, right calls cost $c\left(M / 2 \times k^{*}+M / 2 \times\left(N-k^{*}\right)\right)=c M N / 2$

All recursive calls cost
Total Time: $c M N+c M N / 2+c M N / 4+\ldots . .=2 c M N=O(M N)$
Total Space: $\mathrm{O}(\mathrm{N})$ for computation,
$\mathrm{O}(\mathrm{N}+\mathrm{M})$ to store the optimal alignment

