
Scoring the gaps more accurately 

Current model: 
  
 Gap of length  n 
 incurs penalty  n×d 

 
However, gaps usually occur in bunches 
 
Concave gap penalty function γ(n) 
(aka Convex -γ(n)): 
 

 γ(n):   
 for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1)  

γ(n) 

γ(n) 



Convex gap dynamic programming 

Initialization:  same 
 
Iteration: 

     F(i – 1, j – 1) + s(xi, yj) 
   F(i, j)  = max  maxk=0…i-1F(k, j) – γ(i – k)  
     maxk=0…j-1F(i, k) – γ(j – k) 

 
Termination:  same 
 
Running Time:  O(N2M)   (assume N>M) 
Space:   O(NM) 



Compromise: affine gaps 

γ(n) = d + (n – 1)×e 
      |   | 
    gap            gap 
    open        extend 

 
To compute optimal alignment, 
 
At position i, j, need to “remember”   best score if gap is open 

      best score if gap is not open 
 
F(i, j):  score of alignment x1…xi to y1…yj 

  if xi aligns to yj   
 
G(i, j):  score if xi aligns to a gap after yj 
H(i, j):     score if yj aligns to a gap after xi 
 
V(i, j) =   best score of alignment x1…xi to y1…yj 
 

d 
e 

γ(n) 



Needleman-Wunsch with affine gaps 

Why do we need matrices F, G, H? 
 
•  xi aligns to yj 

  x1……xi-1  xi   xi+1 

  y1……yj-1  yj     - 

 
•  xi aligns to a gap after yj 

  x1……xi-1  xi   xi+1 

  y1……yj …-      - 

Add -d 

Add -e 

G(i+1, j) = F(i, j) – d  

G(i+1, j) = G(i, j) – e  

Because, perhaps 
 
G(i, j) < V(i, j) 
 
(it is best to align xi to yj if we were aligning 
only x1…xi to y1…yj and not the rest of x, y), 
 
but on the contrary 
 
G(i, j) – e > V(i, j) – d  
 
(i.e., had we “fixed” our decision that xi aligns 
to yj, we could regret it at the next step when 
aligning x1…xi+1 to y1…yj) 



Needleman-Wunsch with affine gaps 

Initialization:  V(i, 0) = d + (i – 1)×e 
   V(0, j) = d + (j – 1)×e 

 
Iteration: 
 

   F(i, j) =   V(i – 1, j – 1) + s(xi, yj) 
     
     V(i – 1, j) – d  
   G(i, j) = max     
     G(i – 1, j) – e 

 
     V(i, j – 1) – d  
   H(i, j) = max     
     H(i, j – 1) – e 

 
   V(i, j) = max{ F(i, j), G(i, j), H(i, j) } 

 
Termination:  V(i, j) has the best alignment 

Time? 
Space? 



To generalize a bit… 

… think of how you would compute optimal alignment with 
this gap function 

….in time O(MN) 

γ(n) 



Bounded Dynamic Programming 

Assume we know that x and y are very similar 
 
Assumption:  # gaps(x, y)  < k(N)    
 

   xi  
 Then,  |  implies    | i – j | < k(N) 
    yj 

 
 
We can align x and y more efficiently: 
 

 Time, Space:   O(N × k(N))  << O(N2) 



Bounded Dynamic Programming 
Initialization: 

 F(i,0), F(0,j) undefined for i, j > k 
 
Iteration: 
 
For i = 1…M 
  For j = max(1, i – k)…min(N, i+k) 
 

   F(i – 1, j – 1)+ s(xi, yj) 
 F(i, j) = max  F(i, j – 1) – d, if j > i – k(N) 
   F(i – 1, j) – d, if j < i + k(N) 

 
Termination:  same 
 
Easy to extend to the affine gap case 
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Outline 

•  Linear-Space Alignment 

•  BLAST – local alignment search 

•  Ultra-fast alignment for (human) genome 
resequencing 



Linear-Space Alignment 



Subsequences and Substrings 

Definition  A string x’ is a substring of a string x, 
   if x = ux’v for some prefix string u and suffix string v 
    
   (similarly, x’ = xi…xj, for some 1 ≤ i ≤ j ≤ |x|) 

 
   A string x’ is a subsequence of a string x 

   if x’ can be obtained from x by deleting 0 or more letters 
 

   (x’ = xi1…xik, for some 1 ≤ i1 ≤ … ≤ ik ≤ |x|) 
 

   Note: a substring is always a subsequence 
 

  Example:  x = abracadabra 
    y = cadabr;  substring 
    z = brcdbr;  subseqence, not substring 



Hirschberg’s algortihm 

Given a set of strings x, y,…, a common subsequence is a string u that 
is a subsequence of all strings x, y, … 

•  Longest common subsequence 
§  Given strings x = x1 x2 … xM, y = y1 y2 … yN, 
§  Find longest common subsequence u = u1 … uk 

•  Algorithm: 
   F(i – 1, j) 

•  F(i, j)  = max  F(i, j – 1) 
   F(i – 1, j – 1) + [1, if xi = yj; 0 otherwise] 

•  Ptr(i, j)  = (same as in N-W) 

•  Termination:   trace back from Ptr(M, N), and prepend a letter to u whenever  
•  Ptr(i, j) = DIAG  and  F(i – 1, j – 1) < F(i, j) 

•  Hirschberg’s original algorithm solves this in linear space 



F(i,j) 

Introduction: Compute optimal score 

It is easy to compute F(M, N) in linear space 

Allocate ( column[1] ) 
Allocate ( column[2] ) 
 
For    i = 1….M 

 If   i > 1, then: 
  Free( column[ i – 2 ] ) 
  Allocate( column[ i ] ) 
 For   j = 1…N 
  F(i, j) = …  
  



Linear-space alignment 

To compute both the optimal score and the optimal alignment: 
 
Divide & Conquer approach: 
 
Notation: 
 

 xr, yr: reverse of x, y 
 E.g.  x  = accgg; 
  xr = ggcca 

 
 Fr(i, j): optimal score of aligning xr

1…xr
i  &  yr

1…yr
j 

      same as aligning xM-i+1…xM & yN-j+1…yN 



Linear-space alignment 

Lemma: (assume M is even) 
 

  F(M, N) = maxk=0…N( F(M/2, k) + Fr(M/2, N – k) ) 

x 

y 

M/2 

k* 

F(M/2, k) Fr(M/2, N – k) 

Example: 
    ACC-GGTGCCCAGGACTG--CAT 
    ACCAGGTG----GGACTGGGCAG 

 
k* = 8 



Linear-space alignment 

•  Now, using 2 columns of space, we can compute 
 for k = 1…M, F(M/2, k), Fr(M/2, N – k) 
  
 PLUS the backpointers 

x1 … xM/2 

y1 

xM 

yN 

x1 … xM/2+1 xM 

… 

y1 

yN 

… 



Linear-space alignment 

•  Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k) 

•  Also, we can trace the path exiting column M/2 from k*  

k* 
k*+1 

0     1     ……    M/2  
         M/2+1   ……  M   M+1 



Linear-space alignment 

•  Iterate this procedure to the left and right! 

N-k* 

M/2 M/2 

k* 



Linear-space alignment 

Hirschberg’s Linear-space algorithm: 
 
MEMALIGN(l, l’, r, r’):   (aligns xl…xl’ with yr…yr’) 
 
1.  Let h = ⎡(l’-l)/2⎤ 
2.  Find (in Time O((l’ – l) × (r’ – r)), Space O(r’ – r)) 

 the optimal path,  Lh, entering column h – 1, exiting column h 
 Let k1 = pos’n at column h – 2 where Lh enters 
  k2 = pos’n at column h + 1 where Lh exits 

 
3.  MEMALIGN(l, h – 2, r, k1) 

4.  Output Lh 

5.  MEMALIGN(h + 1, l’, k2, r’) 

Top level call: MEMALIGN(1, M, 1, N) 



Linear-space alignment 

Time, Space analysis of Hirschberg’s algorithm:  
To compute optimal path at middle column, 

 For box of size M × N, 
  Space:    2N 
  Time:   cMN,  for some constant c 

 
Then, left, right calls cost c( M/2 × k* + M/2 × (N – k*) ) = cMN/2 
 
All recursive calls cost  

 Total Time:  cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN) 
 

 Total Space: O(N) for computation, 
    O(N + M) to store the optimal alignment 



Heuristic Local Alignerers 
 

1.  The basic indexing & extension technique 

2.  Indexing: techniques to improve sensitivity 
  Pairs of Words, Patterns 

3.  Systems for local alignment 



Indexing-based local alignment 

Dictionary: 
 All words of length k (~10) 
 Alignment initiated between 

 words of alignment score ≥ T  
  (typically T = k) 

 
Alignment: 

 Ungapped extensions until score  
  below statistical threshold 

 
Output: 

 All local alignments with score  
  > statistical threshold 

…… 

…… 

query 

DB 

query 

scan 



Indexing-based local alignment—
Extensions 
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Gapped extensions until 
threshold 

•  Extensions with gaps 
until score < C below 
best score so far 

Output: 
 
GTAAGGTCCAGT 
GTTAGGTC-AGT 



Sensitivity-Speed Tradeoff 

long words 
(k = 15) 

short words 
(k = 7) 

Sensitivity ! 
Speed ! 

Kent WJ, Genome Research 2002 

Sens. 

Speed 

X% 



Sensitivity-Speed Tradeoff 

Methods to improve sensitivity/speed 

1.  Using pairs of words 

2.  Using inexact words 

3.  Patterns—non consecutive positions 

……ATAACGGACGACTGATTACACTGATTCTTAC…… 

……GGCACGGACCAGTGACTACTCTGATTCCCAG…… 

……ATAACGGACGACTGATTACACTGATTCTTAC…… 

……GGCGCCGACGAGTGATTACACAGATTGCCAG…… 

TTTGATTACACAGAT 
 T G TT CAC G 



Measured improvement 

Kent WJ, Genome Research 2002 



Non-consecutive words—Patterns  

Patterns increase the likelihood of at least one match within a long 
conserved region 

3 common 

5 common 

7 common 

Consecutive Positions Non-Consecutive Positions 

6 common 

On a 100-long 70% conserved region: 
          Consecutive          Non-consecutive 

Expected # hits:    1.07    0.97 
Prob[at least one hit]:  0.30    0.47   



Advantage of Patterns 

11 positions 

11 positions 

10 positions 



Multiple patterns 

•  K patterns 
§  Takes K times longer to scan 
§  Patterns can complement one another 

•  Computational problem: 
§  Given: a model (prob distribution) for homology between two regions 
§  Find: best set of K patterns that maximizes Prob(at least one match)  

TTTGATTACACAGAT 
 T G TT CAC G 
 T G T  C CAG 
 TTGATT  A  G 

Buhler et al. RECOMB 2003 
Sun & Buhler RECOMB 2004 

How long does it take  
to search the query? 


