Scoring the gaps more accurately

Current model:

Gap of length n incurs penalty $n \times d$

However, gaps usually occur in bunches

Concave gap penalty function $\gamma(\mathrm{n})$ (aka Convex - $\gamma(\mathrm{n})$):

$\gamma(\mathrm{n})$:
for all $n, \gamma(n+1)-\gamma(n) \leq \gamma(n)-\gamma(n-1)$

Convex gap dynamic programming

Initialization: same

Iteration:

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
\max _{k=0 \ldots j-1} F(k, j)-\gamma(i-k) \\
\max _{k=0 . . j-1} F(i, k)-\gamma(j-k)
\end{array}\right.
$$

Termination: same

Running Time: $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{M}\right)$
(assume $\mathrm{N}>\mathrm{M}$)
Space: \quad O(NM)

Compromise: affine gaps

$$
\begin{aligned}
& \gamma(n)=d+(n-1) \times e \\
& \text { open extend }
\end{aligned}
$$

To compute optimal alignment,

At position i, j, need to "remember" best score if gap is open best score if gap is not open
$F(i, j)$: score of alignment $x_{1} \ldots x_{i}$ to $y_{1} \ldots y_{j}$ if x_{i} aligns to y_{j}
$G(i, j)$: \quad score if x_{i} aligns to a gap after y_{j}
$H(i, j)$: score if y_{j} aligns to a gap after x_{i}
$V(i, j)=$ best score of alignment $x_{1} \ldots x_{i}$ to $y_{1} \ldots y_{j}$

Needleman-Wunsch with affine gaps

Why do we need matrices $\mathrm{F}, \mathrm{G}, \mathrm{H}$?

Because, perhaps
$\mathbf{G}(\mathrm{i}, \mathrm{j})<\mathbf{V}(\mathrm{i}, \mathrm{j})$
(it is best to align x_{i} to y_{j} if we were aligning only $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}$ to $\mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{j}}$ and not the rest of x, y),
but on the contrary
Add -d

$$
\mathbf{G}(i+1, j)=F(i, j)-d
$$

$$
\mathbf{G}(i, j)-e>\mathbf{V}(i, j)-d
$$

(i.e., had we "fixed" our decision that x_{i} aligns to y_{j}, we could regret it at the next step when aligning $x_{1} \ldots x_{i+1}$ to $y_{1} \ldots y_{j}$)

Add -e

$$
\mathbf{G}(\mathrm{i}+1, \mathrm{j})=\mathbf{G}(\mathrm{i}, \mathrm{j})-\mathrm{e}
$$

Needleman-Wunsch with affine gaps

Initialization:

$$
\begin{aligned}
& V(i, 0)=d+(i-1) \times e \\
& V(0, j)=d+(j-1) \times e
\end{aligned}
$$

Iteration:

$$
\begin{aligned}
& F(i, j)=\quad \begin{array}{l}
V(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
G(i, j)=\max \quad\left\{\begin{array}{l}
V(i-1, j)-d \\
G(i-1, j)-e
\end{array}\right. \\
H(i, j)=\max \quad\left\{\begin{array}{l}
V(i, j-1)-d \\
H(i, j-1)-e
\end{array}\right. \\
V(i, j)=\max \{F(i, j), G(i, j), H(i, j)\}
\end{array}
\end{aligned}
$$

Termination: $\quad V(i, j)$ has the best alignment

To generalize a bit...

... think of how you would compute optimal alignment with this gap function

Bounded Dynamic Programming

Assume we know that x and y are very similar
Assumption: $\quad \#$ gaps $(\mathrm{x}, \mathrm{y})<\mathrm{k}(\mathrm{N})$

We can align x and y more efficiently:
Time, Space:
$\mathrm{O}(\mathrm{N} \times \mathrm{k}(\mathrm{N})) \ll \mathrm{O}\left(\mathrm{N}^{2}\right)$

Bounded Dynamic Programming

Initialization:

$F(i, 0), F(0, j)$ undefined for $\mathrm{i}, \mathrm{j}>\mathrm{k}$

Iteration:

$$
\text { For } \mathrm{i}=1 \ldots \mathrm{M}
$$

$$
\text { For } j=\max (1, i-k) \ldots \min (N, i+k)
$$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i, j-1)-d, \text { if } j>i-k(N) \\
F(i-1, j)-d, \text { if } j<i+k(N)
\end{array}\right.
$$

$$
\mathrm{k}(\mathrm{~N}) \quad \underline{\text { Termination: }} \text { same }
$$

Easy to extend to the affine gap case

Outline

- Linear-Space Alignment
- BLAST - local alignment search
- Ultra-fast alignment for (human) genome resequencing

Linear-Space Alignment

Subsequences and Substrings

Definition A string x^{\prime} is a substring of a string x,
if $x=u x^{\prime} v$ for some prefix string u and suffix string v
(similarly, $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{i}} \ldots \mathrm{x}_{\mathrm{j}}$, for some $1 \leq \mathrm{i} \leq \mathrm{j} \leq|\mathrm{x}|$)
A string x^{\prime} is a subsequence of a string x
if x^{\prime} can be obtained from x by deleting 0 or more letters

$$
\left(x^{\prime}=x_{i 1} \ldots x_{i k} \text {, for some } 1 \leq i_{1} \leq \ldots \leq i_{k} \leq|x|\right)
$$

Note: a substring is always a subsequence

```
Example: }\quad\textrm{x}=\mathrm{ abracadabra
    y = cadabr; substring
    z = brcdbr; subseqence, not substring
```


Hirschberg's algortihm

Given a set of strings x, y, \ldots, a common subsequence is a string u that is a subsequence of all strings x, y, \ldots

- Longest common subsequence
- Given strings $x=x_{1} x_{2} \ldots x_{M}, y=y_{1} y_{2} \ldots y_{N}$,
- Find longest common subsequence $u=u_{1} \ldots u_{k}$
- Algorithm:

$$
\text { - } F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j) \\
F(i, j-1) \\
F(i-1, j-1)+\left[1, \text { if } x_{i}=y_{j} ; 0 \text { otherwise }\right]
\end{array}\right.
$$

- $\operatorname{Ptr}(\mathrm{i}, \mathrm{j})=($ same as in $\mathrm{N}-\mathrm{W})$
- Termination: trace back from $\operatorname{Ptr}(\mathrm{M}, \mathrm{N})$, and prepend a letter to u whenever - $\operatorname{Ptr}(\mathrm{i}, \mathrm{j})=\operatorname{DIAG}$ and $F(\mathrm{i}-1, \mathrm{j}-1)<F(\mathrm{i}, \mathrm{j})$
- Hirschberg's original algorithm solves this in linear space

Introduction: Compute optimal score

It is easy to compute $F(M, N)$ in linear space

> Allocate (column[1]) Allocate (column[2]) $\begin{aligned} & \text { For } i=1 \ldots . . M \\ & \text { If } \quad i>1, \text { then: } \\ &\text { Free (column }[i-2]) \\ & \text { Allocate }(\operatorname{column}[i]) \\ & \text { For } j=1 \ldots N \\ & F(i, j)=\ldots\end{aligned}$

Linear-space alignment

To compute both the optimal score and the optimal alignment:

Divide \& Conquer approach:

Notation:

$\mathbf{x}^{\mathrm{r}}, \mathbf{y}^{\mathrm{r}}$: reverse of x, y
E.g. $x=$ accgg;

$$
x^{r}=g g c c a
$$

 same as aligning $x_{M-i+1} \ldots x_{M} \& y_{N-j+1} \ldots y_{N}$

Linear-space alignment

Lemma: (assume M is even)

$$
F(M, N)=\max _{k=0 \ldots N}\left(F(M / 2, k)+F^{r}(M / 2, N-k)\right)
$$

Example:

$$
\begin{gathered}
\text { ACC-GGTGCCCAGGACTG--CAT } \\
\text { ACCAGGTG---GGACTGGGCAG } \\
\mathrm{k}^{*}=8
\end{gathered}
$$

Linear-space alignment

- Now, using 2 columns of space, we can compute for $k=1 \ldots M, F(M / 2, k), F^{r}(M / 2, N-k)$

PLUS the backpointers

Linear-space alignment

- Now, we can find k^{*} maximizing $\mathrm{F}(\mathrm{M} / 2, \mathrm{k})+\mathrm{F}^{\mathrm{r}}(\mathrm{M} / 2, \mathrm{~N}-\mathrm{k})$
- Also, we can trace the path exiting column $\mathrm{M} / 2$ from k^{*}

Linear-space alignment

- Iterate this procedure to the left and right!

Linear-space alignment

Hirschberg's Linear-space algorithm:

MEMALIGN(l, $\left.l^{\prime}, r, r^{\prime}\right): \quad$ (aligns $x_{\mid} \ldots x_{r}$ with $y_{r} \ldots y_{r}$)

1. Let $\mathrm{h}=\left\lceil\left(\mathrm{l}^{-}-1\right) / 2\right\rceil$
2. Find (in Time $O\left(\left(l^{\prime}-I\right) \times\left(r^{\prime}-r\right)\right)$, Space $\left.O\left(r^{\prime}-r\right)\right)$
the optimal path, $\quad L_{h}$, entering column $h-1$, exiting column h
Let $k_{1}=$ pos' n at column $\mathrm{h}-2$ where L_{h} enters
$k_{2}=$ pos'n at column $h+1$ where L_{h} exits
3. MEMALIGN $\left(1, h-2, r, k_{1}\right)$
4. Output L_{h}
5. MEMALIGN(h+1, l', $\left.\mathrm{k}_{2}, \mathrm{r}^{\prime}\right)$

Top level call: MEMALIGN(1, M, 1, N)

Linear-space alignment

Time, Space analysis of Hirschberg's algorithm:

To compute optimal path at middle column,
For box of size $M \times N$, Space: 2N
Time: cMN, for some constant c

Then, left, right calls cost $c\left(M / 2 \times k^{*}+M / 2 \times\left(N-k^{*}\right)\right)=c M N / 2$

All recursive calls cost
Total Time: $c M N+c M N / 2+c M N / 4+\ldots . .=2 c M N=O(M N)$
Total Space: $\mathrm{O}(\mathrm{N})$ for computation,
$\mathrm{O}(\mathrm{N}+\mathrm{M})$ to store the optimal alignment

Heuristic Local Alignerers

1. The basic indexing \& extension technique
2. Indexing: techniques to improve sensitivity Pairs of Words, Patterns
3. Systems for local alignment

Indexing-based local alignment

Dictionary:

All words of length k (~10)
Alignment initiated between
words of alignment score $\geq \mathrm{T}$
(typically $\mathrm{T}=\mathrm{k}$)

Alignment:

Ungapped extensions until score below statistical threshold

Output:

All local alignments with score
> statistical threshold
scan
\longrightarrow

$\longleftarrow \longrightarrow$

Indexing-based local alignmentExtensions

Gapped extensions until threshold

- Extensions with gaps until score < C below best score so far

Output:

GTAAGGTCCAGT GTTAGGTC-AGT

	A	C	G		A	A	G	T	A	A	G G	T C	C	C A	G	T
<																
\checkmark																
0																
0																
-																
\vdash																
\vdash																
¢																
\bigcirc											,					
-											,					
\bigcirc																
-																
U													,			
0																
\vdash																
<																
\bigcirc																
\vdash																
U																

Sensitivity-Speed Tradeoff

	long words $(\mathrm{k}=15)$	short words $(\mathrm{k}=7)$
Sensitivity		\checkmark
Speed	\checkmark	

Table 3. Sensitivity and Specificity of Single Perfect Nucleotide K-mer Matches as a Search Criterion

		7	8	9	10	11	12	13	14
	A. 81%	0.974	0.915	0.833	0.726	0.607	0.486	0.373	0.314
	83\%	0.988	0.953	0.897	0.815	0.711	0.595	0.478	0.415
	85\%	0.996	0.978	0.945	0.888	0.808	0.707	0.594	0.532
Sens.	87\%	0.999	0.992	0.975	0.942	0.888	0.811	0.714	0.659
	89\%	1.000	0.998	0.991	0.976	0.946	0.897	0.824	0.782
	91\%	1.000	1.000	0.998	0.993	0.981	0.956	0.912	0.886
	93\%	1.000	1.000	1.000	0.999	0.995	0.987	0.968	0.957
	95\%	1.000	1.000	1.000	1.000	0.999	0.998	0.994	0.991
	97\%	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
Speed	B. $\begin{aligned} & \mathrm{K} \\ & \mathrm{F}\end{aligned}$	$\begin{aligned} & 7 \\ & 1.3 \mathrm{e}+07 \end{aligned}$	$\begin{aligned} & 8 \\ & 2.9 e+06 \end{aligned}$	$\begin{array}{r} 9 \\ 635783 \end{array}$	$\begin{array}{r} 10 \\ 143051 \end{array}$	$\begin{array}{r} 11 \\ 32512 \end{array}$	$\begin{array}{r} 12 \\ 7451 \end{array}$	$\begin{array}{r} 13 \\ 1719 \end{array}$	$\begin{array}{r} 14 \\ 399 \end{array}$

(A) Columns are for K sizes of 7-14. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated from equation 3 assuming a homologous region of 100 bases. The larger the value of K , the fewer homologies are detected.
(B) K represents the size of the perfect match. F shows how many perfect matches of this size expected to occur by chance according to equation 4 in a genome of 3 billion bases using a query of 500 bases.

Sensitivity-Speed Tradeoff

Methods to improve sensitivity/speed

1. Using pairs of words

2. Using inexact words
3. Patterns-non consecutive positions

$$
\begin{gathered}
\text { TUOGDCACAGAT } \\
\text { T G TT CAC G }
\end{gathered}
$$

Mepcirad imnrauamant

Table 7. Sensitivity and Specificity of Multiple (2 and 3) Perfect Nucleotide K-mer Matches as a Search Criterlon

	2,8	2,9	2,10	2,11	2,12	3,8	3,9	3,10	3,11	3,12
A. 81%	0.681	0.508	0.348	0.220	0.129	0.389	0.221	0.112	0.051	0.021
83\%	0.790	0.638	0.475	0.326	0.208	0.529	0.339	0.193	0.099	0.045
85\%	0.879	0.762	0.615	0.460	0.318	0.676	0.487	0.313	0.180	0.093
87\%	0.942	0.866	0.752	0.611	0.461	0.809	0.649	0.470	0.305	0.177
89\%	0.978	0.940	0.868	0.761	0.625	0.910	0.801	0.648	0.476	0.314
91\%	0.994	0.980	0.947	0.884	0.787	0.969	0.914	0.815	0.673	0.505
93\%	0.999	0.996	0.986	0.962	0.912	0.993	0.976	0.933	0.851	0.722
95\%	1.000	1.000	0.998	0.993	0.979	0.999	0.997	0.987	0.961	0.902
97\%	1.000	1.000	1.000	1.000	0.999	1.000	1.000	0.999	0.997	0.987
B. N, K	2,8	2,9	2,10	2,11	2,12	3,8	3,9	3,10	3,11	3,12
F	524	27	1.4	0.1	0.0	0.1	0.0	0.0	0.0	0.0

(A) Columns are for N sizes of 2 and 3 and K sizes of 8-12. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated by equation 10 . (B) N and K represent the number and size of the near-perfect matches, respectively. F shows how many perfect clustered matches expected to occur by chance according to equation 14 in a translated genome of 3 billion bases using a query of 167 amino acids.

Table 5. Sensitivity and Specificity of Single Near-Perfect (One Mismatch Allowed) Nucleotide K-mer Matches as a Search Criterion

	12	13	14	15	16	17	18	19	20	21	22
A. 81%	0.945	0.880	0.831	0.721	0.657	0.526	0.465	0.408	0.356	0.255	0.218
83\%	0.975	0.936	0.904	0.820	0.770	0.649	0.591	0.535	0.480	0.361	0.318
85\%	0.991	0.971	0.954	0.900	0.865	0.767	0.719	0.669	0.619	0.490	0.445
87\%	0.997	0.990	0.983	0.954	0.935	0.867	0.833	0.796	0.757	0.634	0.591
89\%	1.000	0.997	0.995	0.984	0.976	0.939	0.920	0.897	0.872	0.775	0.741
91\%	1.000	1.000	0.999	0.996	0.994	0.979	0.971	0.962	0.950	0.890	0.869
93\%	1.000	1.000	1.000	0.999	0.999	0.996	0.994	0.991	0.988	0.963	0.954
95\%	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.999	0.994	0.992
97\%	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
B. K	12	13	14	15	16	17	18	19	20	21	22
F	275671	68775	17163	4284	1070	267	67	17	4.2	1.0	0.3

(A) Columns are for K sizes of 12-22. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated by equation 6 assuming a homologous region of 100 bases. (B) K represents the size of the near-perfect match. F shows how many perfect matches of this size expected to occur by chance accorclir KentiWJ, Genome Research 2002 billion bases using a query of 500 bases.

Non-consecutive words-Patterns

Patterns increase the likelihood of at least one match within a long conserved region

Non-Consecutive Positions

Non-consecutive
0.97
0.47

Advantage of Patterns

11 positions 11 positions

Multiple patterns

TOQGODMORORGAT T G TT CAC G T G T C CAG TTGATT A G

How long does it take to search the query?

Seed	Pattern	Pr[detection]	Alignments Found	Time (s)
π_{c}	$\{0,1,2,3,4,5,6,7,8,9,10\}$	0.600	66419	15802
$\pi_{c 10}$	$\{0,1,2,3,4,5,6,7,8,9\}$	0.707	73539	24129
$\pi_{p h}$	$\{0,1,2,4,7,9,12,13,15,16,17\}$	0.691	75518	16717
$\pi_{N_{0}}$	$\{0,1,2,4,7,8,11,13,16,17,18\}$	0.683	75231	16225
$\pi_{N_{s}}$	$\{0,1,2,3,5,6,7,10,12,13,14\}$	0.709	75547	16817
$\pi_{1}+\pi_{2}$	$\{0,1,2,4,5,9,14,16,17,18,19,20\}+$	0.744	77211	22033
	$\{0,1,2,3,4,6,7,8,10,11,12,13\}$			

Buhler et al. RECOMB 2003
Sun \& Buhler RECOMB 2004

