
Scoring the gaps more accurately

Current model:

 Gap of length n
 incurs penalty n×d

However, gaps usually occur in bunches

Concave gap penalty function γ(n)
(aka Convex -γ(n)):

 γ(n):
 for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1)

γ(n)

γ(n)

Convex gap dynamic programming

Initialization: same

Iteration:

 F(i – 1, j – 1) + s(xi, yj)
 F(i, j) = max maxk=0…i-1F(k, j) – γ(i – k)
 maxk=0…j-1F(i, k) – γ(j – k)

Termination: same

Running Time: O(N2M) (assume N>M)
Space: O(NM)

Compromise: affine gaps

γ(n) = d + (n – 1)×e
 | |
 gap gap
 open extend

To compute optimal alignment,

At position i, j, need to “remember” best score if gap is open

 best score if gap is not open

F(i, j): score of alignment x1…xi to y1…yj

 if xi aligns to yj

G(i, j): score if xi aligns to a gap after yj
H(i, j): score if yj aligns to a gap after xi

V(i, j) = best score of alignment x1…xi to y1…yj

d
e

γ(n)

Needleman-Wunsch with affine gaps

Why do we need matrices F, G, H?

•  xi aligns to yj

 x1……xi-1 xi xi+1

 y1……yj-1 yj -

•  xi aligns to a gap after yj

 x1……xi-1 xi xi+1

 y1……yj …- -

Add -d

Add -e

G(i+1, j) = F(i, j) – d

G(i+1, j) = G(i, j) – e

Because, perhaps

G(i, j) < V(i, j)

(it is best to align xi to yj if we were aligning
only x1…xi to y1…yj and not the rest of x, y),

but on the contrary

G(i, j) – e > V(i, j) – d

(i.e., had we “fixed” our decision that xi aligns
to yj, we could regret it at the next step when
aligning x1…xi+1 to y1…yj)

Needleman-Wunsch with affine gaps

Initialization: V(i, 0) = d + (i – 1)×e
 V(0, j) = d + (j – 1)×e

Iteration:

 F(i, j) = V(i – 1, j – 1) + s(xi, yj)

 V(i – 1, j) – d
 G(i, j) = max
 G(i – 1, j) – e

 V(i, j – 1) – d
 H(i, j) = max
 H(i, j – 1) – e

 V(i, j) = max{ F(i, j), G(i, j), H(i, j) }

Termination: V(i, j) has the best alignment

Time?
Space?

To generalize a bit…

… think of how you would compute optimal alignment with
this gap function

….in time O(MN)

γ(n)

Bounded Dynamic Programming

Assume we know that x and y are very similar

Assumption: # gaps(x, y) < k(N)

 xi
 Then, | implies | i – j | < k(N)
 yj

We can align x and y more efficiently:

 Time, Space: O(N × k(N)) << O(N2)

Bounded Dynamic Programming
Initialization:

 F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…M
 For j = max(1, i – k)…min(N, i+k)

 F(i – 1, j – 1)+ s(xi, yj)
 F(i, j) = max F(i, j – 1) – d, if j > i – k(N)
 F(i – 1, j) – d, if j < i + k(N)

Termination: same

Easy to extend to the affine gap case

x1 ………………………… xM

y 1
 …

…
…

…
…

…
…

…
…

…
 y

N

k(N)

Outline

•  Linear-Space Alignment

•  BLAST – local alignment search

•  Ultra-fast alignment for (human) genome
resequencing

Linear-Space Alignment

Subsequences and Substrings

Definition A string x’ is a substring of a string x,
 if x = ux’v for some prefix string u and suffix string v

 (similarly, x’ = xi…xj, for some 1 ≤ i ≤ j ≤ |x|)

 A string x’ is a subsequence of a string x

 if x’ can be obtained from x by deleting 0 or more letters

 (x’ = xi1…xik, for some 1 ≤ i1 ≤ … ≤ ik ≤ |x|)

 Note: a substring is always a subsequence

 Example: x = abracadabra
 y = cadabr; substring
 z = brcdbr; subseqence, not substring

Hirschberg’s algortihm

Given a set of strings x, y,…, a common subsequence is a string u that
is a subsequence of all strings x, y, …

•  Longest common subsequence
§  Given strings x = x1 x2 … xM, y = y1 y2 … yN,
§  Find longest common subsequence u = u1 … uk

•  Algorithm:
 F(i – 1, j)

•  F(i, j) = max F(i, j – 1)
 F(i – 1, j – 1) + [1, if xi = yj; 0 otherwise]

•  Ptr(i, j) = (same as in N-W)

•  Termination: trace back from Ptr(M, N), and prepend a letter to u whenever
•  Ptr(i, j) = DIAG and F(i – 1, j – 1) < F(i, j)

•  Hirschberg’s original algorithm solves this in linear space

F(i,j)

Introduction: Compute optimal score

It is easy to compute F(M, N) in linear space

Allocate (column[1])
Allocate (column[2])

For i = 1….M

 If i > 1, then:
 Free(column[i – 2])
 Allocate(column[i])
 For j = 1…N
 F(i, j) = …

Linear-space alignment

To compute both the optimal score and the optimal alignment:

Divide & Conquer approach:

Notation:

 xr, yr: reverse of x, y
 E.g. x = accgg;
 xr = ggcca

 Fr(i, j): optimal score of aligning xr

1…xr
i & yr

1…yr
j

 same as aligning xM-i+1…xM & yN-j+1…yN

Linear-space alignment

Lemma: (assume M is even)

 F(M, N) = maxk=0…N(F(M/2, k) + Fr(M/2, N – k))

x

y

M/2

k*

F(M/2, k) Fr(M/2, N – k)

Example:
 ACC-GGTGCCCAGGACTG--CAT
 ACCAGGTG----GGACTGGGCAG

k* = 8

Linear-space alignment

•  Now, using 2 columns of space, we can compute
 for k = 1…M, F(M/2, k), Fr(M/2, N – k)

 PLUS the backpointers

x1 … xM/2

y1

xM

yN

x1 … xM/2+1 xM

…

y1

yN

…

Linear-space alignment

•  Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)

•  Also, we can trace the path exiting column M/2 from k*

k*
k*+1

0 1 …… M/2
 M/2+1 …… M M+1

Linear-space alignment

•  Iterate this procedure to the left and right!

N-k*

M/2 M/2

k*

Linear-space alignment

Hirschberg’s Linear-space algorithm:

MEMALIGN(l, l’, r, r’): (aligns xl…xl’ with yr…yr’)

1.  Let h = ⎡(l’-l)/2⎤
2.  Find (in Time O((l’ – l) × (r’ – r)), Space O(r’ – r))

 the optimal path, Lh, entering column h – 1, exiting column h
 Let k1 = pos’n at column h – 2 where Lh enters
 k2 = pos’n at column h + 1 where Lh exits

3. MEMALIGN(l, h – 2, r, k1)

4. Output Lh

5.  MEMALIGN(h + 1, l’, k2, r’)

Top level call: MEMALIGN(1, M, 1, N)

Linear-space alignment

Time, Space analysis of Hirschberg’s algorithm:
To compute optimal path at middle column,

 For box of size M × N,
 Space: 2N
 Time: cMN, for some constant c

Then, left, right calls cost c(M/2 × k* + M/2 × (N – k*)) = cMN/2

All recursive calls cost

 Total Time: cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN)

 Total Space: O(N) for computation,
 O(N + M) to store the optimal alignment

Heuristic Local Alignerers

1.  The basic indexing & extension technique

2.  Indexing: techniques to improve sensitivity
 Pairs of Words, Patterns

3.  Systems for local alignment

Indexing-based local alignment

Dictionary:
 All words of length k (~10)
 Alignment initiated between

 words of alignment score ≥ T
 (typically T = k)

Alignment:

 Ungapped extensions until score
 below statistical threshold

Output:

 All local alignments with score
 > statistical threshold

……

……

query

DB

query

scan

Indexing-based local alignment—
Extensions

A C G A A G T A A G G T C C A G T

C

T
 G

A

 T

C
 C

 T

G

G

A
 T

T

 G
 C

G

A

Gapped extensions until
threshold

•  Extensions with gaps
until score < C below
best score so far

Output:

GTAAGGTCCAGT
GTTAGGTC-AGT

Sensitivity-Speed Tradeoff

long words
(k = 15)

short words
(k = 7)

Sensitivity !
Speed !

Kent WJ, Genome Research 2002

Sens.

Speed

X%

Sensitivity-Speed Tradeoff

Methods to improve sensitivity/speed

1.  Using pairs of words

2.  Using inexact words

3.  Patterns—non consecutive positions

……ATAACGGACGACTGATTACACTGATTCTTAC……

……GGCACGGACCAGTGACTACTCTGATTCCCAG……

……ATAACGGACGACTGATTACACTGATTCTTAC……

……GGCGCCGACGAGTGATTACACAGATTGCCAG……

TTTGATTACACAGAT
 T G TT CAC G

Measured improvement

Kent WJ, Genome Research 2002

Non-consecutive words—Patterns

Patterns increase the likelihood of at least one match within a long
conserved region

3 common

5 common

7 common

Consecutive Positions Non-Consecutive Positions

6 common

On a 100-long 70% conserved region:
 Consecutive Non-consecutive

Expected # hits: 1.07 0.97
Prob[at least one hit]: 0.30 0.47

Advantage of Patterns

11 positions

11 positions

10 positions

Multiple patterns

•  K patterns
§  Takes K times longer to scan
§  Patterns can complement one another

•  Computational problem:
§  Given: a model (prob distribution) for homology between two regions
§  Find: best set of K patterns that maximizes Prob(at least one match)

TTTGATTACACAGAT
 T G TT CAC G
 T G T C CAG
 TTGATT A G

Buhler et al. RECOMB 2003
Sun & Buhler RECOMB 2004

How long does it take
to search the query?

