## Heuristic Local Alignerers

1. The basic indexing \& extension technique
2. Indexing: techniques to improve sensitivity Pairs of Words, Patterns
3. Systems for local alignment

## Indexing-based local alignment

Dictionary:
All words of length k (~10)
Alignment initiated between
words of alignment score $\geq T$
(typically $\mathrm{T}=\mathrm{k}$ )

Alignment:
Ungapped extensions until score below statistical threshold

## Output:

All local alignments with score
> statistical threshold


## Indexing-based local alignmentExtensions

Gapped extensions until threshold

- Extensions with gaps until score < C below best score so far


## Output:

GTAAGGTCCAGT GTTAGGTC-AGT

|  | A | C | G | A | A | G | T |  | A |  | G | C | C C | C | G | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| < |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| け |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\vdash$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| < |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\circlearrowleft$ |  |  |  |  |  |  |  |  |  | , |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |  | , |  |  |  |  |  |
| $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  | N |  |  |  |
| $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\vdash$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| < |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (1) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\vdash$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Sensitivity-Speed Tradeoff



|  | long words <br> $(k=15)$ | short words <br> $(k=7)$ |
| :---: | :---: | :---: |
| Sensitivity |  | $\checkmark$ |
| Speed | $\checkmark$ |  |

Table 3. Sensitivity and Specificity of SIngle Perfect Nucleotide K-mer Matches as a Search Criterion

|  |  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A. $81 \%$ | 0.974 | 0.915 | 0.833 | 0.726 | 0.607 | 0.486 | 0.373 | 0.314 |
|  | 83\% | 0.988 | 0.953 | 0.897 | 0.815 | 0.711 | 0.595 | 0.478 | 0.415 |
|  | 85\% | 0.996 | 0.978 | 0.945 | 0.888 | 0.808 | 0.707 | 0.594 | 0.532 |
| Sens. | 87\% | 0.999 | 0.992 | 0.975 | 0.942 | 0.888 | 0.811 | 0.714 | 0.659 |
|  | 89\% | 1.000 | 0.998 | 0.991 | 0.976 | 0.946 | 0.897 | 0.824 | 0.782 |
|  | 91\% | 1.000 | 1.000 | 0.998 | 0.993 | 0.981 | 0.956 | 0.912 | 0.886 |
|  | 93\% | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 | 0.987 | 0.968 | 0.957 |
|  | 95\% | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.994 | 0.991 |
|  | 97\% | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |
| Speed | B. K | $\begin{aligned} & 7 \\ & 1.3 \mathrm{e}+07 \end{aligned}$ | $\begin{aligned} & 8 \\ & 2.9 \mathrm{e}+06 \end{aligned}$ | $\begin{array}{r} 9 \\ 635783 \end{array}$ | $\begin{array}{r} 10 \\ 143051 \end{array}$ | $\begin{array}{r} 11 \\ 32512 \end{array}$ | $\begin{array}{r} 12 \\ 7451 \end{array}$ | $\begin{array}{r} 13 \\ 1719 \end{array}$ | $\begin{array}{r} 14 \\ 399 \end{array}$ |

(A) Columns are for K sizes of $7-14$. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated from equation 3 assuming a homologous region of 100 bases. The larger the value of K, the fewer homologies are detected.
(B) K represents the size of the perfect match. F shows how many perfect matches of this size expected to occur by chance according to equation 4 in a genome of 3 billion bases using a query of 500 bases.

## Sensitivity-Speed Tradeoff

Methods to improve sensitivity/speed

1. Using pairs of words

2. Using inexact words

3. Patterns-non consecutive positions

> TCGIDCACACAT
T G TT CAC G

## Mepcirad imnrnuamant

Table 7. Sensitivity and Specificity of Multiple (2 and 3) Perfect Nucleotide K-mer Matches as a Search Criterlon

|  | $\mathbf{2 , 8}$ | $\mathbf{2 , 9}$ | $\mathbf{2 , 1 0}$ | $\mathbf{2 , 1 1}$ | $\mathbf{2 , 1 2}$ | $\mathbf{3 , 8}$ | $\mathbf{3 , 9}$ | $\mathbf{3 , 1 0}$ | $\mathbf{3 , 1 1}$ | $\mathbf{3 , 1 2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A. $\mathbf{8 1 \%}$ | 0.681 | 0.508 | 0.348 | 0.220 | 0.129 | 0.389 | 0.221 | 0.112 | 0.051 | 0.021 |
| $83 \%$ | 0.790 | 0.638 | 0.475 | 0.326 | 0.208 | 0.529 | 0.339 | 0.193 | 0.099 | 0.045 |
| $85 \%$ | 0.879 | 0.762 | 0.615 | 0.460 | 0.318 | 0.676 | 0.487 | 0.313 | 0.180 | 0.093 |
| $87 \%$ | 0.942 | 0.866 | 0.752 | 0.611 | 0.461 | 0.809 | 0.649 | 0.470 | 0.305 | 0.177 |
| $89 \%$ | 0.978 | 0.940 | 0.868 | 0.761 | 0.625 | 0.910 | 0.801 | 0.648 | 0.476 | 0.314 |
| $91 \%$ | 0.994 | 0.980 | 0.947 | 0.884 | 0.787 | 0.969 | 0.914 | 0.815 | 0.673 | 0.505 |
| $93 \%$ | 0.999 | 0.996 | 0.986 | 0.962 | 0.912 | 0.993 | 0.976 | 0.933 | 0.851 | 0.722 |
| $95 \%$ | 1.000 | 1.000 | 0.998 | 0.993 | 0.979 | 0.999 | 0.997 | 0.987 | 0.961 | 0.902 |
| $97 \%$ | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 0.999 | 0.997 | 0.987 |
| B. $\mathbf{N , K}$ | $\mathbf{2 , 8}$ | $\mathbf{2 , 9}$ | $\mathbf{2 , 1 0}$ | $\mathbf{2 , 1 1}$ | $\mathbf{2 , 1 2}$ | $\mathbf{3 , 8}$ | $\mathbf{3 , 9}$ | $\mathbf{3 , 1 0}$ | $\mathbf{3 , 1 1}$ | $\mathbf{3 , 1 2}$ |
| F | 524 | 27 | 1.4 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |

(A) Columns are for N sizes of 2 and 3 and K sizes of $8-12$. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated by equation 10 . (B) N and K represent the number and size of the near-perfect matches, respectively. F shows how many perfect clustered matches expected to occur by chance according to equation 14 in a translated genome of 3 billion bases using a query of 167 amino acids.

Table 5. Sensitivity and Specificity of Single Near-Perfect (One Mismatch Allowed) Nucleotide K-mer Matches as a Search Criterion

|  | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A. $81 \%$ | 0.945 | 0.880 | 0.831 | 0.721 | 0.657 | 0.526 | 0.465 | 0.408 | 0.356 | 0.255 | 0.218 |
| 83\% | 0.975 | 0.936 | 0.904 | 0.820 | 0.770 | 0.649 | 0.591 | 0.535 | 0.480 | 0.361 | 0.318 |
| 85\% | 0.991 | 0.971 | 0.954 | 0.900 | 0.865 | 0.767 | 0.719 | 0.669 | 0.619 | 0.490 | 0.445 |
| 87\% | 0.997 | 0.990 | 0.983 | 0.954 | 0.935 | 0.867 | 0.833 | 0.796 | 0.757 | 0.634 | 0.591 |
| 89\% | 1.000 | 0.997 | 0.995 | 0.984 | 0.976 | 0.939 | 0.920 | 0.897 | 0.872 | 0.775 | 0.741 |
| 91\% | 1.000 | 1.000 | 0.999 | 0.996 | 0.994 | 0.979 | 0.971 | 0.962 | 0.950 | 0.890 | 0.869 |
| 93\% | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.996 | 0.994 | 0.991 | 0.988 | 0.963 | 0.954 |
| 95\% | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.994 | 0.992 |
| 97\% | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| B. K | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| F | 275671 | 68775 | 17163 | 4284 | 1070 | 267 | 67 | 17 | 4.2 | 1.0 | 0.3 |

[^0]
## Non-consecutive words-Patterns

Patterns increase the likelihood of at least one match within a long conserved region


Non-Consecutive Positions


On a 100-long 70\% conserved region:

|  | Consecutive |
| :--- | :---: |
| Expected \# hits: | 1.07 |
| Prob[at least one hit]: | 0.30 |

Non-consecutive
0.97
0.47

## Advantage of Patterns



## Multiple patterns

## TDUGOMONOQGAT

$$
\begin{array}{llll}
\text { T G TT } & \text { CAC } & \text { G } \\
\text { T G T } & \text { C CAG } \\
\text { TTGATT } & \text { A } & \text { G }
\end{array}
$$

How long does it take to search the query?

| Seed | Pattern | $\operatorname{Pr}[$ detection] | Alignments Found | Time (s) |
| :--- | :---: | :---: | :---: | :---: |
| $\pi_{c}$ | $\{0,1,2,3,4,5,6,7,8,9,10\}$ | 0.600 | 66419 | 15802 |
| $\pi_{c 10}$ | $\{0,1,2,3,4,5,6,7,8,9\}$ | 0.707 | 73539 | 24129 |
| $\pi_{p h}$ | $\{0,1,2,4,7,9,12,13,15,16,17\}$ | 0.691 | 75518 | 16717 |
| $\pi_{N_{0}}$ | $\{0,1,2,4,7,8,11,13,16,17,18\}$ | 0.683 | 75231 | 16225 |
| $\pi_{N_{5}}$ | $\{0,1,2,3,5,6,7,10,12,13,14\}$ | 0.709 | 75547 | 16817 |
| $\pi_{1}+\pi_{2}$ | $\{0,1,2,4,5,9,14,16,17,18,19,20\}+$ | 0.744 | 77211 | 22033 |
|  | $\{0,1,2,3,4,6,7,8,10,11,12,13\}$ |  |  |  |

## Hidden Markov Models



## Example: The Dishonest Casino

A casino has two dice:

- Fair die

$$
P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6
$$

- Loaded die

$$
\begin{aligned}
& P(1)=P(2)=P(3)=P(5)=1 / 10 \\
& P(6)=1 / 2
\end{aligned}
$$

Casino player switches back-\&-forth between fair and loaded die once every 20 turns

## Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$


## Question \# 1 - Evaluation

## GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

$$
\text { Prob }=1.3 \times 10^{-35}
$$

## QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

## Question \# 2 - Decoding

## GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344
FAIR LOADED FAIR

## QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

## Question \# 3 - Learning

## GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

$$
\operatorname{Prob}(6)=64 \%
$$

## QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

## The dishonest casino model



## A HMM is memory-less

At each time step $t$, the only thing that affects future states is the current state $\pi_{t}$


## Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)

- Alphabet $\Sigma=\left\{b_{1}, b_{2}, \ldots, b_{M}\right\}$
- Set of states $Q=\{1, \ldots, K\}$
- Transition probabilities between any two states

$$
\begin{aligned}
& a_{i j}=\text { transition prob from state } i \text { to state } j \\
& a_{i 1}+\ldots+a_{i K}=1, \quad \text { for all states } i=1 \ldots K
\end{aligned}
$$

- Start probabilities $\mathrm{a}_{0 \mathrm{i}}$

$$
a_{01}+\ldots+a_{0 K}=1
$$


in Durbin; not needed


- Emission probabilities within each state

$$
\begin{aligned}
& e_{i}(b)=P\left(x_{i}=b \mid \pi_{i}=k\right) \\
& e_{i}\left(b_{1}\right)+\ldots+e_{i}\left(b_{M}\right)=1, \text { for all states } i=1 \ldots K
\end{aligned}
$$

## A HMM is memory-less

At each time step $t$, the only thing that affects future states is the current state $\pi_{t}$
$P\left(\pi_{t+1}=k \mid\right.$ "whatever happened so far") $=$

$P\left(\pi_{t+1}=k \mid \pi_{1}, \pi_{2}, \ldots, \pi_{t}, x_{1}, x_{2}, \ldots, x_{t}\right)=$ $\mathrm{P}\left(\pi_{\mathrm{t}+1}=\mathrm{k} \mid \pi_{\mathrm{t}}\right)$

## A HMM is memory-less

At each time step t , the only thing that affects $x_{t}$ is the current state $\pi_{t}$
$P\left(x_{t}=b \mid\right.$ "whatever happened so far") $=$

$P\left(x_{t}=b \mid \pi_{1}, \pi_{2}, \ldots, \pi_{t}, x_{1}, x_{2}, \ldots, x_{t-1}\right) \quad=$
$\mathrm{P}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{b} \mid \pi_{\mathrm{t}}\right)$

## A parse of a sequence

Given a sequence $x=x_{1} \ldots \ldots x_{N}$,
A parse of $x$ is a sequence of states $\pi=\pi_{1}, \ldots \ldots, \pi_{N}$


## Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state $\pi_{1}$ according to prob $a_{0 \pi 1}$
2. Emit letter $x_{1}$ according to prob $e_{\pi 1}\left(x_{1}\right)$
3. Go to state $\pi_{2}$ according to prob $a_{\pi 1 \pi 2}$
4. ... until emitting $x_{n}$


## Likelihood of a parse

Given a sequence $x=x_{1} \ldots \ldots x_{N}$ and a parse $\pi=\pi_{1}, \ldots \ldots, \pi_{N}$,


To find how likely this scenario is: (given our HMM)

$$
\begin{aligned}
& P(x, \pi)=P\left(x_{1}, \ldots, x_{N}, \pi_{1}, \ldots \ldots, \pi_{N}\right)= \\
& P\left(x_{N} \mid \pi_{N}\right) P\left(\pi_{N} \mid \pi_{N-1}\right) \ldots \ldots P\left(x_{2} \mid \pi_{2}\right) P\left(\pi_{2} \mid \pi_{1}\right) P\left(x_{1} \mid \pi_{1}\right) P\left(\pi_{1}\right)= \\
& a_{0 \pi 1} a_{\pi 1 \pi 2} \ldots \ldots a_{\pi N-1 \pi N} e_{\pi 1}\left(x_{1}\right) \ldots \ldots e_{\pi N}\left(x_{N}\right)
\end{aligned}
$$

## Likelihood of a parse

A compact way to write
$a_{0 \pi 1} a_{\pi 1 \pi 2} \ldots \ldots a_{\pi N-1 \pi N} e_{\pi 1}\left(X_{1}\right) \ldots \ldots e_{\pi N}\left(x_{N}\right)$
Enumerate all parameters $\mathrm{a}_{\mathrm{ij}}$ and $\mathrm{e}_{\mathrm{i}}(\mathrm{b})$; n params Example:
$a_{0 \text { Fair }}: \theta_{1} ; a_{0 \text { Loaded }}: \theta_{2} ; \ldots e_{\text {Loaded }}(6)=\theta_{18}$
Then, count in $x$ and $\pi$ the \# of times each parameter $\mathrm{j}=1, \ldots, \mathrm{n}$ occurs
$\mathbf{F}(\mathbf{j}, \mathbf{x}, \pi)=$ \# parameter $\theta_{\mathrm{j}}$ occurs in $(\mathbf{x}, \pi)$
(call $F(., .,$. .) the feature counts) Then,
$P(x, \pi)=\prod_{j=1 \ldots n} \theta_{j}^{F(j, x, \pi)}=$
$=\exp \left[\sum_{j=1 \ldots n} \log \left(\theta_{j}\right) \times F(j, x, \pi)\right]$

## Example: the dishonest casino

Let the sequence of rolls be:
$x=1,2,1,5,6,2,1,5,2,4$

Then, what is the likelihood of
$\pi=$ Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs $\mathrm{a}_{0 \text { Fair }}=1 / 2, \mathrm{a}_{\text {oLoaded }}=1 / 2$ )
$1 / 2 \times P(1 \mid$ Fair $) P($ Fair | Fair $) P(2 \mid$ Fair $) P($ Fair $\mid$ Fair $) \ldots P(4 \mid$ Fair $)=$
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=.00000000521158647211 \sim=0.5 \times 10^{-9}$

## Example: the dishonest casino

So, the likelihood the die is fair in this run is just $0.521 \times 10^{-9}$

What is the likelihood of

$\pi=$ Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?
$1 / 2 \times P(1 \mid$ Loaded $) P($ Loaded, Loaded $) \ldots P(4 \mid$ Loaded $)=$
$1 / 2 \times(1 / 10)^{9} \times(1 / 2)^{1}(0.95)^{9}=.00000000015756235243 \sim=0.16 \times 10^{-9}$

Therefore, it somewhat more likely that all the rolls are done with the fair die, than that they are all done with the loaded die

## Example: the dishonest casino

Let the sequence of rolls be:
$x=1,6,6,5,6,2,6,6,3,6$
Now, what is the likelihood $\pi=F, F, \ldots, F$ ?
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9} \sim=0.5 \times 10^{-9}$, same as before

What is the likelihood

$$
\pi=L, L, \ldots, L ?
$$

$1 / 2 \times(1 / 10)^{4} \times(1 / 2)^{6}(0.95)^{9}=.00000049238235134735 \sim=0.5 \times 10^{-7}$
So, it is 100 times more likely the die is loaded

## Question \# 1 - Evaluation

## GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

$$
\text { Prob }=1.3 \times 10^{-35}
$$

## QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

## Question \# 2 - Decoding

## GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344
FAIR LOADED FAIR

## QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

## Question \# 3 - Learning

## GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

$$
\operatorname{Prob}(6)=64 \%
$$

## QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

## The three main questions on HMMs

1. Evaluation

| GIVEN | a HMM M, | and a sequence $x$, |
| :--- | :--- | :--- |
| FIND | $\operatorname{Prob}[x \mid M]$ |  |

2. Decoding

GIVEN
FIND
3. Learning

GIVEN

FIND
a HMM M, and a sequence $x$, the sequence $\pi$ of states that maximizes $P[x, \pi \mid M]$
a HMM M, with unspecified transition/emission probs., and a sequence x ,
parameters $\theta=\left(e_{i}(),. a_{i j}\right)$ that maximize $P[x \mid \theta]$

## Let's not be confused by notation

$P[x \mid M]: \quad$ The probability that sequence $x$ was generated by the model

The model is: architecture (\#states, etc)

+ parameters $\theta=\mathrm{a}_{\mathrm{ij}}, \mathrm{e}_{\mathrm{i}}($.

So, $P[x \mid M]$ is the same with $P[x \mid \theta]$, and $P[x]$, when the architecture, and the parameters, respectively, are implied

Similarly, $P[x, \pi \mid M], P[x, \pi \mid \theta]$ and $P[x, \pi]$ are the same when the architecture, and the parameters, are implied

In the LEARNING problem we always write $P[x \mid \theta]$ to emphasize that we are seeking the $\theta^{*}$ that maximizes $P[x \mid \theta]$

## Problem 1: Decoding

Find the most likely parse of a sequence

## Decoding

GIVEN $x=x_{1} x_{2} \ldots \ldots x_{N}$
Find $\pi=\pi_{1}, \ldots \ldots, \pi_{N}$, to maximize $\mathrm{P}[\mathrm{x}, \pi]$
$\pi^{*}=\operatorname{argmax}_{\pi} P[x, \pi]$
Maximizes $a_{0 \pi 1} \mathbf{e}_{\pi 1}\left(\mathbf{x}_{1}\right) a_{\pi 1 \pi 2} \ldots \ldots a_{\pi N-1 \pi N} \mathbf{e}_{\pi N}\left(\mathbf{x}_{N}\right)$
Dynamic Programming!

$V_{k}(i)=\max _{\{\pi 1 \ldots \pi i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]$
$=$ Prob. of most likely sequence of states ending at state $\pi_{i}=k$

## Decoding - main idea

Inductive assumption: Given that for all states k, and for a fixed position $i$,

$$
V_{k}(i)=\max _{\{\pi 1 \ldots \pi i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]
$$

What is $\mathrm{V}_{1}(\mathrm{i}+1)$ ?
From definition,

$$
\begin{aligned}
V_{l}(i+1) & =\max _{\{\pi 1 \ldots \pi i\}} P\left[x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}, x_{i+1}, \pi_{i+1}=I\right] \\
& =\max _{\{\pi 1 \ldots \pi i\}} P\left(x_{i+1}, \pi_{i+1}=I \mid x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}\right) P\left[x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}\right] \\
& =\max _{\{\pi 1 \ldots \pi i\}} P\left(x_{i+1}, \pi_{i+1}=I \mid \pi_{i}\right) P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}\right] \\
& =\max _{k}\left[P\left(x_{i+1}, \pi_{i+1}=I \mid \pi_{i}=k\right) \max _{\{\pi 1 \ldots \pi i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]\right] \\
& =\max _{k}\left[P\left(x_{i+1} \mid \pi_{i+1}=I\right) P\left(\pi_{i+1}=I \mid \pi_{i}=k\right) V_{k}(i)\right] \\
& =e_{l}\left(x_{i+1}\right) \max _{k} a_{k l} V_{k}(i)
\end{aligned}
$$

## The Viterbi Algorithm

Input: $x=x_{1} \ldots . . x_{N}$
Initialization:

$$
V_{0}(0)=1 \quad(0 \text { is the imaginary first position })
$$

Iteration:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{j}}(\mathrm{i}) & =\mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right) \times \max _{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{~V}_{\mathrm{k}}(\mathrm{i}-1) \\
\operatorname{Ptr}_{\mathrm{j}}(\mathrm{i}) & =\operatorname{argmax}_{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{~V}_{\mathrm{k}}(\mathrm{i}-1)
\end{array}
$$

Termination:

$$
\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{k} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N})
$$

## Traceback:

$$
\begin{aligned}
& \pi_{\mathrm{N}}{ }^{*}=\operatorname{argmax}_{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N}) \\
& \pi_{\mathrm{i}-1}{ }^{*}=\operatorname{Ptr}_{\pi \mathrm{i}}(\mathrm{i})
\end{aligned}
$$

## The Viterbi Algorithm

## 



Similar to "aligning" a set of states to a sequence

Time:

$$
\mathrm{O}\left(\mathrm{~K}^{2} \mathrm{~N}\right)
$$

## Space:

O(KN)

## Viterbi Algorithm - a practical detail

Underflows are a significant problem

$$
P\left[x_{1}, \ldots, x_{i}, \pi_{1}, \ldots, \pi_{i}\right]=a_{0 \pi 1} a_{\pi 11 \pi 2} \ldots \ldots \mathbf{a}_{\pi i} \mathbf{e}_{\pi 1}\left(\mathbf{x}_{1}\right) \ldots . . \mathbf{e}_{\pi i}\left(\mathbf{x}_{\mathrm{i}}\right)
$$

These numbers become extremely small - underflow

Solution: Take the logs of all values

$$
V_{l}(i)=\log e_{k}\left(x_{i}\right)+\max _{k}\left[V_{k}(i-1)+\log a_{k l}\right]
$$

## Example

Let $x$ be a long sequence with a portion of $\sim 1 / 66$ 's, followed by a portion of $\sim 1 / 26$ 's...
$x=123456123456 \ldots 123456626364656 \ldots 1626364656$

Then, it is not hard to show that optimal parse is (exercise):


6 characters " 123456 " parsed as $F$, contribute $.95^{6} \times(1 / 6)^{6}=1.6 \times 10^{-5}$ parsed as $L$, contribute $.95^{6} \times(1 / 2)^{1} \times(1 / 10)^{5}=0.4 \times 10^{-5}$
"162636" parsed as F, contribute $.95^{6} \times(1 / 6)^{6}=1.6 \times 10^{-5}$ parsed as $L$, contribute $.95^{6} \times(1 / 2)^{3} \times(1 / 10)^{3}=9.0 \times 10^{-5}$

## Problem 2: Evaluation

Find the likelihood a sequence is generated by the model

## Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state $\pi_{1}$ according to prob $a_{0 \pi 1}$
2. Emit letter $x_{1}$ according to prob $e_{\pi 1}\left(x_{1}\right)$
3. Go to state $\pi_{2}$ according to prob $a_{\pi 1 \pi 2}$
4. ... until emitting $x_{n}$


## A couple of questions

Given a sequence x,

- What is the probability that
- Given a position i , what is tr P(box: LLLLLLLLLLLL) $=$ $\left[(1 / 2)^{6} *(1 / 10)^{5}\right]^{*} 0.95^{10} * 0.05^{2}=$ $1.56 * 10^{-7} * 1.5^{-3}=$
Example: the dishonest ca $0.23^{-9}$

$$
\text { Say } x=\underbrace{12341 \ldots 231}_{F} \underbrace{62616364616}_{F} \underbrace{234112 \ldots 21341}
$$

Most likely path: $\pi=F F \ldots .$. .
(too "unlikely" to transition $F \rightarrow L \rightarrow F$ )
However: marked letters more likely to be $L$ than unmarked letters

## Evaluation

We will develop algorithms that allow us to compute:

$$
\begin{array}{ll}
P(x) & \text { Probability of } x \text { given the model } \\
P\left(x_{i} \ldots x_{j}\right) \quad \text { Probability of a substring of } x \text { given the model } \\
P\left(\pi_{i}=k \mid x\right) & \text { "Posterior" probability that the } i^{\text {th }} \text { state is } k \text {, given } x
\end{array}
$$

A more refined measure of which states $x$ may be in

## The Forward Algorithm

We want to calculate
$P(x)=$ probability of $x$, given the HMM

Sum over all possible ways of generating x :

$$
\mathrm{P}(\mathrm{x})=\Sigma_{\pi} \mathrm{P}(\mathrm{x}, \pi)=\Sigma_{\pi} \mathrm{P}(\mathrm{x} \mid \pi) \mathrm{P}(\pi)
$$

To avoid summing over an exponential number of paths $\pi$, define

$$
f_{k}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \quad \text { (the forward probability) }
$$

"generate i first characters of $x$ and end up in state $k$ "

## The Forward Algorithm - derivation

Define the forward probability:

$$
\begin{aligned}
f_{k}(i) & =P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
& =\sum_{\pi 1 \ldots \pi i-1} P\left(x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, \pi_{i}=k\right) e_{k}\left(x_{i}\right) \\
& =\sum_{l} \sum_{\pi 1 \ldots \pi i-2} P\left(x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-2}, \pi_{i-1}=I\right) a_{l k} e_{k}\left(x_{i}\right) \\
& =\sum_{l} P\left(x_{1} \ldots x_{i-1}, \pi_{i-1}=I\right) a_{I k} e_{k}\left(x_{i}\right) \\
& =e_{k}\left(x_{i}\right) \sum_{l} f_{l}(i-1) a_{l k}
\end{aligned}
$$

## The Forward Algorithm

We can compute $f_{k}(i)$ for all $k$, $i$, using dynamic programming!

Initialization:

$$
\begin{aligned}
& f_{0}(0)=1 \\
& f_{k}(0)=0, \text { for all } k>0
\end{aligned}
$$

Iteration:

$$
f_{k}(i)=e_{k}\left(x_{i}\right) \sum_{\|} f_{l}(i-1) a_{l k}
$$

Termination:

$$
P(x)=\sum_{k} f_{k}(N)
$$

## Relation between Forward and Viterbi

## VITERBI

Initialization:

$$
\begin{aligned}
& V_{0}(0)=1 \\
& V_{k}(0)=0, \text { for all } k>0
\end{aligned}
$$

Iteration:

$$
V_{j}(i)=e_{j}\left(x_{i}\right) \quad \max _{k} V_{k}(i-1) a_{k j}
$$

Termination:

$$
\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N})
$$

## FORWARD

## Initialization:

$$
\begin{aligned}
& f_{0}(0)=1 \\
& f_{k}(0)=0, \text { for all } k>0
\end{aligned}
$$

## Iteration:

$$
\mathrm{f}_{\mathrm{l}}(\mathrm{i})=\mathrm{e}_{\|}\left(\mathrm{x}_{\mathrm{i}}\right) \sum_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{kl}}
$$

Termination:

$$
\mathrm{P}(\mathrm{x})=\Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{~N})
$$

## Motivation for the Backward Algorithm

We want to compute

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{x}\right),
$$

the probability distribution on the $\mathrm{i}^{\text {th }}$ position, given x

We start by computing

$$
\begin{aligned}
P\left(\pi_{i}=k, x\right) & =P\left(x_{1} \ldots x_{i}, \pi_{i}=k, x_{i+1} \ldots x_{N}\right) \\
& =P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) P\left(x_{i+1} \ldots x_{N} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
& =P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) P\left(x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right)
\end{aligned}
$$

Forward, $\mathrm{f}_{\mathrm{k}}(\mathrm{i}) \quad$ Backward, $\mathrm{b}_{\mathrm{k}}(\mathrm{i})$

Then, $\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{x}\right)=\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \mathrm{x}\right) / \mathrm{P}(\mathrm{x})$

The Backward Algorithm - derivation

Define the backward probability:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{N}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \quad \text { "starting from } i^{\text {th }} \text { state }=k \text {, generate rest of } x \text { " } \\
& =\sum_{\pi i+1 \ldots \pi N} P\left(x_{i+1}, x_{i+2}, \ldots, x_{N}, \pi_{i+1}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\sum_{\mid} \sum_{\pi i+1 \ldots \pi N} P\left(x_{i+1}, x_{i+2}, \ldots, x_{N}, \pi_{i+1}=I, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\sum_{l} e_{l}\left(x_{i+1}\right) a_{k l} \sum_{\pi i+1 \ldots \pi N} P\left(x_{i+2}, \ldots, x_{N}, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i+1}=I\right) \\
& =\sum_{l} \mathrm{e}_{\|}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{kl}} \mathrm{~b}_{\mathrm{l}}(\mathrm{i}+1)
\end{aligned}
$$

## The Backward Algorithm

We can compute $b_{k}(i)$ for all $k$, $i$, using dynamic programming

## Initialization:

$$
b_{k}(N)=1, \text { for all } k
$$

Iteration:

$$
\mathrm{b}_{\mathrm{k}}(\mathrm{i})=\sum_{l} \mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{kl}} \mathrm{~b}_{1}(\mathrm{i}+1)
$$

## Termination:

$$
\mathrm{P}(\mathrm{x})=\sum_{\mid} \mathrm{a}_{01} \mathrm{e}_{\mid}\left(\mathrm{x}_{1}\right) \mathrm{b}_{1}(1)
$$

## Computational Complexity

What is the running time, and space required, for Forward, and Backward?

```
Time: O(K2N)
Space: O(KN)
```

Useful implementation technique to avoid underflows

```
Viterbi: sum of logs
Forward/Backward: rescaling at each few positions by multiplying by a
    constant
```


## Posterior Decoding

We can now calculate

$$
P\left(\pi_{i}=k \mid x\right)=\quad \frac{f_{k}(i) b_{k}(i)}{P(x)}
$$

Then, we can ask

$$
\begin{aligned}
& P\left(\pi_{i}=k \mid x\right)= \\
& P\left(\pi_{i}=k, x\right) / P(x)= \\
& P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k, x_{i+1}, \ldots x_{n}\right) / P(x)= \\
& P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) P\left(x_{i+1}, \ldots x_{n} \mid \pi_{i}=k\right) / P(x)= \\
& f_{k}(i) b_{k}(i) / P(x)
\end{aligned}
$$

What is the most likely state at position $i$ of sequence $x$ :

Define $\pi^{\wedge}$ by Posterior Decoding:

$$
\pi_{i}{ }_{i}=\operatorname{argmax}_{k} P\left(\pi_{i}=k \mid x\right)
$$

## Posterior Decoding

- For each state,
- Posterior Decoding gives us a curve of likelihood of state for each position
- That is sometimes more informative than Viterbi path $\pi^{*}$
- Posterior Decoding may give an invalid sequence of states (of prob 0)
- Why?


## Posterior Decoding



- $\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{x}\right)=\sum_{\pi} \mathrm{P}(\pi \mid \mathrm{x}) \mathbf{1}\left(\pi_{\mathrm{i}}=\mathrm{k}\right)$

$$
=\Sigma_{\{\pi: \pi[i]=k\}} \mathrm{P}(\pi \mid \mathrm{x})
$$

$1(\psi)=1$, if $\psi$ is true
0, otherwise

## Viterbi, Forward, Backward

## VITERBI

Initialization:

$$
\begin{aligned}
& V_{0}(0)=1 \\
& V_{k}(0)=0, \text { for all } k>0
\end{aligned}
$$

## Iteration:

$\mathrm{V}_{\mathrm{l}}(\mathrm{i})=\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \quad \max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{kl}}$
Termination:

$$
\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N})
$$

FORWARD

Initialization:
$\mathrm{f}_{0}(0)=1$
$\mathrm{f}_{\mathrm{k}}(0)=0$, for all $\mathrm{k}>0$

Iteration:
$\mathrm{f}_{\mathrm{I}}(\mathrm{i})=\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{kl}}$
Termination:

$$
P(x)=\Sigma_{k} f_{k}(N)
$$

BACKWARD

Initialization:
$b_{k}(N)=1$, for all $k$

Iteration:
$\mathrm{b}_{\mathrm{l}}(\mathrm{i})=\Sigma_{\mathrm{k}} \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}+1\right) \mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{k}}(\mathrm{i}+1)$

## Termination:

$$
\mathrm{P}(\mathrm{x})=\Sigma_{\mathrm{k}} \mathrm{a}_{0 \mathrm{k}} \mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{1}\right) \mathrm{b}_{\mathrm{k}}(1)
$$


[^0]:    (A) Columns are for K sizes of 12-22. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated by equation 6 assuming a homologous region of 100 bases. (B) K represents the size of the near-perfect match. F shows how many perfect matches of this size expected to occur by chance accordirkent WJ, Genome Research 2002 billion bases using a query of 500 bases.

