
Heuristic Local Alignerers 
 

1.  The basic indexing & extension technique 

2.  Indexing: techniques to improve sensitivity 
  Pairs of Words, Patterns 

3.  Systems for local alignment 



Indexing-based local alignment 

Dictionary: 
 All words of length k (~10) 
 Alignment initiated between 

 words of alignment score ≥ T  
  (typically T = k) 

 
Alignment: 

 Ungapped extensions until score  
  below statistical threshold 

 
Output: 

 All local alignments with score  
  > statistical threshold 

…… 

…… 

query 

DB 

query 

scan 



Indexing-based local alignment—
Extensions 
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Gapped extensions until 
threshold 

•  Extensions with gaps 
until score < C below 
best score so far 

Output: 
 
GTAAGGTCCAGT 
GTTAGGTC-AGT 



Sensitivity-Speed Tradeoff 

long words 
(k = 15) 

short words 
(k = 7) 

Sensitivity ü 
Speed ü 

Kent WJ, Genome Research 2002 

Sens. 

Speed 

X% 



Sensitivity-Speed Tradeoff 

Methods to improve sensitivity/speed 

1.  Using pairs of words 

2.  Using inexact words 

3.  Patterns—non consecutive positions 

……ATAACGGACGACTGATTACACTGATTCTTAC…… 

……GGCACGGACCAGTGACTACTCTGATTCCCAG…… 

……ATAACGGACGACTGATTACACTGATTCTTAC…… 

……GGCGCCGACGAGTGATTACACAGATTGCCAG…… 

TTTGATTACACAGAT 
 T G TT CAC G 



Measured improvement 

Kent WJ, Genome Research 2002 



Non-consecutive words—Patterns  

Patterns increase the likelihood of at least one match within a long 
conserved region 

3 common 

5 common 

7 common 

Consecutive Positions Non-Consecutive Positions 

6 common 

On a 100-long 70% conserved region: 
          Consecutive          Non-consecutive 

Expected # hits:    1.07    0.97 
Prob[at least one hit]:  0.30    0.47   



Advantage of Patterns 

11 positions 

11 positions 

10 positions 



Multiple patterns 

•  K patterns 
§  Takes K times longer to scan 
§  Patterns can complement one another 

•  Computational problem: 
§  Given: a model (prob distribution) for homology between two regions 
§  Find: best set of K patterns that maximizes Prob(at least one match)  

TTTGATTACACAGAT 
 T G TT CAC G 
 T G T  C CAG 
 TTGATT  A  G 

Buhler et al. RECOMB 2003 
Sun & Buhler RECOMB 2004 

How long does it take  
to search the query? 



Hidden Markov Models 
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Example: The Dishonest Casino 

 
A casino has two dice: 
•  Fair die 

 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 
•  Loaded die 

 P(1) = P(2) = P(3) = P(5) = 1/10 
 P(6) = 1/2 

Casino player switches back-&-forth between 
fair and loaded die once every 20 turns 

 
Game: 
1.  You bet $1 
2.  You roll (always with a fair die) 
3.  Casino player rolls (maybe with fair die, 

maybe with loaded die) 
4.  Highest number wins $2 



Question # 1 – Evaluation 

GIVEN 
 
A sequence of rolls by the casino player 
 
1245526462146146136136661664661636616366163616515615115146123562344 
 
 
 

QUESTION 
 
How likely is this sequence, given our model of how the casino works? 
 
This is the EVALUATION problem in HMMs 

Prob = 1.3 x 10-35 



Question # 2 – Decoding 

GIVEN 
 
A sequence of rolls by the casino player 
 
1245526462146146136136661664661636616366163616515615115146123562344 
 
 
 

QUESTION 
 
What portion of the sequence was generated with the fair die, and what 

portion with the loaded die? 
 
This is the DECODING question in HMMs 

FAIR LOADED FAIR 



Question # 3 – Learning 

GIVEN 
 
A sequence of rolls by the casino player 
 
1245526462146146136136661664661636616366163616515615115146123562344 
 
 
 

QUESTION 
 
How “loaded” is the loaded die? How “fair” is the fair die? How often 

does the casino player change from fair to loaded, and back? 
 
This is the LEARNING question in HMMs 

Prob(6) = 64% 



The dishonest casino model 

FAIR LOADED 

0.05 

0.05 

0.95 0.95 

P(1|F) = 1/6 
P(2|F) = 1/6 
P(3|F) = 1/6 
P(4|F) = 1/6 
P(5|F) = 1/6 
P(6|F) = 1/6 

P(1|L) = 1/10 
P(2|L) = 1/10 
P(3|L) = 1/10 
P(4|L) = 1/10 
P(5|L) = 1/10 
P(6|L) = 1/2 



A HMM is memory-less 

 
 
At each time step t,  
the only thing that affects future states  
is the current state πt 
 K 

1 

… 

2 



Definition of a hidden Markov model 

Definition: A hidden Markov model (HMM) 
•  Alphabet  Σ = { b1, b2, …, bM } 
•  Set of states  Q = { 1, ..., K } 
•  Transition probabilities between any two states 

   
  aij = transition prob from state i to state j 
  ai1 + … + aiK = 1,   for all states i = 1…K 

 
•  Start probabilities a0i 

 
  a01 + … + a0K = 1 

 
•  Emission probabilities within each state 
 

  ei(b) = P( xi = b | πi = k) 
  ei(b1) + … + ei(bM) = 1,   for all states i = 1…K 

K 

1 

… 

2 

End Probabilities ai0 
 

in Durbin; not needed 



A HMM is memory-less 

 
 
At each time step t,  
the only thing that affects future states  
is the current state πt 
 
P(πt+1 =  k | “whatever happened so far”) = 
P(πt+1 =  k | π1, π2, …, πt, x1, x2, …, xt)  = 
P(πt+1 =  k | πt) 
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A HMM is memory-less 

 
 
At each time step t,  
the only thing that affects xt  
is the current state πt 
 
P(xt =  b | “whatever happened so far”) = 
P(xt = b | π1, π2, …, πt, x1, x2, …, xt-1)  = 
P(xt = b | πt) 
 

K 
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… 

2 



A parse of a sequence 

Given a sequence x = x1……xN, 
A parse of x is a sequence of states π = π1, ……, πN 
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Generating a sequence by the model 

Given a HMM, we can generate a sequence of length n as follows: 
 
1.  Start at state π1 according to prob a0π1  
2.  Emit letter x1 according to prob eπ1(x1) 
3.  Go to state π2 according to prob aπ1π2 

4.  … until emitting xn  
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Likelihood of a parse 

 
 
Given a sequence x = x1……xN 
and a parse π = π1, ……, πN, 
 
 
To find how likely this scenario is: 
  (given our HMM) 
 
P(x, π) = P(x1, …, xN, π1, ……, πN) = 

    P(xN | πN) P(πN | πN-1) ……P(x2 | π2) P(π2 | π1) P(x1 | π1) P(π1) = 
     a0π1 aπ1π2……aπN-1πN eπ1(x1)……eπN(xN)  
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Likelihood of a parse 

 
 
Given a sequence x = x1……xN 
and a parse π = π1, ……, πN, 
 
 
To find how likely this scenario is: 
  (given our HMM) 
 
P(x, π) = P(x1, …, xN, π1, ……, πN) = 

    P(xN | πN) P(πN | πN-1) ……P(x2 | π2) P(π2 | π1) P(x1 | π1) P(π1) = 
     a0π1 aπ1π2……aπN-1πN eπ1(x1)……eπN(xN)  
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A compact way to write  
a0π1 aπ1π2……aπN-1πN eπ1(x1)……eπN(xN) 
 
Enumerate all parameters aij and ei(b); n params 
Example:  
a0Fair : θ1; a0Loaded : θ2; … eLoaded(6) = θ18 
  
Then, count in x and π the # of times each 
parameter j = 1, …, n occurs 
 
F(j, x, π) = # parameter θj occurs in (x, π) 
 
(call F(.,.,.) the feature counts)   Then, 
 

P(x, π) = Πj=1…n θj
F(j, x, π) = 

 

  = exp[Σj=1…n log(θj)×F(j, x, π)]  



Example: the dishonest casino 

Let the sequence of rolls be: 
 
x = 1, 2, 1, 5, 6, 2, 1, 5, 2, 4 
 
Then, what is the likelihood of 
 
π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair? 

(say initial probs a0Fair = ½, aoLoaded = ½) 
 
½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) = 
 
½ × (1/6)10 × (0.95)9 = .00000000521158647211 ~= 0.5 × 10-9 



Example: the dishonest casino 

So, the likelihood the die is fair in this run 
is just 0.521 × 10-9 
 
What is the likelihood of 
 
π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded? 

½ × P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) = 
 
½ × (1/10)9 × (1/2)1 (0.95)9 = .00000000015756235243 ~= 0.16 × 10-9 

 
Therefore, it somewhat more likely that all the rolls are done with the 

fair die, than that they are all done with the loaded die 



Example: the dishonest casino 

Let the sequence of rolls be: 
 
x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6 
 
Now, what is the likelihood π = F, F, …, F? 

½ × (1/6)10 × (0.95)9 ~= 0.5 × 10-9, same as before 
 
What is the likelihood 
 
π = L, L, …, L? 
 
½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 ~= 0.5 × 10-7 
 
So, it is 100 times more likely the die is loaded 



Question # 1 – Evaluation 

GIVEN 
 
A sequence of rolls by the casino player 
 
1245526462146146136136661664661636616366163616515615115146123562344 
 
 
 

QUESTION 
 
How likely is this sequence, given our model of how the casino works? 
 
This is the EVALUATION problem in HMMs 

Prob = 1.3 x 10-35 



Question # 2 – Decoding 

GIVEN 
 
A sequence of rolls by the casino player 
 
1245526462146146136136661664661636616366163616515615115146123562344 
 
 
 

QUESTION 
 
What portion of the sequence was generated with the fair die, and what 

portion with the loaded die? 
 
This is the DECODING question in HMMs 

FAIR LOADED FAIR 



Question # 3 – Learning 

GIVEN 
 
A sequence of rolls by the casino player 
 
1245526462146146136136661664661636616366163616515615115146123562344 
 
 
 

QUESTION 
 
How “loaded” is the loaded die? How “fair” is the fair die? How often 

does the casino player change from fair to loaded, and back? 
 
This is the LEARNING question in HMMs 

Prob(6) = 64% 



The three main questions on HMMs 

1.  Evaluation 
 
GIVEN  a HMM M,  and a sequence x, 
FIND  Prob[ x | M ] 

2.  Decoding 

GIVEN  a HMM M,  and a sequence x, 
FIND  the sequence π of states that maximizes P[ x, π | M ] 
 

3.  Learning 
 
GIVEN  a HMM M, with unspecified transition/emission probs.,   

   and a sequence x, 
 
FIND  parameters θ = (ei(.), aij) that maximize P[ x | θ ] 



Let’s not be confused by notation 

P[ x | M ]:  The probability that sequence x was generated by  
  the model 

 
   The model is: architecture (#states, etc) 
              + parameters θ = aij, ei(.) 
    

 
 
So, P[x | M]  is the same with P[ x | θ ], and P[ x ], when the architecture, 

and the parameters, respectively, are implied 
 
 
Similarly, P[ x, π | M ], P[ x, π | θ ] and P[ x, π ] are the same when the 

architecture, and the parameters, are implied 
 
 
In the LEARNING problem we always write P[ x | θ ] to emphasize that we 

are seeking the θ* that maximizes P[ x | θ ] 



Problem 1: Decoding 

Find the most likely parse of a 
sequence 



Decoding 

GIVEN x = x1x2……xN 
 
Find π = π1, ……, πN, 

 to maximize P[ x, π ] 
 
 
π* = argmaxπ P[ x, π ] 
 
Maximizes a0π1 eπ1(x1) aπ1π2……aπN-1πN eπN(xN) 
 
Dynamic Programming! 
 
Vk(i) = max{π1… πi-1} P[x1…xi-1, π1, …, πi-1, xi, πi = k] 

       
  = Prob. of most likely sequence of states ending at     

    state πi = k 
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Given that we end up in 
state k at step i,  
maximize product to the 
left and right 



Decoding – main idea 

Inductive assumption: Given that for all states k,  
     and for a fixed position i, 

 
  Vk(i) = max{π1… πi-1} P[x1…xi-1, π1, …, πi-1, xi, πi = k] 

 
What is Vl(i+1)? 
 
From definition,  
 
Vl(i+1) = max{π1… πi}P[ x1…xi, π1, …, πi, xi+1, πi+1 = l ] 

        = max{π1… πi}P(xi+1, πi+1 = l | x1…xi, π1,…, πi) P[x1…xi, π1,…, πi] 
         = max{π1… πi}P(xi+1, πi+1 = l | πi ) P[x1…xi-1, π1, …, πi-1, xi, πi] 

        = maxk [P(xi+1, πi+1 = l | πi=k) max{π1… πi-1}P[x1…xi-1,π1,…,πi-1, xi,πi=k]]  
        = maxk [ P(xi+1 | πi+1 = l ) P(πi+1 = l | πi=k) Vk(i) ] 
        = el(xi+1) maxk akl Vk(i) 



The Viterbi Algorithm 

Input: x = x1……xN 
 
Initialization: 

 V0(0) = 1    (0 is the imaginary first position) 
 Vk(0) = 0, for all k > 0 

 
Iteration: 

 Vj(i)   = ej(xi) × maxk akj Vk(i – 1) 
 

 Ptrj(i)  = argmaxk akj Vk(i – 1) 
 
Termination: 

 P(x, π*) = maxk Vk(N) 
 
Traceback: 

  πN* = argmaxk Vk(N) 
  πi-1*  = Ptrπi (i) 



The Viterbi Algorithm 

Similar to “aligning” a set of states to a sequence 
 
Time: 

  O(K2N) 
Space: 

  O(KN) 

x1   x2   x3 ………………………………………..xN 

State 1 
2 

K 

Vj(i) 



Viterbi Algorithm – a practical detail 

Underflows are a significant problem 
 

P[ x1,…., xi, π1, …, πi ] =  a0π1 aπ1π2……aπi eπ1(x1)……eπi(xi) 
 
These numbers become extremely small – underflow  
 
 
Solution: Take the logs of all values 
 

Vl(i) = log ek(xi) + maxk [ Vk(i-1) + log akl ] 
 
 



Example 

Let x be a long sequence with a portion of ~ 1/6 6’s,  
  followed by a portion of ~ ½ 6’s… 

 
x = 123456123456…12345 6626364656…1626364656 
 
Then, it is not hard to show that optimal parse is (exercise): 
 

   FFF…………………...F LLL………………………...L 
 
6 characters  “123456” parsed as F, contribute .956×(1/6)6              = 1.6×10-5 

             parsed as L, contribute .956×(1/2)1×(1/10)5 = 0.4×10-5 
 

          “162636” parsed as F, contribute .956×(1/6)6              = 1.6×10-5 
            parsed as L, contribute .956×(1/2)3×(1/10)3 =  9.0×10-5 



Problem 2: Evaluation 

Find the likelihood a sequence 
is generated by the model 

 



Generating a sequence by the model 

Given a HMM, we can generate a sequence of length n as follows: 
 
1.  Start at state π1 according to prob a0π1  
2.  Emit letter x1 according to prob eπ1(x1) 
3.  Go to state π2 according to prob aπ1π2 

4.  … until emitting xn  
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A couple of questions 

Given a sequence x, 
 
•  What is the probability that x was generated by the model? 

•  Given a position i, what is the most likely state that emitted xi? 

Example: the dishonest casino   
  
 Say x = 12341…23162616364616234112…21341 
  

 
 Most likely path: π = FF……F 
  (too “unlikely” to transition F → L → F) 
 However: marked letters more likely to be L than unmarked letters 

P(box: FFFFFFFFFFF) =  
(1/6)11 * 0.9512 =  
2.76-9 * 0.54 = 
1.49-9 
 
P(box: LLLLLLLLLLL) = 
[ (1/2)6 * (1/10)5 ] * 0.9510 * 0.052 = 
1.56*10-7   *  1.5-3

 = 

0.23-9 

F F 



Evaluation 

 
We will develop algorithms that allow us to compute: 
 

 P(x)   Probability of x given the model 
  
 P(xi…xj)  Probability of a substring of x given the model 

 
 P(πi = k | x)  “Posterior” probability that the ith state is k, given x 
     
  A more refined measure of which states x may be in 



The Forward Algorithm 

We want to calculate 
 
P(x) = probability of x, given the HMM 
 
Sum over all possible ways of generating x: 
 

   P(x) =  Σπ P(x, π)  =  Σπ P(x | π) P(π)  
 
To avoid summing over an exponential number of paths π, define  
 

   fk(i) = P(x1…xi, πi = k)  (the forward probability) 
 

“generate i first characters of x and end up in state k” 



The Forward Algorithm – derivation 

Define the forward probability: 
 
 
fk(i) = P(x1…xi, πi = k)  
 

   = Σπ1…πi-1 P(x1…xi-1, π1,…, πi-1, πi = k) ek(xi) 
 

   = Σl Σπ1…πi-2 P(x1…xi-1, π1,…, πi-2, πi-1 = l) alk ek(xi) 
 

   = Σl P(x1…xi-1, πi-1 = l) alk ek(xi) 
 

   = ek(xi) Σl fl(i – 1 ) alk 
 



The Forward Algorithm 

We can compute fk(i) for all k, i, using dynamic programming! 
 
Initialization:   

 f0(0) = 1 
 fk(0) = 0, for all k > 0 

 
Iteration: 

 fk(i) = ek(xi) Σl fl(i – 1) alk 

 
Termination: 

 P(x) = Σk fk(N) 
 



Relation between Forward and Viterbi 

  VITERBI 
 
Initialization: 

 V0(0) = 1 
 Vk(0) = 0, for all k > 0 

 
Iteration: 
 

 Vj(i)  = ej(xi)  maxk Vk(i – 1) akj  
 
Termination: 
 

 P(x, π*) =  maxk Vk(N) 

  FORWARD 
 
Initialization:   

 f0(0) = 1 
 fk(0) = 0, for all k > 0 

 
Iteration: 
 

 fl(i) = el(xi) Σk fk(i – 1) akl 

 
Termination: 

  

 P(x) = Σk fk(N) 



Motivation for the Backward Algorithm 

We want to compute 
 

 P(πi = k | x), 
 
the probability distribution on the ith position, given x 
 
We start by computing 
 
P(πi = k, x) = P(x1…xi, πi = k, xi+1…xN) 

       = P(x1…xi, πi = k) P(xi+1…xN | x1…xi, πi = k)  
       = P(x1…xi, πi = k) P(xi+1…xN | πi = k)  

 
 
 
Then, P(πi = k | x) = P(πi = k, x) / P(x) 

Forward, fk(i)  Backward, bk(i)  



The Backward Algorithm – derivation 

Define the backward probability: 
 

 bk(i) = P(xi+1…xN | πi = k)  “starting from ith state = k, generate rest of x” 
 

        = Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1, …, πN | πi = k) 
 

        = Σl Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1 = l, πi+2, …, πN | πi = k) 
 

        = Σl el(xi+1) akl Σπi+1…πN P(xi+2, …, xN, πi+2, …, πN | πi+1 = l) 
 

        = Σl el(xi+1) akl bl(i+1) 



The Backward Algorithm 

 
We can compute bk(i) for all k, i, using dynamic programming 
 
Initialization:   
 

 bk(N) = 1, for all k 
 
Iteration: 
 

 bk(i) = Σl el(xi+1) akl bl(i+1) 
 
Termination: 

  
 P(x) = Σl a0l el(x1) bl(1) 



Computational Complexity 

 
What is the running time, and space required, for Forward, and Backward? 
 

   
    Time:   O(K2N) 
    Space: O(KN) 

 
 
Useful implementation technique to avoid underflows 
 

 Viterbi:            sum of logs 
 Forward/Backward:  rescaling at each few positions by multiplying by a 

              constant 



Posterior Decoding 

We can now calculate 
  
    fk(i) bk(i) 
 P(πi = k | x) =  –––––––       
          P(x) 

 
Then, we can ask 
 

 What is the most likely state at position i of sequence x: 
 
Define π^ by Posterior Decoding: 
 

    π^
i = argmaxk P(πi = k | x)   

P(πi = k | x) =  
 
P(πi = k , x)/P(x) =  
 
P(x1, …, xi, πi = k, xi+1, … xn) / P(x) = 
 
P(x1, …, xi, πi = k) P(xi+1, … xn | πi = k) / P(x) = 
 
fk(i) bk(i) / P(x) 



Posterior Decoding 

•  For each state,  

§  Posterior Decoding gives us a curve of likelihood of state for each 
position 

§  That is sometimes more informative than Viterbi path π* 

•  Posterior Decoding may give an invalid sequence of 
states (of prob 0) 

§  Why? 

 



Posterior Decoding 

•  P(πi = k | x)   = Σπ P(π | x) 1(πi = k)  

   = Σ {π:π[i] = k} P(π | x) 

x1    x2    x3 …………………………………………… xN 

State 1 

l P(πi=l|x) 

k 

1(ψ) = 1, if ψ is true 
           0, otherwise 



Viterbi, Forward, Backward 

  VITERBI 
 
Initialization: 

 V0(0) = 1 
 Vk(0) = 0, for all k > 0 

 
Iteration: 
 
 Vl(i) = el(xi)  maxk Vk(i-1) akl  
 
Termination: 
 
   P(x, π*) =  maxk Vk(N) 
 

  FORWARD 
 
Initialization:   

 f0(0) = 1 
 fk(0) = 0, for all k > 0 

 
Iteration: 
 

 fl(i) = el(xi) Σk fk(i-1) akl 

 
Termination: 

  
 P(x) = Σk fk(N) 

BACKWARD 
 
Initialization:   

 bk(N) = 1, for all k 
 
 
Iteration: 
 

bl(i) = Σk el(xi+1) akl bk(i+1) 
 
Termination: 

  

   P(x) = Σk a0k ek(x1) bk(1) 


