
Heuristic Local Alignerers

1.  The basic indexing & extension technique

2.  Indexing: techniques to improve sensitivity
 Pairs of Words, Patterns

3.  Systems for local alignment

Indexing-based local alignment

Dictionary:
 All words of length k (~10)
 Alignment initiated between

 words of alignment score ≥ T
 (typically T = k)

Alignment:

 Ungapped extensions until score
 below statistical threshold

Output:

 All local alignments with score
 > statistical threshold

……

……

query

DB

query

scan

Indexing-based local alignment—
Extensions

A C G A A G T A A G G T C C A G T

C

T
 G

A

 T

C
 C

 T

G

G

A
 T

T

 G
 C

G

A

Gapped extensions until
threshold

•  Extensions with gaps
until score < C below
best score so far

Output:

GTAAGGTCCAGT
GTTAGGTC-AGT

Sensitivity-Speed Tradeoff

long words
(k = 15)

short words
(k = 7)

Sensitivity ü
Speed ü

Kent WJ, Genome Research 2002

Sens.

Speed

X%

Sensitivity-Speed Tradeoff

Methods to improve sensitivity/speed

1.  Using pairs of words

2.  Using inexact words

3.  Patterns—non consecutive positions

……ATAACGGACGACTGATTACACTGATTCTTAC……

……GGCACGGACCAGTGACTACTCTGATTCCCAG……

……ATAACGGACGACTGATTACACTGATTCTTAC……

……GGCGCCGACGAGTGATTACACAGATTGCCAG……

TTTGATTACACAGAT
 T G TT CAC G

Measured improvement

Kent WJ, Genome Research 2002

Non-consecutive words—Patterns

Patterns increase the likelihood of at least one match within a long
conserved region

3 common

5 common

7 common

Consecutive Positions Non-Consecutive Positions

6 common

On a 100-long 70% conserved region:
 Consecutive Non-consecutive

Expected # hits: 1.07 0.97
Prob[at least one hit]: 0.30 0.47

Advantage of Patterns

11 positions

11 positions

10 positions

Multiple patterns

•  K patterns
§  Takes K times longer to scan
§  Patterns can complement one another

•  Computational problem:
§  Given: a model (prob distribution) for homology between two regions
§  Find: best set of K patterns that maximizes Prob(at least one match)

TTTGATTACACAGAT
 T G TT CAC G
 T G T C CAG
 TTGATT A G

Buhler et al. RECOMB 2003
Sun & Buhler RECOMB 2004

How long does it take
to search the query?

Hidden Markov Models
1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Example: The Dishonest Casino

A casino has two dice:
•  Fair die

 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
•  Loaded die

 P(1) = P(2) = P(3) = P(5) = 1/10
 P(6) = 1/2

Casino player switches back-&-forth between
fair and loaded die once every 20 turns

Game:
1.  You bet $1
2.  You roll (always with a fair die)
3.  Casino player rolls (maybe with fair die,

maybe with loaded die)
4.  Highest number wins $2

Question # 1 – Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Prob = 1.3 x 10-35

Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what

portion with the loaded die?

This is the DECODING question in HMMs

FAIR LOADED FAIR

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

Prob(6) = 64%

The dishonest casino model

FAIR LOADED

0.05

0.05

0.95 0.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

A HMM is memory-less

At each time step t,
the only thing that affects future states
is the current state πt
 K

1

…

2

Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)
•  Alphabet Σ = { b1, b2, …, bM }
•  Set of states Q = { 1, ..., K }
•  Transition probabilities between any two states

 aij = transition prob from state i to state j
 ai1 + … + aiK = 1, for all states i = 1…K

•  Start probabilities a0i

 a01 + … + a0K = 1

•  Emission probabilities within each state

 ei(b) = P(xi = b | πi = k)
 ei(b1) + … + ei(bM) = 1, for all states i = 1…K

K

1

…

2

End Probabilities ai0

in Durbin; not needed

A HMM is memory-less

At each time step t,
the only thing that affects future states
is the current state πt

P(πt+1 = k | “whatever happened so far”) =
P(πt+1 = k | π1, π2, …, πt, x1, x2, …, xt) =
P(πt+1 = k | πt)

K

1

…

2

A HMM is memory-less

At each time step t,
the only thing that affects xt
is the current state πt

P(xt = b | “whatever happened so far”) =
P(xt = b | π1, π2, …, πt, x1, x2, …, xt-1) =
P(xt = b | πt)

K

1

…

2

A parse of a sequence

Given a sequence x = x1……xN,
A parse of x is a sequence of states π = π1, ……, πN

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1.  Start at state π1 according to prob a0π1
2.  Emit letter x1 according to prob eπ1(x1)
3.  Go to state π2 according to prob aπ1π2

4.  … until emitting xn

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xn

2

1

K

2
0

e2(x1)

a02

Likelihood of a parse

Given a sequence x = x1……xN
and a parse π = π1, ……, πN,

To find how likely this scenario is:
 (given our HMM)

P(x, π) = P(x1, …, xN, π1, ……, πN) =

 P(xN | πN) P(πN | πN-1) ……P(x2 | π2) P(π2 | π1) P(x1 | π1) P(π1) =
 a0π1 aπ1π2……aπN-1πN eπ1(x1)……eπN(xN)

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Likelihood of a parse

Given a sequence x = x1……xN
and a parse π = π1, ……, πN,

To find how likely this scenario is:
 (given our HMM)

P(x, π) = P(x1, …, xN, π1, ……, πN) =

 P(xN | πN) P(πN | πN-1) ……P(x2 | π2) P(π2 | π1) P(x1 | π1) P(π1) =
 a0π1 aπ1π2……aπN-1πN eπ1(x1)……eπN(xN)

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

A compact way to write
a0π1 aπ1π2……aπN-1πN eπ1(x1)……eπN(xN)

Enumerate all parameters aij and ei(b); n params
Example:
a0Fair : θ1; a0Loaded : θ2; … eLoaded(6) = θ18

Then, count in x and π the # of times each
parameter j = 1, …, n occurs

F(j, x, π) = # parameter θj occurs in (x, π)

(call F(.,.,.) the feature counts) Then,

P(x, π) = Πj=1…n θj
F(j, x, π) =

 = exp[Σj=1…n log(θj)×F(j, x, π)]

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 5, 2, 4

Then, what is the likelihood of

π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 ~= 0.5 × 10-9

Example: the dishonest casino

So, the likelihood the die is fair in this run
is just 0.521 × 10-9

What is the likelihood of

π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,

Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) =

½ × (1/10)9 × (1/2)1 (0.95)9 = .00000000015756235243 ~= 0.16 × 10-9

Therefore, it somewhat more likely that all the rolls are done with the

fair die, than that they are all done with the loaded die

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?

½ × (1/6)10 × (0.95)9 ~= 0.5 × 10-9, same as before

What is the likelihood

π = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 ~= 0.5 × 10-7

So, it is 100 times more likely the die is loaded

Question # 1 – Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Prob = 1.3 x 10-35

Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what

portion with the loaded die?

This is the DECODING question in HMMs

FAIR LOADED FAIR

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

Prob(6) = 64%

The three main questions on HMMs

1.  Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[x | M]

2.  Decoding

GIVEN a HMM M, and a sequence x,
FIND the sequence π of states that maximizes P[x, π | M]

3.  Learning

GIVEN a HMM M, with unspecified transition/emission probs.,

 and a sequence x,

FIND parameters θ = (ei(.), aij) that maximize P[x | θ]

Let’s not be confused by notation

P[x | M]: The probability that sequence x was generated by
 the model

 The model is: architecture (#states, etc)
 + parameters θ = aij, ei(.)

So, P[x | M] is the same with P[x | θ], and P[x], when the architecture,

and the parameters, respectively, are implied

Similarly, P[x, π | M], P[x, π | θ] and P[x, π] are the same when the

architecture, and the parameters, are implied

In the LEARNING problem we always write P[x | θ] to emphasize that we

are seeking the θ* that maximizes P[x | θ]

Problem 1: Decoding

Find the most likely parse of a
sequence

Decoding

GIVEN x = x1x2……xN

Find π = π1, ……, πN,

 to maximize P[x, π]

π* = argmaxπ P[x, π]

Maximizes a0π1 eπ1(x1) aπ1π2……aπN-1πN eπN(xN)

Dynamic Programming!

Vk(i) = max{π1… πi-1} P[x1…xi-1, π1, …, πi-1, xi, πi = k]

 = Prob. of most likely sequence of states ending at

 state πi = k

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xK

2

1

K

2

Given that we end up in
state k at step i,
maximize product to the
left and right

Decoding – main idea

Inductive assumption: Given that for all states k,
 and for a fixed position i,

 Vk(i) = max{π1… πi-1} P[x1…xi-1, π1, …, πi-1, xi, πi = k]

What is Vl(i+1)?

From definition,

Vl(i+1) = max{π1… πi}P[x1…xi, π1, …, πi, xi+1, πi+1 = l]

 = max{π1… πi}P(xi+1, πi+1 = l | x1…xi, π1,…, πi) P[x1…xi, π1,…, πi]
 = max{π1… πi}P(xi+1, πi+1 = l | πi) P[x1…xi-1, π1, …, πi-1, xi, πi]

 = maxk [P(xi+1, πi+1 = l | πi=k) max{π1… πi-1}P[x1…xi-1,π1,…,πi-1, xi,πi=k]]
 = maxk [P(xi+1 | πi+1 = l) P(πi+1 = l | πi=k) Vk(i)]
 = el(xi+1) maxk akl Vk(i)

The Viterbi Algorithm

Input: x = x1……xN

Initialization:

 V0(0) = 1 (0 is the imaginary first position)
 Vk(0) = 0, for all k > 0

Iteration:

 Vj(i) = ej(xi) × maxk akj Vk(i – 1)

 Ptrj(i) = argmaxk akj Vk(i – 1)

Termination:

 P(x, π*) = maxk Vk(N)

Traceback:

 πN* = argmaxk Vk(N)
 πi-1* = Ptrπi (i)

The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time:

 O(K2N)
Space:

 O(KN)

x1 x2 x3 ………………………………………..xN

State 1
2

K

Vj(i)

Viterbi Algorithm – a practical detail

Underflows are a significant problem

P[x1,…., xi, π1, …, πi] = a0π1 aπ1π2……aπi eπ1(x1)……eπi(xi)

These numbers become extremely small – underflow

Solution: Take the logs of all values

Vl(i) = log ek(xi) + maxk [Vk(i-1) + log akl]

Example

Let x be a long sequence with a portion of ~ 1/6 6’s,
 followed by a portion of ~ ½ 6’s…

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

 FFF…………………...F LLL………………………...L

6 characters “123456” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

 parsed as L, contribute .956×(1/2)1×(1/10)5 = 0.4×10-5

 “162636” parsed as F, contribute .956×(1/6)6 = 1.6×10-5
 parsed as L, contribute .956×(1/2)3×(1/10)3 = 9.0×10-5

Problem 2: Evaluation

Find the likelihood a sequence
is generated by the model

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1.  Start at state π1 according to prob a0π1
2.  Emit letter x1 according to prob eπ1(x1)
3.  Go to state π2 according to prob aπ1π2

4.  … until emitting xn

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xn

2

1

K

2
0

e2(x1)

a02

A couple of questions

Given a sequence x,

•  What is the probability that x was generated by the model?

•  Given a position i, what is the most likely state that emitted xi?

Example: the dishonest casino

 Say x = 12341…23162616364616234112…21341

 Most likely path: π = FF……F
 (too “unlikely” to transition F → L → F)
 However: marked letters more likely to be L than unmarked letters

P(box: FFFFFFFFFFF) =
(1/6)11 * 0.9512 =
2.76-9 * 0.54 =
1.49-9

P(box: LLLLLLLLLLL) =
[(1/2)6 * (1/10)5] * 0.9510 * 0.052 =
1.56*10-7 * 1.5-3

 =

0.23-9

F F

Evaluation

We will develop algorithms that allow us to compute:

 P(x) Probability of x given the model

 P(xi…xj) Probability of a substring of x given the model

 P(πi = k | x) “Posterior” probability that the ith state is k, given x

 A more refined measure of which states x may be in

The Forward Algorithm

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

 P(x) = Σπ P(x, π) = Σπ P(x | π) P(π)

To avoid summing over an exponential number of paths π, define

 fk(i) = P(x1…xi, πi = k) (the forward probability)

“generate i first characters of x and end up in state k”

The Forward Algorithm – derivation

Define the forward probability:

fk(i) = P(x1…xi, πi = k)

 = Σπ1…πi-1 P(x1…xi-1, π1,…, πi-1, πi = k) ek(xi)

 = Σl Σπ1…πi-2 P(x1…xi-1, π1,…, πi-2, πi-1 = l) alk ek(xi)

 = Σl P(x1…xi-1, πi-1 = l) alk ek(xi)

 = ek(xi) Σl fl(i – 1) alk

The Forward Algorithm

We can compute fk(i) for all k, i, using dynamic programming!

Initialization:

 f0(0) = 1
 fk(0) = 0, for all k > 0

Iteration:

 fk(i) = ek(xi) Σl fl(i – 1) alk

Termination:

 P(x) = Σk fk(N)

Relation between Forward and Viterbi

 VITERBI

Initialization:

 V0(0) = 1
 Vk(0) = 0, for all k > 0

Iteration:

 Vj(i) = ej(xi) maxk Vk(i – 1) akj

Termination:

 P(x, π*) = maxk Vk(N)

 FORWARD

Initialization:

 f0(0) = 1
 fk(0) = 0, for all k > 0

Iteration:

 fl(i) = el(xi) Σk fk(i – 1) akl

Termination:

 P(x) = Σk fk(N)

Motivation for the Backward Algorithm

We want to compute

 P(πi = k | x),

the probability distribution on the ith position, given x

We start by computing

P(πi = k, x) = P(x1…xi, πi = k, xi+1…xN)

 = P(x1…xi, πi = k) P(xi+1…xN | x1…xi, πi = k)
 = P(x1…xi, πi = k) P(xi+1…xN | πi = k)

Then, P(πi = k | x) = P(πi = k, x) / P(x)

Forward, fk(i) Backward, bk(i)

The Backward Algorithm – derivation

Define the backward probability:

 bk(i) = P(xi+1…xN | πi = k) “starting from ith state = k, generate rest of x”

 = Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1, …, πN | πi = k)

 = Σl Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1 = l, πi+2, …, πN | πi = k)

 = Σl el(xi+1) akl Σπi+1…πN P(xi+2, …, xN, πi+2, …, πN | πi+1 = l)

 = Σl el(xi+1) akl bl(i+1)

The Backward Algorithm

We can compute bk(i) for all k, i, using dynamic programming

Initialization:

 bk(N) = 1, for all k

Iteration:

 bk(i) = Σl el(xi+1) akl bl(i+1)

Termination:

 P(x) = Σl a0l el(x1) bl(1)

Computational Complexity

What is the running time, and space required, for Forward, and Backward?

 Time: O(K2N)
 Space: O(KN)

Useful implementation technique to avoid underflows

 Viterbi: sum of logs
 Forward/Backward: rescaling at each few positions by multiplying by a

 constant

Posterior Decoding

We can now calculate

 fk(i) bk(i)
 P(πi = k | x) = –––––––
 P(x)

Then, we can ask

 What is the most likely state at position i of sequence x:

Define π^ by Posterior Decoding:

 π^
i = argmaxk P(πi = k | x)

P(πi = k | x) =

P(πi = k , x)/P(x) =

P(x1, …, xi, πi = k, xi+1, … xn) / P(x) =

P(x1, …, xi, πi = k) P(xi+1, … xn | πi = k) / P(x) =

fk(i) bk(i) / P(x)

Posterior Decoding

•  For each state,

§  Posterior Decoding gives us a curve of likelihood of state for each
position

§  That is sometimes more informative than Viterbi path π*

•  Posterior Decoding may give an invalid sequence of
states (of prob 0)

§  Why?

Posterior Decoding

•  P(πi = k | x) = Σπ P(π | x) 1(πi = k)

 = Σ {π:π[i] = k} P(π | x)

x1 x2 x3 …………………………………………… xN

State 1

l P(πi=l|x)

k

1(ψ) = 1, if ψ is true
 0, otherwise

Viterbi, Forward, Backward

 VITERBI

Initialization:

 V0(0) = 1
 Vk(0) = 0, for all k > 0

Iteration:

 Vl(i) = el(xi) maxk Vk(i-1) akl

Termination:

 P(x, π*) = maxk Vk(N)

 FORWARD

Initialization:

 f0(0) = 1
 fk(0) = 0, for all k > 0

Iteration:

 fl(i) = el(xi) Σk fk(i-1) akl

Termination:

 P(x) = Σk fk(N)

BACKWARD

Initialization:

 bk(N) = 1, for all k

Iteration:

bl(i) = Σk el(xi+1) akl bk(i+1)

Termination:

 P(x) = Σk a0k ek(x1) bk(1)

