Heuristic Local Alignerers

1. The basic indexing & extension technique

2. Indexing: techniques to improve sensitivity
Pairs of Words, Patterns

3. Systems for local alignment
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Indexing-based local alignment o
Dictionary: = e L
All words of length k (~10) == query
Alignment initiated between
words of alignment score = T
(typically T = k)
Alignment: —
Ungapped extensions until score scan
below statistical threshold OB

Output:
All local alignments with score
> statistical threshold

query



Indexing-based local alighment— ceee

Extensions °°

ACGAAGTAAGGT CC CAGT

Gapped extensions until
threshold

- Extensions with gaps
until score < C below
best score so far

Output:

GTAAGGTCCAGT
GTTAGGTC-AGT

CTGATCICTGGATTA GCGA
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S itivity-S d Tradeoff 44
ensitivity-opee raageo o
long words | short words
X% (k = 15) (k=7)
Sensitivity \/
Speed \/
Table 3. Sensltivity and Speclificity of Single Perfect Nucleotlde K-mer Matches as a Search Criterlon
7 8 9 10 1 12 13 14
A. 81% 0.974 0.915 0.833 0.726 0.607 0.486 0.373 0.314
83% 0.988 0.953 0.897 0.815 0.711 0.595 0.478 0.415
85% 0.996 0.978 0.945 0.888 0.808 0.707 0.594 0.532
87% 0.999 0.992 0.975 0.942 0.888 0.811 0.714 0.659
Sens. 89% 1.000 0.998 0.991 0.976 0.946 0.897 0.824 0.782
91% 1.000 1.000 0.998 0.993 0.981 0.956 0.912 0.886
930 1.000 1.000 1.000 0.999 0.995 0.987 0.968 0.957
950 1.000 1.000 1.000 1.000 0.999 0.998 0.994 0.991
97% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
S d B. K 7 8 9 10 1 12 13 14
pee F 1.3e+07 2.9e+06 635783 143051 32512 7451 1719 399

(A) Columns are for K sizes of 7-14. Rows represent various percentage identities between the homologous sequences. The table entries show
the fraction of homologies detected as calculated from equation 3 assuming a homologous region of 100 bases. The larger the value of K, the

fewer homologies are detected.

(B) K represents the size of the perfect match. F shows how many perfect matches of this size expected to occur by chance according to

equation 4 in a genome of 3 billion bases using a query of 500 bases.

Kent WJ, Genome Research 2002



Sensitivity-Speed Tradeoff

Methods to improve sensitivity/speed

1 . USI ng pa I rS Of WO rdS ...... ATAECG:GAClSACTGATTACAETG‘I}TT]ITTAC ......

2. Using inexact words

...... ATAACGGACGACIGATTACACTGA

A

\ 4

TCTTAC......

...... GGCGCCGAC GAGII‘GATTACACAGAr

'TGCCAG......

3. Patterns—non consecutive positions

TTOGATTACACAGAT
T G TT CAC G



000
0000
0000
. 000
MePcl irad imnravanmant °°
Table 7. Sensltivity and Specificity of Multiple (2 and 3) Perfect Nucleotide K-mer Matches as a Search Criterlon
28 2,9 2,10 2,11 2,12 3,8 3,9 3,10 3,11 3,12
A. 81% 0.681 0.508 0.348 0.220 0.129 0.389 0.221 0.112 0.051 0.021
' 83% 0.790 0.638 0.475 0.326 0.208 0.529 0.339 0.193 0.099 0.045
85% 0.879 0.762 0.615 0.460 0.318 0.676 0.487 0.313 0.180 0.093
87% 0.942 0.866 0.752 0.611 0.461 0.809 0.649 0.470 0.305 0.177
89% 0.978 0.940 0.868 0.761 0.625 0.910 0.801 0.648 0.476 0.314
91% 0.994 0.980 0.947 0.884 0.787 0.969 0914 0.815 0.673 0.505
93% 0.999 0.996 0.986 0.962 0.912 0.993 0.976 0.933 0.851 0.722
95% 1.000 1.000 0.998 0.993 0.979 0.999 0.997 0.987 0.961 0.902
97% 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.997 0.987
B. NK 2,8 29 2,10 2,11 2,12 3,8 39 3,10 3,11 3,12
F 524 27 1.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0

" (A) Columns are for N sizes of 2 and 3 and K sizes of 8-12. Rows represent various percentage identities between the homologous sequences.
The table entries show the fraction of homologies detected as calculated by equation 10. (B) N and K represent the number and size of the
near-perfect matches, respectively. F shows how many perfect clustered matches expected to occur by chance according to equation 14 in a

- translated genome of 3 billion bases using a query of 167 amino acids.

Table 5. Sensltivity and Specificity of Single Near-Perfect (One Mismatch Allowed) Nucleotide K-mer Matches as a
Search Criterlon

12 13 14 15 16 17 18 19 20 21 22
A. 81% 0.945 0.880 0.831 0.721 0.657 0.526 0465 0408 0.356 0.255 0.218
83% 0.975 0.936 0.904 0.820 0.770 0.649  0.591 0.535 0480 0.36] 0.318
85% 0.991 0.971 0.954 0.900 0.865 0.767 0719 0.669 0.619 0490 0.445
87% 0.997 0.990 0.983 0.954 0.935 0.867 0833 0796 0757 0.634 0.591
89% 1.000 0.997 0.995 0.984 0.976 0939 0920 0897 0872 0775 0.741
91% 1.000 1.000 0.999 0.996 0.994 0.979  0.971 0962 0950 0.890 0.869
93% 1.000 1.000 1.000 0.999 0.999 0.996 0994 0.991 0.988 0.963 0954
95% 1.000 1.000 1.000 1.000 1.000 1.000 0999 0999 0999 0.994 0.992
97% 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000  1.000 1.000  1.000
B. K 12 13 14 15 16 17 18 19 20 21 22
E 275671 68775 17163 4284 1070 267 67 17 4.2 1.0 0.3

(A) Columns are for K sizes of 12-22. Rows represent various percentage identities between the homologous sequences. The table entries show
the fraction of homologies detected as calculated by equation 6 assuming a homologous region of 100 bases. (B) K represents the size of the

near-perfect match. F shows how many perfect matches of this size expected to occur by chance accordirKent/\WJ) Genome‘Research 2002
billion bases using a query of 500 bases.



Non-consecutive words—Patterns °°

Patterns increase the likelihood of at least one match within a long
conserved region

Consecutive Positions Non-Consecutive Positions

o 17990000 9090000gepe
G G eboese  @oecbecbbece

On a 100-long 70% conserved region:
Consecutive Non-consecutive
Expected # hits: 1.07 0.97

Prob[at least one hit]: 0.30 0.47




Advantage of Patterns

11 positions 1
\

—~> 1101001 10010101 111 co—

11 positions 22

Q.8
/

10 positions &.7

L > T

> T 1 ce—

03 04 Q5 0.8
smiany



Multiple patterns o

T00CAT000000C T
T G TT CAC G

T G T C CAG How long does it take
to search the query?
TTGATT A G

Seed Pattern Pr[detection] Alignments Found Time (s)
Te 10,1,2,3,4,5.6,7,8,0, 10} 0.600 66410 15802
Te10 {0,1,2.3,4,5,6,7,8,0) 0.707 73539 24120
Toh 10,1,2,4,7,9,12,13, 15, 16, 17} 0.601 75518 16717
T No 10,1,2,4,7,8,11,13, 16, 17, 18} 0.683 75231 16225
TN 10,1,2,3.5,6,7,10,12, 13, 14} 0.709 75547 16817
mi+m {0.1,2,4,5,9,14, 16,17, 18,19, 20 }+ 0.744 77211 22033
10,1,2,3.4,6,7,8,10,11,12, 13}

Buhler et al. RECOMB 2003
Sun & Buhler RECOMB 2004



Hidden Markov Models




Example: The Dishonest Casino

A casino has two dice:

 Fairdie

P(1)=P(2)=P(3)=P(5) =P(6) =1/6
 Loaded die

P(1)=P(2) =P(3) = P(5) =1/10

P(6) = 1/2

Casino player switches back-&-forth between
fair and loaded die once every 20 turns

Game:
1. You bet $1
You roll (always with a fair die)

Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2

SN




Question # 1 — Evaluation :°

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

SN— -
—

Prob = 1.3 x 10-3°

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs



Question # 2 — Decoding o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344,

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what
portion with the loaded die?

This is the DECODING question in HMMs



Question # 3 — Learning o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344
— _/

~
Prob(6) = 64%

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs



The dishonest casino model :°

0.95 | 0.95

LOADED

P( P(1|L) = 1/10
P(2|F) = 1/6 P(2|L) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) =1/6 P(4|L) = 1/10
P( P(
P( P(

1|F) = 1/6

5|F) = 1/6 5|L) = 1/10
6|F) = 1/6 B|L) = 1/2



A HMM is memory-less

At each time step t,
the only thing that affects future states
Is the current state




Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)

Alphabet  X={Db,, b,, ..., by}
SetofstatesQ={1, ..., K}
Transition probabilities between any two states

a; = transition prob from state i to state |
a,+..+a,=1, forallstatesi=1...K

Start probabilities a, End les aj

Qg+ ... +ag =1 in Durbin; not needed

Emission probabilities within each state

ei(b) = P(x,

= | =
el(by) + ... +e(by) = for all statesi=1...K



A HMM is memory-less

At each time step t,

the only thing that affects future states
Is the current state

P(m.1 = k| "whatever happened so far”) =
P(mtuq = K| mq, T, o0y T X, Xy oy X)) =
Pt = K| m)




A HMM is memory-less

At each time step t,
the only thing that affects x;
Is the current state

P(x; = b | "whatever happened so far”) =
P(thbln»],ﬂ;z, ...,Tct, X1,X21 ""Xt-’l) =
P(x,=b | m)




A parse of a sequence

Given a sequence X = X;...... XN
A parse of x is a sequence of states t =, ......, TON




Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1.
2. Emit letter x, according to prob e_,(x,)
3.
4

Start at state m, according to prob a,_,

Go to state =, according to prob a_,_,
... until emitting x,




Likelihood of a parse o

Given a sequence X = X;...... XN
and aparse x =m, ......, TONs

To Tlnd how likely this scenario is: X, X, X4 Xy
(given our HMM)

P(X, ) = P(Xq, ..y XNy TTqy ceenee, ) =
P(xy | ty) P(my | 7o) «oeee P(x, | ty) P(mty | mtq) P(X4 | 7tq) P(mtq) =

Aom1 Axqg2- -+ - ArN-AaN x1(X1)- - En(X)



Likelihood of a parse

Given a sequence x = X,
and a parse & = 7.,

To find how likely this scenarig
(given our HMM)

A compact way to write
a()1:1 an1n2 """ anN-1nN e7[:1 (X1) """ enN(XN)

Enumerate all parameters a; and e(b); n params
Example:

AgFair - 015 AgLoaded + 02 ++ ©Loaded(6) = 048

Then, count in x and & the # of times each
parameterj=1, ..., n occurs

F(j, x, @) = # parameter 6, occurs in (x, )

(call F(.,.,.) the feature counts) Then,
P(x, n) = Iqu=1...n 60X m =

= exp[2-;._, log(8)xF(j, x, m)]




Example: the dishonest casino o

Let the sequence of rolls be:

&

x=1,2,1,5,6,2,1,5,2,4

Then, what is the likelihood of

rt = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs age,ir = 72, Ay oaded = 72)

Y2 x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

Y% x (1/6)10 x (0.95)° = .00000000521158647211 ~= 0.5 x 109



Example: the dishonest casino

So, the likelihood the die is fair in this run
is just 0.521 x 10-°

What is the likelihood of

it = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

Y2 x P(1 | Loaded) P(Loaded, Loaded) ... P(4 | Loaded) =
Y2 x (1/10)° x (1/2)? (0.95)° = .00000000015756235243 ~= 0.16 x 10°

Therefore, it somewhat more likely that all the rolls are done with the
fair die, than that they are all done with the loaded die



Example: the dishonest casino o

Let the sequence of rolls be:

&

x=1,6,6,5,6,2,6,6,3,6

Now, what is the likelihood x = F, F, ..., F?

Y5 x (1/6)10 x (0.95)° ~= 0.5 x 109, same as before
What is the likelihood

n=1L,L,..L?

Y2 x (1/10)* x (1/2)° (0.95)° = .00000049238235134735 ~= 0.5 x 107

So, it is 100 times more likely the die is loaded



Question # 1 — Evaluation :°

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

SN— -
—

Prob = 1.3 x 10-3°

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs



Question # 2 — Decoding o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344,

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what
portion with the loaded die?

This is the DECODING question in HMMs



Question # 3 — Learning o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344
— _/

~
Prob(6) = 64%

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs



The three main questions on HMMs o

1. Evaluation

GIVEN a HMM M, and a sequence X,
FIND Prob[ x | M ]
2. Decoding
GIVEN a HMM M, and a sequence X,
FIND the sequence x of states that maximizes P[ x, & | M ]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence X,

FIND parameters 6 = (g(.), a;) that maximize P[x | 6 ]



Let’s not be confused by notation o
P[x|M]I: The probability that sequence x was generated by
the model

The model is: architecture (#states, etc)
+ parameters 6 = a;, (.)

So, P[x | M] is the same with P[ x | 6 ], and P[ x ], when the architecture,
and the parameters, respectively, are implied

Similarly, P[ x, x| M ], P[ x, ® | 6 ] and P[ x, &t | are the same when the
architecture, and the parameters, are implied

In the LEARNING problem we always write P[ x | 6 ] to emphasize that we
are seeking the 6* that maximizes P[ x | 6



Problem 1: Decoding

Find the most likely parse of a
sequence



Decoding o

GIVEN x = xX,...... XN

Findx =m,, ...... , TN
to maximize P[ x, m ]

n =argmax_ P[ X, m]

MaXImlzeS aOJ‘E1 en1(x1) aJ‘l:1J'l:2 """ aJ‘lSN-1J'lSN eJ‘EN(xN) Given that we end up in

state k at step i,
Dynamic Programming! maximize product to the
left and right

Vili) = maXgy  airy P Xigs 7045 s T, X5 1 = K]

= Prob. of most likely sequence of states ending at
state w, = k
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Decoding — main idea .
Inductive assumption: Given that for all states k,
and for a fixed position i,
Vi(i) = maxg gy PIXqooXiq, 7, oons T, X5 75 = K]
What is V,(i+1)?
From definition,
= maXgy P X, T = 1 Xq0 X, 7,00, ) PIXqL X, T, 0]
= MaXe ayPXiers Ty = T ) PXg X, 70, o0 g, X, 1)
= max [P(Xiq, Tuq = 1] 0=K) Maxgq gy PG X000, X5,m0=K]]

- man[ F)(X|+1 | s = I ) I:)(T':|+1 =1 | Jtl_k (I) ]
= €(Xj4q) max, ay V(i)



The Viterbi Algorithm o

Input: X = X;...... XN

Initialization:
V,(0) = 1 (0 is the imaginary first position)
V, (0)=0, forallk>0

lteration:
Ptr;(i) = argmax, ay; V(i—1)

Termination:
P(x, ®*) = max, V,(N)

Traceback:
my” = argmax, V,(N)
m4* = Ptry (i)




The Viterbi Algorithm o

X1 X2 X3 ----------------------------------------------- XN
State 1 X
2
0
K /

Similar to “aligning” a set of states to a sequence

Time:
O(K2N)

Space:
O(KN)




Viterbi Algorithm — a practical detail o

Underflows are a significant problem
P[ x1,----, Xi, n1, mmmy Jti ] - a0n1 an1n2 ------ aﬂ:i en1(x1) ------ eni(Xi)

These numbers become extremely small — underflow

Solution: Take the logs of all values

V|(i) = log e,(x;) + max, [ V,(i-1) + log a,, ]
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Example .
Let x be a long sequence with a portion of ~ 1/6 6’s,
followed by a portion of ~ 72 6’s...
X = 123456123456...12345 6626364656...1626364656
Then, it is not hard to show that optimal parse is (exercise):
FFF. o, FLLL...ooooei e, L
6 characters “123456” parsed as F, contribute .95%x(1/6)° =1.6x10°
parsed as L, contribute .95%x(1/2)'x(1/10)°> = 0.4x10°
“162636” parsed as F, contribute .95%x(1/6)° =1.6x10°

parsed as L, contribute .95%x(1/2)3x(1/10)3 = 9.0x10°



Problem 2: Evaluation

Find the likelihood a sequence
IS generated by the model



Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1.
2. Emit letter x, according to prob e_,(x,)
3.
4

Start at state m, according to prob a,_,

Go to state =, according to prob a_,_,
... until emitting x,




A couple of questions o

P(box: FFFFFFFFFFF) =
(1/6)" * 0.95'2 =

2.76° *0.54 =

«  What is the probability that | 1.49°

Given a sequence X,

P(box: LLLLLLLLLLL) =

[ (1/2)8 * (1/10)5 ] * 0.9510 * 0.052 =
1.56*107 * 1.53=

Example: the dishonest ca .23

* Given a position i, what is tt

Say x = 12341...23162616364616234112...21341

~—

F F

Most likely path: @ = FF...... F
(too “unlikely” to transition F — L — F)
However: marked letters more likely to be L than unmarked letters



Evaluation °°

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(X;...X;) Probability of a substring of x given the model
P(r, =k | x) “Posterior” probability that the it" state is k, given x

A more refined measure of which states x may be in




The Forward Algorithm o

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
P(x)= 2_P(x, ) = 2_P(x| x) P(x)

To avoid summing over an exponential number of paths =, define
f (i) = P(X4...x, m = K)  (the forward probability)

“generate i first characters of x and end up in state k”



The Forward Algorithm — derivation o

Define the forward probability:

= 2 it PO X, 705, T, = K) €4(X)
= Z| 2 iz P(Xqe-Xiq5 Tyeeny g, Tiq = 1) @ €4(X)
= 2 P(Xq... X4, T = 1) @ €4(X)

= e (X)) Z| fi(i—1)ay



The Forward Algorithm o

We can compute f,(i) for all k, i, using dynamic programming!

Initialization:
fo(0) = 1
f(0)=0,forallk>0

lteration:

fi(i) = ex(x) Z| fii—1) ay

Termination:

P(x) = 2, f(N)




Relation between Forward and Viterbi :°

VITERBI FORWARD
Initialization: Initialization:
V(0) = 1 fo(0) = 1
V,(0)=0, forallk>0 f(0)=0,forallk>0
lteration: lteration:
Vi(i) =ex) max, V,(i—1)ay fi(i) = e(x;) 2 fili — 1) ay
Termination: Termination:

P(x, m*) = max, V,(N) P(x) = 2, f.(N)



Motivation for the Backward Algorithm

We want to compute
P(m = k | x),
the probability distribution on the it" position, given x
We start by computing
P(m, = K, X) = P(Xq...X;, T, = K, Xipq...Xy)

= P(X1___Xi, J'Ci = k) P(Xi+1"'XN | X1...Xi, J'Ci = k)
=P(X1---X;, m; = K) P (X1 Xy | 7 = k)

Forward, f, (i) Backward, b,(i)

Then, P(w, = k | X) = P(m, = k, x) / P(x)
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The Backward Algorithm — derivation o
Define the backward probability:
b (i) = P(Xisq..-Xy | T = K) “starting from " state = k, generate rest of x”
= 2t Pt Xiazs -0 Xpo Tty s Ty | 7 = K)
= 2 2w Par Xiazs oos X T =1, Ty ooy 7y | 71 = K)

= Z| €(X+1) Ay 2ni+1...nN P(Xis2s «ves Xns Tiags oves Ty | Tiuq = 1)

= 2, &(X41) 8 by(i+1)



The Backward Algorithm o

We can compute b,(i) for all k, i, using dynamic programming

Initialization:

b.(N) =1, forall k

Iteration:

bi(i) = 2 (Xiur) @y bi(i+1)

Termination:

P(x) = 2, ag &(x;) b(1)



Computational Complexity o

What is the running time, and space required, for Forward, and Backward?

Time: O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each few positions by multiplying by a
constant
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Posterior Decoding o
We can now calculate P(m =k x) =
P(x, =k, x)/P(x) =
£ iV b
P(x, =k | x) = )50 P(xs, . =K, X, oo Xp) [ P(X) =
P(x) P(X;, . = K) P(Xo1, ... X, | = K) / P(X) =

Then, we can ask

fi(i) by(i) / P(x)

What is the most likely state at position i of sequence x:

Define =" by Posterior Decoding:

i, = argmax,

P =k | x)




Posterior Decoding o

* For each state,

Posterior Decoding gives us a curve of likelihood of state for each
position

That is sometimes more informative than Viterbi path =

« Posterior Decoding may give an invalid sequence of
states (of prob 0)

Why?



Posterior Decoding o
D Xy
State 1 ;’\\/\ /&
P (=1l ><%
\// \\;;
K N \ /\/\/
P =k|x) =2 P(m|x)1(m = k) 10p) = 1, if  is true

0, otherwise

=2 (ot =k POTIX)



Viterbi, Forward, Backward

VITERBI FORWARD
Initialization: Initialization:
V(0) = 1 f(0) = 1
V,(0)=0,forallk>0 f(0)=0, forallk >0
Iteration: Iteration:
Vi(i) = e(x;) max, V\(i-1) ay £(i) = e/(x;) 2y f(i-1) ay
Termination: Termination:

P(x, #*) = max, V,(N) P(x) = Z f(N)

BACKWARD

Initialization:

b.(N) =1, for all k

Iteration:
by(i) = 2y e(x;+1) a by (i+1)

Termination:

P(x) = 2k Aok €x(Xq) by(1)



