Hidden Markov Models




HiSeq X & NextSeq

NextSeq 500 Sequencing System Performance Parameters

NEXTSEQ 500 HIGH OUTPUT KIT *

READ LENGTH TOTAL TIMEt OuTPUT

NEXTSEQ 500 MID OUTPUT KIT *

2 x 150 bp ~29 hrs 100-120 Gb
2 x 75 bp 18 hrs 50-60 Gb
1 x 75 bp 11 hrs 25-30 Gb

Reads Passing Filter

NEXTSEQ 500 HIGH OUTPUT KIT

Single Reads Up to 400 Million

Paired-End Reads Up to 800 million

READ LENGTH TOTAL TIMEt ouTPUT
2 x 150 bp 26 hrs 32.5-39 Gb
2 x 75bp 15 hrs 16.25-19.5 Gb

NEXTSEQ 500 MID OUTPUTKIT

Single Reads Up to 130 Million

Paired-End Reads Up to 260 Million



Viterbi, Forward, Backward

VITERBI FORWARD
Initialization: Initialization:
V(0) = 1 f(0) = 1
V,(0)=0,forallk>0 f(0)=0, forallk >0
Iteration: Iteration:
Vi(i) = e(x;) max, V\(i-1) ay £(i) = e/(x;) 2y f(i-1) ay
Termination: Termination:

P(x, #*) = max, V,(N) P(x) = Z f(N)

BACKWARD

Initialization:

b.(N) =1, for all k

Iteration:
by(i) = 2y e(x;+1) a by (i+1)

Termination:

P(x) = 2k Aok €x(Xq) by(1)



Variants of HMMs




Higher-order HMMs o

How do we model “memory” larger than one time point?

Py =1 m =k) A
P =1 m=k m_4=]) i

A second order HMM with K states is equivalent to a first order HMM
with K2 states

ayr(prev = H)
ayr(prev =T)

»
»

state H)

»”1
<«

aru(prev = H)
ary(prev=T)




Similar Algorithms to 1st Order

P, =l|m =k, m_=]j)

V(i) =max{ V(i—1) + ...

Time? Space?

}



Modeling the Duration of States o
1-p
Length distribution of region X:
p q
E[lx] = 1/(1-p)
P
1-q

« Geometric distribution, with mean 1/(1-p)

This is a significant disadvantage of HMMs

Several solutions exist for modeling different length distributions



in genes
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Solution 1: Chain several states :°

1-p

Disadvantage: Still very inflexible
l, = C + geometric with mean 1/(1-p)



Solution 2: Negative binomial
distribution o
P P P

Duration in X: m turns, where
During first m — 1 turns, exactly n — 1 arrows to next state are followed
During mt" turn, an arrow to next state is followed

m — 1 m — 1
P(lx =m) = n—1] (1= p)pitb e nE | NS e



Example: genes in prokaryotes o
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Solution 3:  Duration modeling o

Upon entering a state:

1. Choose duration d, according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs

< F > d<D; > X;.. . Xjsg.1
Pf

Disadvantage: Increase in complexity of Viterbi:
Warning, Rabiner's
Time: O(D) tutorial claims O(D?)
Space: O(1) & O(D) increases

where D = maximum duration of state



Viterbi with duration modeling o

emissions emissions

—CF D>
d<D; > P; t @ P,
transitions

l

XI...XI+d_1 XJ...XJ+d_1

Recall original iteration:

Precompute
cumulative
values

New iteration: O

©)

Vi(i) = max, maxy_q _p V(i —d) x P(d) x a, x Hj=i-d+1...iel(xj)



Learning

Re-estimate the parameters of the
model based on training data



Two learning scenarios o

1. Estimation when the “right answer” is known

Examples:

GIVEN:  a genomic region X = X,...X4 g00.000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

2. Estimation when the “right answer” is unknown

Examples:

GIVEN:  the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

QUESTION: Update the parameters 6 of the model to maximize P(x|0)



1.

When the states are known e

Given X = X4...Xy
for which the true & = ...y is known,

Define:
Ay = # times k—| transition occurs in
E,(b) = # times state k in @ emits b in x

We can show that the maximum likelihood parameters 6 (maximize P(x|0)) are:

A E(b)
Qg = — e (b) =
2 Ay 2 Ey(c)




1.

When the states are known :

Intuition: When we know the underlying states,

Best estimate is the normalized frequency of
transitions & emissions that occur in the training data

Drawback:

Given little data, there may be overfitting:
P(x]|0) is maximized, but 6 is unreasonable
0 probabilities — BAD

Example:
Given 10 casino rolls, we observe
x=2,1, 5, 6, 1, 2, 3, 6, 2, 3
n=F,6 F,6 F, F,F,F,6F,F, F, F

4 4

Then:
arr =1, ap =0
er(1) = 6x(3) = .2,
er(2) = .3; ex(4) = 0; ex(5) = ex(6) = .1



Pseudocounts °°

Solution for small training sets:
Add pseudocounts

Ay = # times k—I transition occurs in © + 1y
E(b) = # times state k in « emits b in x + r.(b)

r» N (b) are pseudocounts representing our prior belief
Larger pseudocounts = Strong priof belief

Small pseudocounts (¢ < 1): just to avoid 0 probabilities



Pseudocounts

Example: dishonest casino

We will observe player for one day, 600 rolls

Reasonable pseudocounts:

foF =ToL=Tro = Mo =15
L =Me =M = =15
(1) =re(2) = ... =r(6) = 20 (strong belief fair is fair)

n(M=r2)=...=r(6)=5 (wait and see for loaded)

Above #s are arbitrary — assigning priors is an art



2. When the states are hidden e

We don’t know the true A, E,(b)

|dea:

« We estimate our “best guess” on what A, E,(b) are
Or, we start with random / uniform values

*  We update the parameters of the model, based on our guess

*  We repeat



2.

When the states are hidden e

Starting with our best guess of a model M, parameters 6:

Given X = X4...Xy
for which the true = = &,...m is unknown,

We can get to a provably more likely parameter set 6
I.e., 0 that increases the probability P(x | 6)

Principle: EXPECTATION MAXIMIZATION

1. Estimate A, E,(b) in the training data
2. Update 6 according to A, E,(b)
3. Repeat 1 & 2, until convergence



Estimating new parameters o

To estimate A, (assume “| 8cyrrent”s in all formulas below)

At each position i of sequence x, find probability transition k—l is used:

P =k, . =1]|X) =
[1/P(X)] x P(m; = K, mipq =1, X4...Xy) = Q/P(X)

where Q = P(X4... X, m = K, w4 = I, Xi1q...XN) =
= P(mw,q =1, Xjpq-- Xy | T = K) P(X4...%, m = K) =
= P(tieq = |, X Xig- - Xy | 71 = K) fi (i) =
= P(Xjug-- XN | Tisq = 1) P(Xieq | g = 1) P(oiq = 1] m = K) i (1) =
= by(i+1) e/(x.) @y fi(i)

fi(i) ay e(x;.q) by(i+1)
So: P(x, =k, ., =1]| x,0) =

P(X | 6current)



Estimating new parameters

So, A, is the E[# times transition k—l, given current 6]
f(i) @y e(Xiq) by(i+1)
A=

P(x|6)

£(i) | b(i+1) |

Similarly,

Ev(b) = [1/P(x | 0)] g | x = by fil) bi(i)



The Baum-Welch Algorithm o

Initialization:
Pick the best-guess for model parameters

(or arbitrary)

Iteration:
Forward
Backward
Calculate A, Ei(b), given B¢yrrent
Calculate new model parameters  Oygy - a4, €x(b)
Calculate new log-likelihood P(X | Onew)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | 6) does not change much



The Baum-Welch Algorithm o

Time Complexity:

# iterations x O(K2N)

- Guaranteed to increase the log likelihood P(x | 6)

* Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial
conditions

* Too many parameters / too large model: Overtraining



Alternative: Viterbi Training o

Initialization: Same

Iteration:
Perform Viterbi, to find &t
Calculate A, E,(b) according to " + pseudocounts
Calculate the new parameters a,, e, (b)

Until convergence

Notes:
Not guaranteed to increase P(x | 0)
Guaranteed to increase P(x | 6, «)
In general, worse performance than Baum-Welch



Pair-HMMs and CRFs

Slide Credits: Chuong B. Do



Quick recap of HMMs o

« Formally, an HMM = (Z, Q, A, a,, ).
alphabet: 2 = {b,, ..., by}
set of states: Q = {1, ..., K}
transition probabilities: A = [a;]
initial state probabillities: aOI
emission probabilities: e;(

LOADED

0.95

0.95
* Example:



Pair-HMMs e

« Consider the HMM = ((Z,; U {n}) x (X, U {n}), Q, A, a,, e).

 Instead of emitting a pair of letters, in some states we may
emit a letter paired with n (the empty string)

For simplicity, assume n is never emitted for both observation
sequences simultaneously

Call the two observation sequences x and y



Application: sequence alignment o

» Consider the following pair-HMM:

1-29

optional

Ve €&z, P(n, c) =P(c, n) = Q(c)

QUESTION: What are the
interpretations of P(c,d) and
Q(c) forc,d € £7?

QUESTION: What does
this model have to do with
alignments?

QUESTION: What is the
average length of a gapped
region in alignments
generated by this model?
Average length of matched
regions?



Recap: Viterbi for single-sequence HMMs o

 Algorithm:

= V(i) =max 1y i P(Xq o0 Xiq, Ty ol g, X, T = K)

= Compute using dynamic programming!



(Broken) Viterbi for pair-HMMs o

* In the single sequence case, we defined
Vi) =max oy g P(Xq o0 Xiq, Ty el T, X, T = K)

* |n the pairwise case,

(X4, Y4q) --- (X;_1, Yi.1) NO longer correspond to the first i — 1
letters of x and y



(Fixed) Viterbi for pair-HMMs o

* Consider this special case:

1-28

[ (1-26)Vy,(i-1,j-1)
Vili, j) = P(x;, y;) max 4 (1-€)V\(i-1,j-1)
(1-g)V(i-1,j-1)

] 6VM(I - 11 J)

e Vl(il J) = Q(Xi) maXx - € V|(| -1 J)

"5V, j- 1)
Vili, ) =Qly max ¢y i - 1)

Vc €z, P(n, ¢) = P(c, n) = Q(c)

 Similar for forward/backward algorithms
(see Durbin et al for details)

QUESTION: What's the computational complexity of DP?



Connection to NW with affine gaps

[ (1-28)Vy(i-1,j-1)
Valiy ) = P(x, y) max 4 (1-€)V(i-1,j-1)
(1'E)VJ(i'1;j‘ 1)

V,(i, j) = Q(x) max I S://h(ﬂi(i -11})1')
L A
I 6 VM(iI J - 1)
V(i j) =Q(yj) max = £V, (i j - 1)

 QUESTION: How would the optimal alignment change if

we divided the probability for every single alignment by

[Tzt g QO TTi= 1y QUY)?



Connection to NW with affine gaps

VM(iI J) = P(Xil y|) MaXx =

Q(x;) Qly;)

V,(i, j) = max 4

[ (1-28)Vyi-1,j-1)
(1-E)V|(i-1,j-1)
(1'E)VJ(i'1;j‘1)

T O Vy(i-1,j))
| eV(i-1,]))

& Vy,(i,j-1)

V(i, j) = max T

* Account for the extra terms “along the way.”

L eVi(i,j-1)



Connection to NW with affine gaps o

log41=78) +log V,,(i-1,j- 1)
log Viy(i,3) = |, _Plx v) + maxq log{1—e*log V(i-1,j-1)

Q(x;) Qly;) log =€+ log V(i-1,j-1)

" log 6+ logV,(i-1,]
log V|(i, j) = max - & g Vuli-1,J)

| loge+logV(i-1,])

[ log 6 +log V,,(i, j- 1)
log V,(i, j) = max T

_ loge+log V (i, j-1)

» Take logs, and ignore a couple terms.



Connection to NW with affine gaps

M(l, J) = S(Xil yj) + max o

Rename!

CM(-1,j-1)
(i-1,j-1)
0i-1,j-1)

T d+M(i-1,j)

I(i, j) = max -

J(i, j) = max T

L e+l1(i-1,])

Cd+M(i,j-1)

L e+J(i,j-1)



