

Hidden Markov Models

HiSeq X & NextSeq

NextSeq 500 Sequencing System Performance Parameters

READ LENGTH	TOTAL TIME!	OUTPUT
2 × 150 bp		100-120 Gb
2 × 75 bp	18 hrs	50-60 Gb
1 × 75 bp	11 hrs	25-30 Gb

READ LENGTH	TOTAL TIME†	OUTPUT
2 × 150 bp	26 hrs	32.5-39 Gb
2 × 75 bp	15 hrs	16.25-19.5 Gb

Reads Passing Filter

NEXTSEQ 500 HIGH OUTPUT KIT

Single Reads	Up to 400 Million
Paired-End Reads	Up to 800 million

NEXTSEQ 500 MID OUTPUT KIT

Single Reads	Up to 130 Million
Paired-End Reads	Up to 260 Million

Viterbi, Forward, Backward

VITERBI

FORWARD

BACKWARD

Initialization:

$$V_0(0) = 1$$

 $V_k(0) = 0$, for all $k > 0$

Initialization:

$$f_0(0) = 1$$

 $f_k(0) = 0$, for all $k > 0$

Initialization:

$$b_k(N) = 1$$
, for all k

Iteration:

$$V_l(i) = e_l(x_i) \max_k V_k(i-1) a_{kl}$$

Iteration:

$$f_{i}(i) = e_{i}(x_{i}) \sum_{k} f_{k}(i-1) a_{ki}$$

Iteration:

$$b_{i}(i) = \sum_{k} e_{i}(x_{i}+1) a_{ki} b_{k}(i+1)$$

Termination:

$$P(x, \pi^*) = \max_k V_k(N)$$

Termination:

$$P(x) = \sum_{k} f_{k}(N)$$

Termination:

$$P(x) = \sum_{k} a_{0k} e_{k}(x_{1}) b_{k}(1)$$

Variants of HMMs

Higher-order HMMs

- How do we model "memory" larger than one time point?
- $P(\pi_{i+1} = I \mid \pi_i = k)$ a_{kl}
- $P(\pi_{i+1} = I \mid \pi_i = k, \pi_{i-1} = j)$ a_{jkl}
- •
- A second order HMM with K states is equivalent to a first order HMM with K² states

Similar Algorithms to 1st Order

•
$$P(\pi_{i+1} = I \mid \pi_i = k, \pi_{i-1} = j)$$

•
$$V_{lk}(i) = max_j \{ V_{kj}(i-1) + ... \}$$

Time? Space?

Modeling the Duration of States

Length distribution of region X:

$$E[I_X] = 1/(1-p)$$

Geometric distribution, with mean 1/(1-p)

This is a significant disadvantage of HMMs

Several solutions exist for modeling different length distributions

Example: exon lengths in genes

Solution 1: Chain several states

Disadvantage: Still very inflexible

 $I_X = C + geometric with mean 1/(1-p)$

Solution 2: Negative binomial distribution

Duration in X: m turns, where

- During first m 1 turns, exactly n 1 arrows to next state are followed
- During mth turn, an arrow to next state is followed

$$P(I_X = m) = {m-1 \choose n-1} (1-p)^{n-1+1} p^{(m-1)-(n-1)} = {m-1 \choose n-1} (1-p)^n p^{m-n}$$

Example: genes in prokaryotes

EasyGene: Prokaryotic gene-finder Shadows

Background

Larsen TS, Krogh A

Negative binomial with n = 3

Solution 3: Duration modeling

Upon entering a state:

- 1. Choose duration d, according to probability distribution
- 2. Generate d letters according to emission probs
- 3. Take a transition to next state according to transition probs

Disadvantage: Increase in complexity of Viterbi;

Time: O(D)

Space: O(1)

Warning, Rabiner's tutorial claims O(D²) & O(D) increases

where D = maximum duration of state

Viterbi with duration modeling

Recall original iteration:

$$VI(i) = max_k V_k(i-1) a_{kl} \times e_l(x_i)$$

Precompute cumulative values

New iteration:

$$V_l(i) = \max_k \max_{d=1...Dl} V_k(i-d) \times P_l(d) \times a_{kl} \times \prod_{j=i-d+1...i} e_l(x_j)$$

Learning

Re-estimate the parameters of the model based on training data

Two learning scenarios

1. Estimation when the "right answer" is known

Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

2. Estimation when the "right answer" is unknown

Examples:

the porcupine genome; we don't know how frequent are the **GIVEN:**

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$

1. When the states are known

Given
$$x = x_1...x_N$$

for which the true $\pi = \pi_1...\pi_N$ is known,

Define:

$$A_{kl}$$
 = # times k→l transition occurs in π
 $E_k(b)$ = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ (maximize $P(x|\theta)$) are:

$$a_{kl} = \frac{A_{kl}}{\sum_{i} A_{ki}}$$

$$e_{k}(b) = \frac{E_{k}(b)}{\sum_{c} E_{k}(c)}$$

1. When the states are known

Intuition: When we know the underlying states,

Best estimate is the normalized frequency of transitions & emissions that occur in the training data

Drawback:

Given little data, there may be **overfitting**: $P(x|\theta)$ is maximized, but θ is unreasonable **0 probabilities – BAD**

Example:

Given 10 casino rolls, we observe

$$x = 2$$
, 1, 5, 6, 1, 2, 3, 6, 2, 3
 $\pi = F$, F

Then:

$$a_{FF} = 1;$$
 $a_{FL} = 0$
 $e_F(1) = e_F(3) = .2;$
 $e_F(2) = .3;$ $e_F(4) = 0;$ $e_F(5) = e_F(6) = .1$

Pseudocounts

Solution for small training sets:

Add pseudocounts

$$A_{kl}$$
 = # times k \rightarrow l transition occurs in π + r_{kl}
 $E_k(b)$ = # times state k in π emits b in x + $r_k(b)$

 r_{kl} , r_{k} (b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts (ϵ < 1): just to avoid 0 probabilities

Pseudocounts

Example: dishonest casino

We will observe player for one day, 600 rolls

Reasonable pseudocounts:

$$\begin{split} r_{0F} &= r_{0L} = r_{F0} = r_{L0} = 1; \\ r_{FL} &= r_{LF} = r_{FF} = r_{LL} = 1; \\ r_{F}(1) &= r_{F}(2) = \dots = r_{F}(6) = 20 \\ r_{L}(1) &= r_{L}(2) = \dots = r_{L}(6) = 5 \end{split} \qquad \text{(strong belief fair is fair)}$$

Above #s are arbitrary – assigning priors is an art

2. When the states are hidden

We don't know the true A_{kl} , $E_k(b)$

Idea:

- We estimate our "best guess" on what A_{kl} , $E_k(b)$ are
 - Or, we start with random / uniform values
- We update the parameters of the model, based on our guess
- We repeat

2. When the states are hidden

Starting with our best guess of a model M, parameters θ :

Given
$$x = x_1...x_N$$

for which the true $\pi = \pi_1...\pi_N$ is unknown,

We can get to a provably more likely parameter set θ *i.e.*, θ that increases the probability $P(x \mid \theta)$

Principle: EXPECTATION MAXIMIZATION

- 1. Estimate A_{kl} , $E_{k}(b)$ in the training data
- 2. Update θ according to A_{kl} , $E_k(b)$
- 3. Repeat 1 & 2, until convergence

To estimate A_{kl} : (assume " $|\theta_{CURRENT}$ ", in all formulas below)

At each position i of sequence x, find probability transition $k\rightarrow l$ is used:

$$P(\pi_i = k, \pi_{i+1} = l \mid x) =$$

$$[1/P(x)] \times P(\pi_i = k, \pi_{i+1} = l, x_1...x_N) = Q/P(x)$$

where Q = P(
$$x_1...x_i$$
, π_i = k, π_{i+1} = I, $x_{i+1}...x_N$) =
= P(π_{i+1} = I, $x_{i+1}...x_N$ | π_i = k) P($x_1...x_i$, π_i = k) =
= P(π_{i+1} = I, $x_{i+1}x_{i+2}...x_N$ | π_i = k) $f_k(i)$ =
= P($x_{i+2}...x_N$ | π_{i+1} = I) P(x_{i+1} | π_{i+1} = I) P(π_{i+1} = I | π_i = k) $f_k(i)$ =
= $b_i(i+1) e_i(x_{i+1}) a_{ki} f_k(i)$

So:
$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \frac{f_k(i) a_{kl} e_l(x_{i+1}) b_l(i+1)}{P(x \mid \theta_{CURRENT})}$$

Estimating new parameters

• So, A_{kl} is the E[# times transition $k\rightarrow l$, given current θ]

$$A_{kl} = \sum_{\mathbf{j}} P(\pi_{\mathbf{i}} = \mathbf{k}, \ \pi_{\mathbf{i}+1} = \mathbf{l} \mid \mathbf{x}, \ \theta) = \sum_{\mathbf{j}} \frac{f_{\mathbf{k}}(\mathbf{i}) \ a_{kl} \ e_{\mathbf{l}}(\mathbf{x}_{\mathbf{i}+1}) \ b_{\mathbf{l}}(\mathbf{i}+1)}{P(\mathbf{x} \mid \theta)}$$

Similarly,

$$E_k(b) = [1/P(x \mid \theta)] \sum_{\{i \mid x_i = b\}} f_k(i) b_k(i)$$

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- Forward
- 2. Backward

3. Calculate A_{kl} , $E_k(b)$, given $\theta_{CURRENT}$

4. Calculate new model parameters θ_{NEW} : a_{kl} , e_{k} (b)

5. Calculate new log-likelihood $P(x \mid \theta_{NEW})$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

The Baum-Welch Algorithm

Time Complexity:

iterations \times O(K²N)

• Guaranteed to increase the log likelihood $P(x \mid \theta)$

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:

- 1. Perform Viterbi, to find π^*
- 2. Calculate A_{kl} , $E_k(b)$ according to π^* + pseudocounts
- 3. Calculate the new parameters a_{kl} , $e_{k}(b)$

Until convergence

Notes:

- Not guaranteed to increase $P(x \mid \theta)$
- Guaranteed to increase $P(x | \theta, \pi^*)$
- In general, worse performance than Baum-Welch

Pair-HMMs and CRFs

Slide Credits: Chuong B. Do

Quick recap of HMMs

- Formally, an HMM = (Σ, Q, A, a_0, e) .
 - alphabet: $\Sigma = \{b_1, ..., b_M\}$
 - set of states: Q = {1, ..., K}
 - transition probabilities: A = [a_{ii}]
 - initial state probabilities: a_{0i}
 - emission probabilities: e_i(b_k)

• Example:

Pair-HMMs

- Consider the HMM = $((\Sigma_1 \cup \{\eta\}) \times (\Sigma_2 \cup \{\eta\}), Q, A, a_0, e)$.
- Instead of emitting a pair of letters, in some states we may emit a letter paired with η (the empty string)
 - For simplicity, assume η is never emitted for both observation sequences simultaneously
 - Call the two observation sequences x and y

Application: sequence alignment

Consider the following pair-HMM:

 $\forall c \in \Sigma$, $P(\eta, c) = P(c, \eta) = Q(c)$

- QUESTION: What are the interpretations of P(c,d) and Q(c) for c,d $\in \Sigma$?
- QUESTION: What does this model have to do with alignments?
- QUESTION: What is the average length of a gapped region in alignments generated by this model? Average length of matched regions?

Recap: Viterbi for single-sequence HMMs

- Algorithm:
 - $V_k(i) = \max_{\pi_1 \dots \pi_{i-1}} P(x_1 \dots x_{i-1}, \pi_1 \dots \pi_{i-1}, x_i, \pi_i = k)$
 - Compute using dynamic programming!

(Broken) Viterbi for pair-HMMs

In the single sequence case, we defined

$$V_{k}(i) = \max_{\pi_{1} \dots \pi_{i-1}} P(x_{1} \dots x_{i-1}, \pi_{1} \dots \pi_{i-1}, x_{i}, \pi_{i} = k)$$
$$= e_{k}(x_{i}) \cdot \max_{j} a_{jk} V_{j}(i - 1)$$

• In the pairwise case,

 $(x_1, y_1) \dots (x_{i-1}, y_{i-1})$ no longer correspond to the first i-1 letters of x and y

(Fixed) Viterbi for pair-HMMs

Consider this special case:

- Similar for forward/backward algorithms
 - (see Durbin et al for details)

QUESTION: What's the computational complexity of DP?

$$V_{M}(i, j) = P(x_{i}, y_{j}) \max \begin{cases} (1 - 2\delta) V_{M}(i - 1, j - 1) \\ (1 - \epsilon) V_{I}(i - 1, j - 1) \\ (1 - \epsilon) V_{J}(i - 1, j - 1) \end{cases}$$

$$V_{I}(i, j) = Q(x_{i}) \max \begin{cases} \delta V_{M}(i - 1, j) \\ \epsilon V_{I}(i - 1, j) \end{cases}$$

$$V_{J}(i, j) = Q(y_{j}) \max \begin{cases} \delta V_{M}(i, j - 1) \\ \epsilon V_{J}(i, j - 1) \end{cases}$$

 QUESTION: How would the optimal alignment change if we divided the probability for every single alignment by ∏_{i=1,...|x|} Q(x_i) ∏_{i=1,...|y|} Q(y_i)?

$$V_{M}(i, j) = \underbrace{P(x_{i}, y_{i}) \max}_{Q(x_{i}) Q(y_{j})} \begin{cases} (1 - 2\delta) V_{M}(i - 1, j - 1) \\ (1 - \epsilon) V_{I}(i - 1, j - 1) \\ (1 - \epsilon) V_{J}(i - 1, j - 1) \end{cases}$$

$$V_{I}(i, j) = \max_{Q(x_{i}) Q(y_{j})} \begin{cases} \delta V_{M}(i - 1, j) \\ \epsilon V_{I}(i - 1, j) \end{cases}$$

$$V_{I}(i, j) = \max_{Q(x_{i}) Q(y_{j})} \begin{cases} \delta V_{M}(i, j - 1) \\ \epsilon V_{I}(i, j - 1) \end{cases}$$

Account for the extra terms "along the way."

$$\begin{split} \log V_{M}(i,j) &= \log \frac{P(x_{i},y_{j})}{Q(x_{i}) \ Q(y_{j})} + \max \begin{cases} \log (1-2\delta) + \log V_{M}(i-1,j-1) \\ \log (1-\epsilon) + \log V_{I}(i-1,j-1) \\ \log (1-\epsilon) + \log V_{J}(i-1,j-1) \end{cases} \\ \log V_{I}(i,j) &= \max \begin{cases} \log \delta + \log V_{M}(i-1,j) \\ \log \epsilon + \log V_{I}(i-1,j) \end{cases} \\ \log V_{J}(i,j) &= \max \end{cases} \begin{cases} \log \delta + \log V_{M}(i,j-1) \\ \log \epsilon + \log V_{J}(i,j-1) \end{cases} \end{split}$$

Take logs, and ignore a couple terms.

$$M(i, j) = S(x_i, y_j) + \max \begin{cases} M(i-1, j-1) \\ I(i-1, j-1) \\ J(i-1, j-1) \end{cases}$$

$$I(i, j) = \max \begin{cases} d + M(i-1, j) \\ e + I(i-1, j) \end{cases}$$

$$J(i, j) = \max \begin{cases} d + M(i, j-1) \\ e + J(i, j-1) \end{cases}$$

Rename!