

Conditional random fields

Definition

Rⁿ

$$P(\pi \mid x) = \frac{exp(\sum_{i=1 \dots \mid x \mid} w^{T}F(\pi_{i}, \pi_{i-1}, x, i))}{\sum_{\pi'} exp(\sum_{i=1 \dots \mid x \mid} w^{T}F(\pi'_{i}, \pi'_{i-1}, x, i))}$$
where
$$F : (state, state, observations, index) \rightarrow \mathbb{R}^{n} \text{ "local feature mapping"}}$$

$$w \in \mathbb{R}^{n}$$
ter vector"

- Summation over all possible state sequences $\pi'_1 \dots \pi'_{|x|}$
- $a^{T}b$ for vectors $a, b \in \mathbb{R}^{n}$ denotes inner product, $\sum_{i=1,...,n} a_{i} b_{i}$

log P(x, π) = log $a_0(\pi_0) + \sum_{i=1 \dots |x|} [\log a(\pi_{i-1}, \pi_i) + \log e_{\pi i}(x_i)]$ • (*) For each component w_j , define F_j to be a 0/1 indicator variable of whether the jth parameter should be included in scoring x, π at position i: Γ = Γ = Γ = Γ

$$W = \begin{bmatrix} \log a_{0}(1) \\ \dots \\ \log a_{0}(K) \\ \log a_{11} \\ \dots \\ \log a_{KK} \\ \log a_{1}(b_{1}) \\ \dots \\ \log e_{K}(b_{M}) \end{bmatrix} \in \mathbb{R}^{n} \quad F(\pi_{i}, \pi_{i-1}, x, i) = \begin{bmatrix} 1\{i = 1 \land \pi_{i-1} = 1\} \\ \dots \\ 1\{i = 1 \land \pi_{i-1} = K\} \\ 1\{\pi_{i-1} = 1 \land \pi_{i} = 1\} \\ \dots \\ 1\{\pi_{i-1} = K \land \pi_{i} = K\} \\ 1\{x_{i} = b_{1} \land \pi_{i} = 1\} \\ \dots \\ 1\{x_{i} = b_{M} \land \pi_{i} = K\} \end{bmatrix} \in \mathbb{R}^{n}$$

• Then, $\log P(x, \pi) = \sum_{i=1 \dots |x|} w^T F(\pi_i, \pi_{i-1}, x, i)$

log P(x,
$$\pi$$
) = $\sum_{i=1 ... |x|} w^T F(\pi_i, \pi_{i-1}, x, i)$

• Equivalently,

$$P(\pi \mid x) = \frac{P(x, \pi)}{\Sigma_{\pi} P(x, \pi)} \qquad \frac{\exp(\sum_{i=1 \dots \mid x \mid} w^{T} F(\pi_{i}, \pi_{i-1}, x, i))}{\sum_{\pi'} \exp(\sum_{i=1 \dots \mid x \mid} w^{T} F(\pi_{i}, \pi_{i-1}, x, i))}$$

• Therefore, an HMM can be converted to an equivalent CRF

• In an HMM, our features were of the form

 $F(\pi_i, \pi_{i-1}, x, i) = F(\pi_i, \pi_{i-1}, x_i, i)$

- I.e., when scoring position i in the sequence, feature only considered the emission x_i at position i.
- Cannot look at other positions (e.g., x_{i-1}, x_{i+1}) since that would involve "emitting" a character more than once - double-counting of probability
- CRFs don't have this restriction
 - Why? Because CRFs don't attempt to model the observations x!

- Casino:
 - Dealer looks at previous 100 positions, and determines whether at least 50 over them had 6's

 $F_{j}(LOADED, FAIR, x, i) = 1\{ x_{i-100} \dots x_{i} has > 50 6s \}$

• CpG islands:

Gene occurs near a CpG island
 F_j(*, EXON, x, i) = 1{ x_{i-1000} ... x_{i+1000} has > 1/16 CpGs }

- Evaluation: Given a sequence of observations x and a sequence of states π , compute P($\pi \mid x$)
- **Decoding:** Given a sequence of observations x, compute the maximum probability sequence of states π_{ML} = arg max_{π} P(π | x)
- Learning: Given a CRF with unspecified parameters w, compute the parameters that maximize the likelihood of π given x, i.e., $w_{ML} = \arg \max_{w} P(\pi \mid x, w)$

Viterbi for CRFs

- Note that: $argmax_{\pi} P(\pi \mid x) = argmax_{\pi}^{\pi} exp(\sum_{i=1 ... \mid x \mid} w^{T}F(\pi_{i}, \pi_{i-1}, x, i))$ $= arg max_{\pi} exp(\sum_{i=1 ... \mid x \mid} w^{T}F(\pi_{i}, \pi_{i-1}, x, i))$ $= arg max_{\pi} \sum_{i=1 ... \mid x \mid} w^{T}F(\pi_{i}, \pi_{i-1}, x, i)$
 - We can derive the following recurrence:

 $V_{k}(i) = \max_{j} [w^{T}F(k, j, x, i) + V_{j}(i-1)]$

• Notes:

- Even though the features may depend on arbitrary positions in x, x is constant. DP depends only on knowing the previous state
- Computing the partition function (denominator) can be done by a similar adaptation of the forward/backward algorithms

Viterbi for CRFs

Viterbi for CRFs

Given that we end up in state k at step i, maximize score to the left and right

X is fixed: => parse to the left of step i, given we end in state k, does not affect parse to the right of step i

Learning CRFs

Key observation: - log P(π | x, w) is a differentiable, convex function of w

Learning CRFs (continued)

Compute partial derivative of log $P(\pi \mid x, w)$ with respect to each parameter w_i, and use the gradient ascent learning rule: Gradient points in the direction of greatest function increase W

The CRF gradient

• It turns out that

$$(\partial/\partial w_j) \log P(\pi \mid x, w) = F_j(x, \pi) - E_{\pi' \sim P(\pi' \mid x, w)} [F_j(x, \pi')]$$

correct value for
jth feature is the current parameters)

- This has a very nice interpretation:
 - We increase parameters for which the correct feature values are greater than the predicted feature values
 - We decrease parameters for which the correct feature values are less than the predicted feature values
- This moves probability mass from incorrect parses to correct parses

DNA Structure

Human chromosomes

- 3,000 million base pairs total
- One replication origin every ~50 kb
- Replication happens only during a short specific period

Cell cycle

- DNA replication happens during a short time period
- Except in very early nonmammalian embryos, most time is spent in G1 doing useful stuff
- Even in cancer cells, most time is spent in G1 because cells don't divide until the daughter cells have grown back to standard cell size, and that requires lots of transcription and protein synthesis.

DNA Sequencing

DNA sequencing

How we obtain the sequence of nucleotides of a species

...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG ACTGATTTAGATACCTGAC TGATTTTAAAAAAATATT...

Human Genome Project

3 billion basepairs \$3 billion

1990: Start

2000: Bill Clinton:

2001: Draft

2003: Finished

"most important scientific discovery in the 20th century"

now what?

Which representative of the species?

Which human?

Answer one:

Answer two: it doesn't matter

Polymorphism rate: number of letter changes between two different members of a species

Humans: ~1/1,000

Other organisms have much higher polymorphism rates

Population size!

Why humans are so similar

130,000 yrs

A small population that interbred reduced the genetic variation

40,000-60,000 yrs

13,000 yrs

Out of Africa ~ 40,000 years ago

Heterozygosity: H H = 4Nu/(1 + 4Nu)u ~ 10^{-8} , N ~ 10^{4} \Rightarrow H ~ 4×10^{-4}

There is never "enough" sequencing

7 billion individuals

Somatic mutations (e.g., HIV, cancer)

Sequencing Growth

Cost of one human genome

- 2004: \$30,000,000
- 2008: \$100,000
- 2010: \$10,000
- **2014**: **\$1,000**
- ???: \$300

How much would you pay for a smartphone?

Ancient sequencing technology – Sanger Gel Electrophoresis

Fluorescent Sanger sequencing trace

Making a Library (present)

Slide Credit: Arend Sidow

Library

- Library is a massively complex mix of -initially- individual, unique fragments
- Library amplification mildly amplifies each fragment to retain the complexity of the mix while obtaining preparative amounts
 - (how many-fold do 10 cycles of PCR amplify the sample?)

Fragment vs Mate pair ('jumping')

(Illumina has new kits/methods with which mate pair libraries can be built with less material)

Illumina cluster concept

Slide Credit: Arend Sidow

Clonally Amplified Molecules on Flow Cell

Reversible Terminators

Slide Credit: Arend Sidow

Sequencing by Synthesis, One Base at a Time

Cycle 1: Add sequencing reagents First base incorporated Remove unincorporated bases Detect signal Cycle 2-n: Add sequencing reagents and repeat

HiSeq X & NextSeq

Preliminary	<u>/ specs:</u>
Run time:	3 days
Output:	1.6 Tb
#reads:	6x10 ⁹
Read lengt	h: 2x150bp

NextSeq 500 Sequencing System Performance Parameters

READ LENGTH	TOTAL TIME [†]	OUTPUT
2 × 150 bp	~29 hrs	100-120 Gb
2 × 75 bp	18 hrs	50-60 Gb
1 × 75 bp	11 hrs	25-30 Gb

READ LENGTH	TOTAL TIME [†]	OUTPUT
2 × 150 bp	26 hrs	32.5-39 Gb

Reads Passing Filter

NEXTSEQ 500 HIGH OUTPUT KIT

1.170.0	 2.1.2	 100	 2011	100

Single Reads	Up to 400 Million

Paired-End Reads Up to 800 million

NEXTSEQ	500	MID	OUTPUT	KIT

Single Reads	Up to 130 Million
Paired-End Reads	Up to 260 Million

Read Mapping

Slide Credit: Arend Sidow

Variation Discovery

$\overline{\mathbb{C}}$		\$		chr6:	52,	74,9)14-;	52,1	175,(003			s	ho	win	g 8	9 b	р							è.	÷		e	C)	10G	100N	1 1M	10	K 1	00	e	C)	E	Book	<u>≺</u> narl		Tra	- acks			i tion	s		? Hel	lp
	52,174	4,920			52	,174,	,93(D			52	.174	1,94	10			5	2,17	4,9	50			ļ	Ruler	74,	96	כ			52	,174	1,97	0			52	2,17	4,9	80			5	2,1	74,	99	0			5	2,1	75,(00
CTG	гссо	CA	ст	СТ	ΤT	AT	ΤТ	G	AC	: C1	ГΤ	СС	C	GG	iA,	٩G	G	C	GT	G	GG	A	ARe	ierer T C		AC	G	GΑ	A	GG	CA	G	GΑ	Т	GC	СС	C	٨G	G	GC	С٦	Т	TG	λ	ТС	CA	CA	Τ	C٦	٢C	Ċ,	A
\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	H	xa9	\leftarrow	<	\leftarrow	<	\leftarrow	RefS	eq G	enes	¥	<	\leftarrow	<	\leftarrow	~	\leftarrow	\leftarrow	Ho	ka9	\leftarrow	\leftarrow	<	\leftarrow	\leftarrow	<	\leftarrow	<	<	\leftarrow	\leftarrow																	
ctg	tee		c t	c t	+ +	a t	+ +	ā	2.0		+ +	~ (σ σ	2	οσ	ā		a †	ā (F1_5	j-4 r	cvd (3/18/	10 Aİ	ignn	ient	La	2 0	τσ	<u> </u>	ā	σ												+ /		0.0	+	<u>c 1</u>		с	2
ctg	tccd	ca	ct	ct	tt	at	tt	g	ac	: c t	ίť	cc	: c	5 5 g g	a	аg	g	: c	a t	в g	5 5 g g	a	ас	to	c	go	g.	- a	as	55 Zg	са	g	5 g																		c	
ctg	tccd	са	c t	c t	t t	a t	t t	g	a c	c 1	tt	сс	: c	gg	a	аğ	g (с	a t	g	gg	a	а с	t c	с	ğ c	g ·	- a	a	gg	c a	g	g																			
	tcco																																	tş	ξC																	
ctg	tcco	са																																																		
			t	c t																																																
				t	t t	a t	t t	g	a c	c t	εt	c c	: C	g g	а	a g	g (С	a t	g	g g	a	ас	t c	с	g c	g ·	- a	a	g g	c a	g	g a	tε	ζC	сс	c	a g	g i	gс	c t	t	tg	; a	t o	: a	c a	i t	c t	t c	C	а
							t t	g	a c	c t																																										
												сс																																								
	tcco									t	:t	c c																																								
	tccc																																g a																			
_	tccc													g g	a																		g a																			
_	tccc							-								g	g (g a																			
	tcco tcco										+ +	~ /																					g a																			
	tccd							_												_						_	_			_		_	g a					_	_													
	tccd													σ σ	-	_																	g a g a																			
	tccd																																ga																			
• 8								. 9	u u			~ ~		8 8		- 5																	ga																			
																																	ga																			
																																	ga																			
																																	g a																			
tg	tccd	са	c t	c t	t t	a t	t t	g	a c	c t	tt	c c	: c	g g	a	a g	g			Ŭ													g a																			
tg	tccd	са	c t	c t	t t	a t	t t	g	a c	: c 1	ίt	c c	: c	gg	a	аğ	g (c c	g											_		_	g a					_	_													
tg	tccd	са	c t	c t	t t	a t	t t	g	a c	c 1	ίt	сс	: c	gg	a	a g	g	c c	g														g a																			
tg	tcco	са	c t	c t	t t	a t	t t	g	a c	c 1	ίt	сс	: c	g g	a	a g	g	с	g							c	g						g a																			
tg	tcco	са	c t	c t	t t	a t	t t	g	a c	: c †	ίt	сс	: c	g g	a	a g	g (с	g t	g						C	g	gа	ag	g g	c a	g	g a	tg	ζC	сс	c	a g	g	gс	c t	t	tg	; a	t o	: a	c a	۱t	c t	t c	C	а
	tcco																																																			
tg	tcco	са	c t	c t	t t	a t	t t	g	a c	c t	ίt	сс	: c	g g	a	a g	g (с	g t	g																																
	tccc																																																			
	tcco																																																			
tg	tcco	са	сt	ct	t t	аt	tt	g	a c	ct	ŝt.	C C	¢	g g	a	a g	g	c	gt	g	g g	a	ас	to	c	a c	g i	g a	a	3																						
tg	tcco	са	сt	сt	τt	аt	tt	g	a c	CT	i t	сс	C	g g	a	a g	g (c	gt	g	g g	a	ас	to	с	a c	g i	gа	ag	g g	c a																					
tg	tcco	ca	c t	CT	ττ + +	a t	tt	g	a c	CI	1 L	C C	C C	gg	a	ag	g	C C	g t	g	gg	a	ас	to	C	ac	g	g a	a	s g	c a	g																				
	tccc																																																			
	tcco																																																			
	tcco																																a 2	+																		
- t a	t c c d t c c d	. ca	c t	c t	ιι + +	a t	t t	- B - a	ac	01	 + +	20	10	5 5 0 0	a .	a g a g	s (gι σ+	8 a	5 5 0 0	а †	ac	+ 0		ac	5	5 d 7 2	a	55		s o	g d a a	t -																		
	tccc															4 54	5		÷ι	8	88		ы ч			u u	5			- 5	~ 0	5		~																		
tg	t c c c t c c c																				gσ					a c	g								t C	c c	C C	aφ														s

Slide Credit: Arend Sidow

Amount of variation – types of lesions

Method to sequence longer regions

genomic segment

Two main assembly problems

- De Novo Assembly
- Resequencing

Reconstructing the Sequence (De Novo Assembly)

Cover region with high redundancy

Overlap & extend reads to reconstruct the original genomic region

Definition of Coverage

Length of genomic segment:	G
Number of reads:	Ν
Length of each read:	L.

Definition: Coverage C = N L / G

How much coverage is enough?

Lander-Waterman model: Prob[not covered bp] = e^{-C} Assuming uniform distribution of reads, C=10 results in 1 gapped region /1,000,000 nucleotides

Repeats

Bacterial genomes:5% Mammals:

50%

Repeat types:

- Low-Complexity DNA (e.g. ATATATATACATA...)
- Microsatellite repeats $(a_1...a_k)^N$ where k ~ 3-6

...a_k)^N where k ~ 3-6 (e.g. CAGCAGTAGCAGCACCAG)

• Transposons

- SINE
- LINE
- LTR retroposons

(Short Interspersed Nuclear Elements) e.g., ALU: ~300-long, 10⁶ copies (Long Interspersed Nuclear Elements) ~4000-long, 200,000 copies (Long Terminal Repeats (~700 bp) at each end) cousins of HIV

- Gene Families genes duplicate & then diverge (paralogs)
- **Recent duplications** ~100,000-long, very similar copies

Sequencing and Fragment Assembly

Glued together two distant regions

What can we do about repeats?

Two main approaches:

• Cluster the reads

Link the reads

What can we do about repeats?

Two main approaches:

• Cluster the reads

Link the reads

What can we do about repeats?

Two main approaches:

• Cluster the reads

Link the reads

Sequencing and Fragment Assembly

3x10⁹ nucleotides

Sequencing and Fragment Assembly

AAAAA

Fragment Assembly (in whole-genome shotgun sequencing)

Fragment Assembly

Steps to Assemble a Genome Some Terminology a 500-900 long word that comes read out of sequencer *mate pair* a pair of reads from two ends of the same insert fragment contig a contiguous sequence formed by several overlapping reads with no gaps *supercontig* an ordered and oriented set (scaffold) of contigs, usually by mate pairs →..ACGATTACAATAGGTT... sequence derived from the _ consensus multiple alignment of reads sequene in a contig

aaactgcagtacggatct aaactgcag aactgcagt

gtacggatct tacggatct gggcccaaactgcagtac gggcccaaa ggcccaaa

actgcagta ctgcagtac gtacggatctactacaca gtacggatc tacggatct

> ctactacac tactacaca

(read, pos., word, orient.)
aaactgcag
aactgcagt
actgcagta

gtacggatc tacggatct gggcccaaa ggcccaaac gcccaaact

actgcagta ctgcagtac gtacggatc tacggatct acggatcta

ctactacac tactacaca

(word, read, orient., pos.) aaactgcag aactgcagt acggatcta actgcagta actgcagta cccaaactg cggatctac ctactacac ctgcagtac. ctgcagtac gcccaaact ggcccaaac gggcccaaa gtacggatc gtacggatc tacqqatct cacggatet tactacaca

- Find pairs of reads sharing a k-mer, k ~ 24
- Extend to full alignment throw away if not >98% similar

- Caveat: repeats
 - A k-mer that occurs N times, causes O(N²) read/read comparisons
 - ALU k-mers could cause up to 1,000,000² comparisons
- Solution:
 - Discard all k-mers that occur "too often"
 - Set cutoff to balance sensitivity/speed tradeoff, according to genome at hand and computing resources available

Create local multiple alignments from the overlapping reads

Correct errors using multiple alignment

insert A

replace T with C

correlated errors probably caused by repeats ⇒ disentangle overlaps

TAGATTACACAGATTACTGA TAGATTACACAGATTACTGA TAGATTACACAGATTACTGA

In practice, error correction removes up to 98% of the errors

- Overlap graph:
 - Nodes: reads r₁....r_n
 - Edges: overlaps (r_i, r_i, shift, orientation, score)

Reads that come from two regions of the genome (blue and red) that contain the same repeat

Note: of course, we don't know the "color" of these nodes

We want to merge reads up to potential repeat boundaries

 r_1

 \mathbf{r}_2

 r_3

• Remove transitively inferable overlaps

If read r overlaps to the right reads r₁, r₂, and r₁ overlaps r₂, then (r, r₂) can be inferred by (r, r₁) and (r₁, r₂)

- Repeats shorter than read length are easily resolved
 - Read that spans across a repeat disambiguates order of flanking regions
- Repeats with more base pair diffs than sequencing error rate are OK
 - We throw overlaps between two reads in different copies of the repeat
- To make the genome **appear** less repetitive, try to:
 - Increase read length
 - Decrease sequencing error rate

Role of error correction:

Discards up to 98% of single-letter sequencing errors decreases error rate

- \Rightarrow decreases effective repeat content
- \Rightarrow increases contig length

3. Link Contigs into Supercontigs

Too dense \Rightarrow Overcollapsed

Inconsistent links \Rightarrow Overcollapsed?

3. Link Contigs into Supercontigs

Find all links between unique contigs

Connect contigs incrementally, if ≥ 2 forward-reverse links

supercontig (aka scaffold)

3. Link Contigs into Supercontigs

Fill gaps in supercontigs with paths of repeat contigs

Complex algorithmic step

- Exponential number of paths
- Forward-reverse links

Given sequence x₁...x_N, k-mer length k,
 Graph of 4^k vertices,
 Edges between words with (k-1)-long overlap

4. Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

(Alternative: take maximum-quality letter)