Conditional random fields

Conditional random fields

- Definition

$$
P(\pi \mid x)=\frac{\exp \left(\sum_{i=1} \ldots|x| w^{\top} F\left(\Pi_{i}, \Pi_{i-1}, x, i\right)\right)}{\sum_{\pi}, \exp \left(\sum_{i=1} \ldots|x| W^{\top} F\left(\pi_{i}^{\prime}, \Pi_{i-1}^{\prime}, x, i\right)\right)}
$$

where

> partition coefficient
$\mathrm{F}:\left(\right.$ state, state, observations, index) $\rightarrow \mathrm{R}^{n}$ "local feature mapping"

$$
w \in
$$

R^{n} "parame
ter vector"

- Summation over all possible state sequences $\pi^{\prime}{ }_{1} \ldots \pi^{\prime}{ }_{|x|}$
- $a^{\top} b$ for vectors $a, b \in R^{n}$ denotes inner product, $\sum_{i=1 \ldots n} a_{i} b_{i}$

Relationship with HMMs

$\log P(x, \pi)=\log a_{0}\left(\pi_{0}\right)+\sum_{i=1} \ldots|x|\left[\log a\left(\pi_{i-1}, \pi_{i}\right)+\log e_{\pi i}\left(X_{i}\right)\right]$

- (*) ${ }^{\text {F }}$ or each component w_{j}, define F_{j} to be a $0 / 1$ indicator variable of whether the $j^{\text {th }}$ parameter should be included in scoring x, π at position i:

$$
w=\left[\begin{array}{c}
\log a_{0}(1) \\
\ldots \\
\log a_{0}(K) \\
\log a_{11} \\
\ldots \\
\log a_{K K} \\
\log e_{1}\left(b_{1}\right) \\
\ldots \\
\log e_{K}\left(b_{M}\right)
\end{array}\right] \in R^{n} \quad F\left(\pi_{i}, \pi_{i-1}, x, i\right)=\left[\begin{array}{c}
1\left\{i=1 \wedge \pi_{i-1}=1\right\} \\
1\left\{i=1 \wedge \pi_{i-1}=K\right\} \\
1\left\{\pi_{i-1}=1 \wedge \pi_{i}=1\right\} \\
\ldots \\
1\left\{\pi_{i-1}=K \wedge \pi_{i}=K\right\} \\
1\left\{x_{i}=b_{1} \wedge \pi_{i}=1\right\} \\
\ldots \\
1\left\{x_{i}=b_{M} \wedge \pi_{i}=K\right\}
\end{array}\right] \in R^{n}
$$

- Then, $\log P(x, \pi)=\Sigma_{i=1} \ldots|x| w^{\top} F\left(\pi_{i}, \pi_{i-1}, x, i\right)$

Relationship with HMMs

$$
\log P(x, \pi)=\sum_{i=1 \ldots|x|} w^{\top} F\left(\pi_{i}, \pi_{i-1}, x, i\right)
$$

- Equivalently,

$$
\left.P(\pi \mid x)=\frac{P(x, \pi)}{\sum_{\pi} P(x, \pi)} \quad \frac{\exp \left(\sum_{i=1} \ldots|x|\right.}{} w^{\top} F\left(\pi_{i}, \pi_{i-1}, x, i\right)\right)
$$

- Therefore, an HMM can be converted to an equivalent CRF

CRFS \geq HMMs (continued)

- In an HMM, our features were of the form

$$
F\left(\pi_{i}, \pi_{i-1}, x, i\right)=F\left(\pi_{i}, \pi_{i-1}, x_{i}, i\right)
$$

- l.e., when scoring position i in the sequence, feature only considered the emission x_{i} at position i.
- Cannot look at other positions (e.g., X_{i-1}, x_{i+1}) since that would involve "emitting" a character more than once - double-counting of probability
- CRFs don't have this restriction
- Why? Because CRFs don't attempt to model the observations x!

Examples of non-local features for CRFs

- Casino:
- Dealer looks at previous 100 positions, and determines whether at least 50 over them had 6's

$$
F_{j}(\text { LOADED, FAIR, } x, i)=1\left\{x_{i-100} \ldots x_{i} \text { has }>506 s\right\}
$$

- CpG islands:
- Gene occurs near a CpG island
$F_{j}\left(^{*}, \operatorname{EXON}, x, i\right)=1\left\{x_{i-1000} \ldots x_{i+1000}\right.$ has $\left.>1 / 16 \mathrm{CpGs}\right\}$

3 basic questions for CRFs

- Evaluation: Given a sequence of observations x and a sequence of states π, compute $P(\pi \mid x)$
- Decoding: Given a sequence of observations x, compute the maximum probability sequence of states $\pi_{M L}=\arg \max _{\pi} P(\pi \mid x)$
- Learning: Given a CRF with unspecified parameters w , compute the parameters that maximize the likelihood of π given x, i.e., $W_{M L}=\arg \max _{w} P(\pi \mid x$, w)

Viterbi for CRFs

- Note that:

$$
\begin{aligned}
& \qquad \begin{aligned}
\operatorname{argmax}: & \exp \left(\sum_{i=1} \ldots|x| W^{\top} F\left(\pi_{i}, \Pi_{i-1}, x, i\right)\right) \\
\sum_{\pi}^{\pi}, \exp \left(\sum _ { i = 1 } \ldots | x | W ^ { \top } F \left(\pi_{i}^{\prime}, \Pi_{i-1}^{\prime}, x\right.\right. & i)) \\
& =\arg \max _{\pi} \exp \left(\sum_{i=1} \ldots|x| W^{\top} F\left(\Pi_{i}, \Pi_{i-1}, x, i\right)\right) \\
& =\arg \max _{\pi} \sum_{i=1} \ldots|x| W^{\top} F\left(\pi_{i}, \Pi_{i-1}, x, i\right)
\end{aligned}
\end{aligned}
$$

- We can derive the following recurrence:

$$
V_{k}(i)=\max _{j}\left[w^{\top} F(k, j, x, i)+V_{j}(i-1)\right]
$$

- Notes:
- Even though the features may depend on arbitrary positions in x, x is constant. DP depends only on knowing the previous state
- Computing the partition function (denominator) can be done by a similar adaptation of the forward/backward algorithms

Viterbi for CRFs

Given that we end up in state k at step i, maximize score to the left and right

Viterbi for CRFs

Given that we end up in state k at step i, maximize score to the left and right

X is fixed:
=> parse to the left of step i, given we end in state k, does not affect parse to the right of step i

Learning CRFs

- Key observation: $-\log P(\pi \mid x, w)$ is a differentiable, convex function of w

Any local minimum is a global minimum.

Learning CRFs (continued)

- Compute partial derivative of $\log P(\pi \mid x, w)$ with respect to each parameter w_{j}, and use the gradient ascent learning rule:

Gradient points in the direction of
greatest function increase

The CRF gradient

- It turns out that

$$
\left(\partial / \partial W_{j}\right) \log P(\pi \mid x, w)=F_{j}(x, \pi)-E_{\pi^{\prime} \sim P\left(\pi^{\prime} \mid x, w\right)}\left[F_{j}\left(x, \pi^{\prime}\right)\right]
$$

expected value for jth feature (given the current parameters)

- This has a very nice interpretation:
- We increase parameters for which the correct feature values are greater than the predicted feature values
- We decrease parameters for which the correct feature values are less than the predicted feature values
- This moves probability mass from incorrect parses to correct parses

DNA Structure

DNA structure

Slide Credit: Arend Sidow

Human chromosomes

- 3,000 million base pairs total
- One replication origin every ~50 kb
- Replication happens only during a short specific period

Cell cycle

- DNA replication happens during a short time period
- Except in very early nonmammalian embryos, most time is spent in G1 doing useful stuff
- Even in cancer cells, most time is spent in G1 because cells don't divide until the daughter cells have grown back to standard cell size, and that requires lots of transcription and protein synthesis.

DNA Sequencing

DNA sequencing

How we obtain the sequence of nucleotides of a species

...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG ACTGATTTAGATACCTGAC TGATTTTAAAAAAATATT...

Human Genome Project

now what?

Which representative of the species?

Which human?

Answer one:

Answer two: it doesn't matter

Polymorphism rate: number of letter changes between two different members of a species

Humans: ~1/1,000

Other organisms have much higher polymorphism rates

- Population size!

Why humans are so similar

Heterozygosity: H
$H=4 N u /(1+4 N u)$
$u \sim 10^{-8}, \mathrm{~N} \sim 10^{4}$
$\Rightarrow \mathrm{H} \sim 4 \times 10^{-4}$

A small population that interbred reduced the genetic variation

Out of Africa $\sim 40,000$ years ago

There is never "enough" sequencing

Sequencing Growth

Cost of one human genome

- 2004: \$30,000,000
- 2008: \$100,000
- 2010: \$10,000
- 2014: \$1,000
- ???: \$300

How much would you pay for a smartphone?

Ancient sequencing technology - Sanger Vectors

DNA

Ancient sequencing technology - Sanger Gel Electrophoresis

1. Start at primer (restriction site)
2. Grow DNA chain
3. Include dideoxynucleoside (modified a, c, g, t)
4. Stops reaction at all possible points
5. Separate products with length, using gel electrophoresis

DNA Length

Fluorescent Sanger sequencing trace

Lane signal

(Real fluorescent signals from a lane/capillary are much uglier than this).

A bunch of magic to boost signal/noise, correct for dye-effects, mobility differences, etc, generates the 'final' trace (for each capillary of the run)

1

Trace

Making a Library (present)

shear to ~500 bases
put on linkers

Library

- Library is a massively complex mix of -initially-individual, unique fragments
- Library amplification mildly amplifies each fragment to retain the complexity of the mix while obtaining preparative amounts
- (how many-fold do 10 cycles of PCR amplify the sample?)

Fragment vs Mate pair ('jumping')

Paired end (frag)

500 bp library
red and pink bits are what gets sequenced
shear to $4 \mathrm{~kb}, 1 \mathrm{~kb}$

(Sample prep)
$>30 \mu \mathrm{~g}$ of high MW DNA?
yes
\qquad

(Illumina has new kits/methods with which mate pair libraries can be built with less material)

Illumina cluster concept

Slide Credit: Arend Sidow

Cluster generation ('bridge amplification')

Single dsDNA library molecule	$\mathrm{P5}$	P7 complement
	P5 complement	P7

Slide Credit: Arend Sidow

Clonally Amplified Molecules on Flow Cell

Slide Credit: Arend Sidow

Reversible Terminators

Sequencing by Synthesis, One Base at a Time

Cycle 1: Add sequencing reagents
First base incorporated
Remove unincorporated bases
Detect signal
Cycle 2-n: Add sequencing reagents and repeat

HiSeq X \& NextSeq

Preliminary specs:
Run time: 3 days
Output: $\quad 1.6$ Tb
\#reads: 6×10^{9}
Read length: $2 \times 150 \mathrm{bp}$

NextSeq 500 Sequencing System Performance Parameters

NEXTSEQ 500 HIGH OUTPUT KIT *		
READ LENGTH	TOTAL TIME ${ }^{\boldsymbol{t}}$	OUTPUT
$2 \times 150 \mathrm{bp}$	$\sim 29 \mathrm{hrs}$	$100-120 \mathrm{~Gb}$
$2 \times 75 \mathrm{bp}$	18 hrs	$50-60 \mathrm{~Gb}$
$1 \times 75 \mathrm{bp}$	11 hrs	$25-30 \mathrm{~Gb}$

$l l$		
NEXTSEQ 500 MID OUTPUT KIT *		
READ LENGTH	TOTALTIME \dagger	OUTPUT
$2 \times 150 \mathrm{bp}$	26 hrs	$32.5-39 \mathrm{~Gb}$
$2 \times 75 \mathrm{bp}$	15 hrs	$16.25-19.5 \mathrm{~Gb}$

Reads Passing Filter

NEXTSEQ 500 HIGH OUTPUT KIT
Single Reads Up to 400 Million
Paired-End Reads Up to 800 million

Read Mapping

ggcaggcatcacggagcggttagggtccaaaactcatcttcctgtgcacttgctgtgtgcactggcgctgtgtgtaaatgccacctcg
iggtaggcatcacggagcggttaggggccaaaactcatcttcctgtgcacttgctgtgtgcactggcgetgtgtggaaatggcacctcgattt
................................ggagcggttaggggccaaaactcatcttcctgtgcacttgctgtgtgcactggcgctgtgtgtaaatgccacctcgatttaggaaaaagatgacgtaagta

 ."caaaactcatcttcctgtgcacttgctgtgtgcactggcgctgtgtgtaaatgccacctcgatttaggaaaaagatgacgtaagtacggcacaaagtggcc

Slide Credit: Arend Sidow

Variation Discovery

Hoxa9RatSeq Genes

Hoxa9

Amount of variation - types of lesions

Method to sequence longer regions

genomic segment

Two main assembly problems

- De Novo Assembly

- Resequencing

Reconstructing the Sequence (De Novo Assembly)

Cover region with high redundancy

Overlap \& extend reads to reconstruct the original genomic region

Definition of Coverage

Length of genomic segment:
G
Number of reads:
N
Length of each read:
L
Definition: Coverage $\quad C=N L / G$
How much coverage is enough?
Lander-Waterman model: $\operatorname{Prob}\left[\right.$ not covered bp] $=e^{-c}$ Assuming uniform distribution of reads, $\mathrm{C}=10$ results in 1 gapped region $/ 1,000,000$ nucleotides

Repeats

Repeat types:

$$
\begin{aligned}
& \text { Bacterial genomes:5\% } \\
& \text { Mammals: }
\end{aligned}
$$

- Low-Complexity DNA (e.g. ATATATATACATA...)
- Microsatellite repeats $\left(a_{1} \ldots a_{k}\right)^{N}$ where $k \sim 3-6$
(e.g. CAGCAGTAGCAGCACCAG)
- Transposons
- SINE
- LINE
- LTR retroposons
(Short Interspersed Nuclear Elements) e.g., ALU: ~300-long, 10^{6} copies
(Long Interspersed Nuclear Elements)
~ 4000-long, 200,000 copies
(Long Terminal Repeats ($\sim 700 \mathrm{bp}$) at each end) cousins of HIV
- Gene Families genes duplicate \& then diverge (paralogs)
- Recent duplications ~100,000-long, very similar copies

Sequencing and Fragment Assembly

Glued together two distant regions

What can we do about repeats?

Two main approaches:

- Cluster the reads

- Link the reads

What can we do about repeats?

Two main approaches:

- Cluster the reads

- Link the reads

What can we do about repeats?

Two main approaches:

- Cluster the reads

- Link the reads

Sequencing and Fragment Assembly

ARB, CRD

3×10^{9} nucleotides

AGTAGCACAGAC TACGACGAGACG ATCGTGCGAGCG ACGGCGTAGTGI GCTGTACTGTCG TGTGTGTGTACT СТССт
or

ARD, RRB ?

Sequencing and Fragment Assembly

Fragment Assembly
(in whole-genome shotgun sequencing)

Fragment Assembly

Steps to Assemble a Genome

1. Find Overlapping Reads

(read, pos., word, orient.) (word, read, orient., pos.)
aaactgcag aactgcagt actgcagta
gtacggatc tacggatct gggcccaaa ggcccaaac gcccaaact
actgcagta
ctgcagtac gtacggatc tacggatct acggatcta
ctactacac tactacaca
aaactgcag aactgcagt acggatcta ซでgeagta actgcagta cccaaactg cggatctac ctactacac ctgcagtac ctgcagtac| beccaaact ggcccaaac gggcccaaa gtacggatc $\overline{\mathrm{p}} \overline{\mathrm{ac}} \bar{g} \overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{c}}$ tacggatct t"̄वggatct tactacaca

1. Find Overlapping Reads

- Find pairs of reads sharing a k-mer, k~24
- Extend to full alignment - throw away if not $>98 \%$ similar

TACA TAGATTACACAGATTACT GA

TAGT TAGATTACACAGATTACTAGA

- Caveat: repeats
- A k-mer that occurs N times, causes $\mathrm{O}\left(\mathrm{N}^{2}\right)$ read/read comparisons
- ALU k-mers could cause up to 1,000,000² comparisons
- Solution:
- Discard all k-mers that occur "too often"
- Set cutoff to balance sensitivity/speed tradeoff, according to genome at hand and computing resources available

1. Find Overlapping Reads

Create local multiple alignments from the overlapping reads

1. Find Overlapping Reads

- Correct errors using multiple alignment

insert A
replace T with C

correlated errorsprobably caused by repeats
\Rightarrow disentangle overlaps

TAGATTACACAGATTACTGA TAGATTACACAGATTACTGA TAGATTACACAGATMACTGA

In practice, error correction removes up to 98% of the errors

TAG-TTACACAGATTATTGA TAG-TMACACAGATMATMGA

2. Merge Reads into Contigs

- Overlap graph:
- Nodes: reads $r_{1} \ldots \ldots r_{n}$
- Edges: overlaps ($\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}$, shift, orientation, score)

Reads that come from two regions of the genome (blue and red) that contain the same repeat

Note:
of course, we don't know the "color" of these nodes

2. Merge Reads into Contigs

We want to merge reads up to potential repeat boundaries

2. Merge Reads into Contigs

- Remove transitively inferable overlaps
- If read r overlaps to the right reads r_{1}, r_{2}, and r_{1}
 overlaps r_{2}, then (r, r_{2}) can be inferred by (r, r_{1}) and (r_{1}, r_{2})

2. Merge Reads into Contigs

Repeats, errors, and contig lengths

- Repeats shorter than read length are easily resolved
- Read that spans across a repeat disambiguates order of flanking regions
- Repeats with more base pair diffs than sequencing error rate are OK
- We throw overlaps between two reads in different copies of the repeat
- To make the genome appear less repetitive, try to:
- Increase read length
- Decrease sequencing error rate

Role of error correction:
Discards up to 98% of single-letter sequencing errors
decreases error rate
\Rightarrow decreases effective repeat content
\Rightarrow increases contig length

3. Link Contigs into Supercontigs

Normal density

Too dense
\Rightarrow Overcollapsed

Inconsistent links
\Rightarrow Overcollapsed?

3. Link Contigs into Supercontigs

Find all links between unique contigs

Connect contigs incrementally, if ≥ 2 forward-reverse links

3. Link Contigs into Supercontigs

Fill gaps in supercontigs with paths of repeat contigs
Complex algorithmic step

- Exponential number of paths
- Forward-reverse links

De Brujin Graph formulation

 -- Given sequence $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N}}$, k-mer length k , Graph of 4^{k} vertices,
Edges between words with ($k-1$)-long overlap
(a) Compression

(b) Error Detection

(c) Repeat Analysis

(d) Scaffolding

4. Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting
(Alternative: take maximum-quality letter)

