Human Genome Diversity,
Coalescence & Haplotypes
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The HapMap Proj o’
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Linkage Disequilibrium & Haplotype Blocks
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Figure 8 | C ison of link disequilibrium and recombination for two intervals where distinct obligate recombination events must have occurred

ENCODE regions. For each region (ENr131.2¢37.1 and ENm014.7q31.33),
D' plots for the YRI, CEU and CHB+JPT analysis panels are shown: white,
D' < 1and LOD < 2; blue, D' = 1 and LOD < 2; pink, D' < 1 and

LOD = 2;red, D' = 1and LOD = 2. Below each of these plots is shown the

(blue and green indicate adjacent intervals). Stacked intervals represent
regions where there are multiple recombination events in the sample history.
The bottom plot shows estimated recombination rates, with h shown
as red triangles®.
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Figure 9 | The distribution of recombination events over the ENCODE
regions. Proportion of sequence containing a given fraction of all
recombination for the ten ENCODE regi (col d lines) and cc
(black line). For each line, SNP intervals are placed in decreasing order of
esti d rec tion rate®, combined across analysis panels, and the
cumulative recombination fraction is plotted against the cumulative
proportion of sequence. If recombination rates were constant, each line
would lie exactly along the diagonal, and so lines further to the right reveal
the fraction of regions where recombination is more strongly locally
concentrated.
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Population Sequencing —

1000 Genomes Project
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Population Sequencing —
1000 Genomes Project

Number of Variants
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Population Sequencing -
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When C is high (>30x), 1,000 | e —
;/A ;/T E/G
Prob(g; = g | data) ~ 2% L e
A/A CIT G/G
Prob(g; = g | reads mapping on (i, j)) Gy .Gy Gi=0 ... Oy 9 €1{0, 1,2}
fast & easy Py, ... Py Pyt [pyg = Prob(g; = g | data) ]
When C is low, o
Prob(g; = g | data) needs to leverage LD:
positions j # j in all individuals
in principle, intractable

number of reads exhibiting alternate alleles across cohort

1000 Genomes Project, 2535 individuals, 7x sequencing




HMM-based models °

* Liand Stephens 2003

Given m reference haplotypes, and a target sample,
Find the most likely path of haplotype pairs
m? states, m* transitions per position

56




Informative Neighbors o

I target SNP

1 A"nearest’ neighbors

in terms of linkage disequilibrium

(5,0) (3,0) (1, O) (5 0) (6,0)
l 1 1

&90
‘0

( refs alt) = z{target nbrs}( ref» alt) = (20 O)




Informative Neighbors o

I target SNP

1 A"nearest’ neighbors

in terms of linkage disequilibrium

(2,3) (2,1) (1, O) (4 1) (2,4)
l I 1

&90
‘0

(Rref Ralt) = z{target, nbrs}(rref’ r.alt) = (11, 9)




How to pick k nearest neighbors fast o

Sample 1
Sample 2
Sample 3

Sample 4

Sample 10

~.

QB QO NE . B e

N L =T -

Correlation Coefficient:
= (Pag — PaPB)? / PAPBPAPY

Caveat: need genotyping, phasing

Let
S, = { samples covering minor allele }
S, = { read counts of minor allele }

S ={1,2,3, 10}
S.={1,3,4)

S/ ={1,2,3,3,3,10}
S’={1,3,3,3,3,3,4,4)
sim,(i, j) = (S\NS) / (S;U S)

Simz(i,j);(S’ NS)/(S;US)
Simg(i, j) = ((S.’ﬂsj)/(S U S ))?




Genetic distance between NNs

distance (kb)

~common SNPs

600 - POESS » ( dEw e L ] 23 women X ° ‘ \-0.- G080 000 6D GEDIO D © EBUBINWDP CID SN OHO

500 H

400

- rare SNPs

3003

SEDENGE ) GENED (SN OED EDO U € IO 0 NV WO 00

200\ :

100 A

0 005 01 015 02 025 03 035 04 045 05
AF




00
o000
o000
u u u ::.
Reveel: Variant Discovery and Imputation °
B S = —— — ] 2.6x
Reveel: . e o e
LT o o
1. Identify candidate polymorphic sites = = =
AIA o CiG
2. Calculate k nearest neighbors Bl T _— E,G_

Jaccard indices Sim,, Sim,, Sim,
3. Initialize G©

4. Summarization/Maximization
P T Poblg ~ ] G cata)

5. Recalculate k nearest neighbors
Approximate Correlation Coefficient (Schaid 2004)

6. Summarization/Maximization

7. Recalculate k nearest neighbors
Approximate CC, Entropy

8. Summarization/Maximization

Gy .Gy G=6i -9 9;€1{0,1,2}

Py, ..., Pyy Py [ pyg = Prob(g; = g | data) |

Candidate Polymorphic site

Essentially, pos’n j where some
individuals have at least 2
reads with same minor allele



Molecular Evolution and
Phylogenetic Tree
Reconstruction




Evolution at the DNA level *°

Dele[t}on Mi?tation
. ACGGTGCAGTTACCA.. SEQUENCE EDITS

|

..AC-—---CAGTCCACCA..

> > >

REARRANGEMENTS . l
Inversion > € =
Translocation > > =

Duplication > > > >



Protein Phylogenies o

* Proteins (genes) evolve by both duplication and
species divergence

A

g



Orthology and Paralogy

Yeast

HA1 Human

HA2 Human

WA Worm

HB Human

WB Worm

Orthologs:
Derived by
speciation

Paralogs:
Everything
else
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[
(a) Fungal
Yeast
HA1
i I HA2  Human
HA3
A
WAl
Worm
WaA2
Animal HB  Human
B
WB Worm
Speciation worm-human
Duplication in anmal ancestor 1o A and B forms
Speciation fungi-animals
(b) YHC1_YEAST/35458 5. cerevisiae
; Q2NVHE/58418 H. sapiens
bod <t ) QaVDM7/1-381 D. melanogaster
BODG_HUMAN/15-280 H.sapiens
QeverP0/26-327 D. melanogaster
0 l I l 0 O QoVY24/25-405 D. melanogaster
QoW5B5/122-504 D. melanogaster
TRENDZ in Genefics
Figure 1. Refinements of homology.

Fig. 1. The definition of inparalogs and cutparalogs. (a) Consider an ancient gene inheritad in the yeast, worm and
human lineages. The gene was duplicated early in the animal linsage, bafore the human-worm zplit, into genes A
and B. After the human-worm zplit, the A form was in tumn duplicated ndependeantly in the human and waorm
lineages. Inthiz scenario, the yeast gene is arthologous to all werm and human genes, which are all co-orthologous
to the yeazt gene. When comparing the human and worm genes, all ganes in the HA* zat are co-orthologous toall
germsin the WA® zat. The ganes HA® are hence ‘inparalogs’ to each other when comparing human toworm. By
contrast, the genes HEBand HA* are ‘cutparalogs’ when camparing human with worm. However, HR and HA®, and
WEBand WA* are inparalogs when comparing with yeast, because the animal-yeazt split prelates the HA* -HB
duplication. (b) Real-life example of inparalogs: f-butyrobetaine hydroxylazes. The points of zpeciation and
duplication are easily idertifiable. The alignment iz a subset of Plam:PFIG322 and the tree was ganerated by
rmeighbor-joining in Belvu. Allnodes have a boctstrop zuppart exceeding 95%.



Phylogenetic Trees

* Nodes: species

« Edges: time of independent

Human 29.9

Chimpanzee 28.2 n

Macaque 25.5
Baboon 34.9

Colobus monkey
Owl monkey 2.1
Marmoset 35.6

. Euarchontoglires Dusky titi 2.1
eVO|UtIOn \ Mouse lemur 1.6

Boreoeutheria

- Edge length represents
evolution time

o Eutheria |
AKA genetic distance

Mammalia
N

Not necessarily
chronological time

Galago 33.5
E Rat 31.4 g
\ Mouse 30.5 g
] Rabbit 23.8 ﬁ

Dog 26.1

b

Bat 25.1

Shrew 29.1 ‘%\
= )

Hedgehog 3.4
Armadillo 25.7 @
Elephant 27.0 { H

Tenrec 18.5 %

[

L Monodelphis 37.3 %
Platypus 17.2 t

Chicken 11.0

Xenopus 10.8 § %

[ Tetraodon 4.2 @3

—

Zebrafish 9.5 =

sejewld

sall|9

eusyjelseine

l Xenarthra

Afrotheria

L Fugu3. o



Inferring Phylogenetic Trees

Trees can be inferred by several criteria:

Morphology of the organisms
Can lead to mistakes

Sequence comparison

Example:

Mouse:
Rat:
Baboon:
Chimp:
Human:

[ ACAGTGACGCCCCAAACGT

— ACAGTGACGCTACAAACGT
CCTGTGACGTAACAAACGA
— CCTGTGACGTAGCAAACGA

___ CCTGTGACGTAGCAAACGA



Inferring Phylogenetic Trees o

« Sequence-based methods

Deterministic (Parsimony)
Probabilistic (SEMPHY)

 Distance-based methods
UPGMA
Neighbor-Joining

« Can compute distances from sequences



Distance Between Two Sequences o

Basic principle:
- Distance proportional to degree of independent sequence evolution

Given sequences X', X,

d; = distance between the two sequences
One possible definition:

d; = fraction f of sites u where x'u] = x/[u]

Better scores are derived by modeling evolution as a continuous change
Process



Molecular Evolution °°

Modeling sequence substitution:

Consider what happens at a position for time At,

P(t) = vector of probabilities of {A,C,G,T} at time t

Uac = rate of transition from A to C per unit time

Ua = Mac T Mag T MaT rate of transition out of A

Pa(t+At) = pa(t) — Pa(t) Ma At + pe(t) Hea At + pg(t) g At + pr(t) pra At



Molecular Evolution

In matrix/vector notation, we get

P(t+At) = P(t) + Q P(t) At

where Q is the substitution rate matrix

_/-LA

HAC
HAT

HTA
HTa
2% g



Molecular Evolution °°

« This is a differential equation:
P’(t) = Q P(t)

« Q=> prob. distribution over {A,C,G, T} at each position,
stationary (equilibrium) frequencies TT,, T, TTg, T

« Each Q is an evolutionary model
Some work better than others
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Estimating Distances o

« Solve the differential equation and compute expected evolutionary
time given sequences

P'(t) = Q P(t)

Jukes-Cantor:
Let Paa(t) = Pcc(t) = Peo(t) = Peo(t) = 1
Pac(t) = ... = Pg(t) =s
Then,
rit)=-7rt)u+7%s(t) u
s'(t)=-Yas(t)u+ ar(t) u
Which is satisfied by
r(t) =Y (1 + 3e™)

s(t) =% (1 -e)



Estimating Distances .

« Solve the differential equation and compute expected evolutionary
time given sequences

P'(t) = Q P(t)

Jukes-Cantor:

1 _lp—tp 1 3—tp 1 _ 1lo—tp 1 1.ty

1 1€ 1 T 1€ 1 1€ 1 1°€
P =

1 _1—tp 1 _ 1,—tp 1, 3.—tp 1 _ 1,.—tp

1~ 1€ 1~ 1€ 1T 1€ ri—




Estimating Distances o

Let p = probability a base is different between two sequences,
Solve to find t

 Jukes-Cantor r))=1-—p="%(1+ 3en)
p=%—%eM
Ya—p=%en
1-4p/3=en
Therefore,

ut = - In(1 — 4p/3)

Letting d = % ut, denoting substitutions per site,

3 4
d= —1111(1 - §p)



Estimating Distances o
d: Branch length in terms of substitutions per site

Jukes-Cantor

3 4
d=—1].ll(1—§ )

Kimura

1 1
d = —5111(1 —2P - Q) — 1 In(1 - 2Q)



Simple method for building tree: UPGMA |3°

UPGMA (unweighted pair group method using arithmetic averages)
Or the Average Linkage Method

Given two disjoint clusters C,, Cj of sequences,

1

d; = 2 eci, q ecjpg
ICil x |G|l

Claim that if C, = C, U C;, then distance to another cluster C, is:

d; |G| + d; |C||
dy =

Cil + Gyl



Algorithm: Average Linkage o

Initialization:
Assign each x; into its own cluster C,

Define one leaf per sequence, height 0

o

Iteration:
Find two clusters C;, C; s.t. d; is min
Let C, = C, U C,

Define node connecting C,, Cj, and place it at
height d;/2 |

Delete C;, C,

Termination:

When two clusters i, j remain, place root at
height d,/2 1




Average Linkage Example e* .

VW | Xyz

4
2

1

y y4




Ultrametric Distances and Molecular 444

Clock :°

Definition:

A distance function d(.,.) is ultrametric if for any three distances d; < d;, <
d;, it is true that

Ij?

dj = dj = dj

The Molecular Clock:

The evolutionary distance between species x and y is 2x the Earth time
to reach the nearest common ancestor

That is, the molecular clock has constant rate in all species

The molecular clock
results in ultrametric

] ’7_‘ distances

years 4 2 3 5




Ultrametric Distances & Average Linkage

-

3 5

Average Linkage is guaranteed to reconstruct correctly a binary tree with

ultrametric distances

Proof: Exercise



Weakness of Average Linkage o

Molecular clock: all species evolve at the same rate (Earth time)

However, certain species (e.g., mouse, rat) evolve much faster

Example where UPGMA messes up:

Correct tree AL tree




Additive Distances *°

10
2 6

Given a tree, a distance measure is additive if the distance between any pair of
leaves is the sum of lengths of edges connecting them

Given a tree T & additive distances d;, can uniquely reconstruct edge lengths:

* Find two neighboring leaves i, j, with common parent k
* Place parent node k at distance d,,, = 2 (d, + d;,, — d;;) from any node m = i, |



Additive Distances *°

AN

W
y

For any four leaves X, y, z, w, consider the three sums
d(x,y) + d(z, w)
d(x, z) + d(y, w)
d(x, w) + d(y, z)

One of them is smaller than the other two, which are equal

d(x,y)+d(z,w) < d(x,z)+d(y,w) = d(x,w)+d(y, z)



Reconstructing Additive Distances Given T e’ o

If we know T and D, but do not
know the length of each leaf, we
can reconstruct those lengths




Reconstructing Additive Distances Given T




Reconstructing Additive Distances Given T °

dax =72 (dvx + dwx - de)

day =% (dvy + dwy - de)

daz =7 (dvz + dwz - de)




Reconstructing Additive Distances Given T °

d(a, v) =d
Correct!!!

(a, ) d(a, b)
d(a, y) —d(a, b)
w) = d(z w)—d(a, z) =4

oYW

(z, v)—d(a, z) =



Neighbor-Joining o

« Guaranteed to produce the correct tree if distance is additive
« May produce a good tree even when distance is not additive

1 3

Step 1: Finding neighboring leaves

Define

Dij =(N-2) dij - Ek;:i di — Ek¢j djk

2

Claim: The above "magic trick” ensures that i, j are neighbors if D; is minimal



Neighbor-Joining *

Dij = (N - 2) dij - Ek¢i CIik o Ek;éj djk

AN




Neighbor-Joining o

Dij = (N — 2) dij - Ek¢i dik - Ek;éj djk

\__",

- All leaf edges appear negatively
exactly twice

- All other edges appear negatively
once for every path from each of the
two leaves i, |, to leaves k = i, |




