

Human Genome Diversity, Coalescence \& Haplotypes

Coalescence

$\left\lvert\, \begin{aligned} & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000\end{aligned}\right.$

The HapMap Project

ASW
African ancestry in Southwest USA 90
CEU Northern and Western Europeans (Utah)180

CHB
Han Chinese in Beijing, China 90

CHD GIH JPT Chinese in Metropolitan Denver100
Gujarati Indians in Houston, Texas 100
Japanese in Tokyo, Japan 91
LWK Luhya in Webuye, Kenya 100

MXL
Mexican ancestry in Los Angeles 90
MKK Maasai in Kinyawa, Kenya 180

TSI
Toscani in Italia 100

YRI
Yoruba in Ibadan, Nigeria 100

Genotyping:

Probe a limited number (~1M) of known highly variable positions of the human genome

7 Extend/Stain samples on
BeadChip

8
Image BeadChíp

Linkage Disequilibrium \& Haplotype Blocks

Figure 8 | Comparison of linkage disequilibrium and recombination for two ENCODE regions. For each region (ENr1 31.2q37.1 and ENm014.7q31.33), D^{\prime} plots for the YRI, CEU and CHB+JPT analysis panels are shown: white, $D^{\prime}<1$ and LOD <2; blue, $D^{\prime}=1$ and LOD <2; pink, $D^{\prime}<1$ and LOD ≥ 2; red, $D^{\prime}=1$ and LOD ≥ 2. Below each of these plots is shown the

intervals where distinct obligate recombination events must have occurred (blue and green indicate adjacent intervals). Stacked intervals represent regions where there are multiple recombination events in the sample history. The bottom plot shows estimated recombination rates, with hotspots shown as red triangles ${ }^{46}$.
$\begin{array}{lll}\text { Minor allele: } & \mathrm{A} & \mathrm{G} \\ & \mathrm{p}_{\mathrm{A}} & \mathrm{p}_{\mathrm{G}}\end{array}$

Linkage Disequilibrium
 (LD):

$D=P(A$ and $G)-p_{A} p_{G}$

Figure 9 | The distribution of recombination events over the ENCODE regions. Proportion of sequence containing a given fraction of all recombination for the ten ENCODE regions (coloured lines) and combined (black line). For each line, SNP intervals are placed in decreasing order of estimated recombination rate ${ }^{* 6}$, combined across analysis panels, and the cumulative recombination fraction is plotted against the cumulative proportion of sequence. If recombination rates were constant, each line would lie exactly along the diagonal, and so lines further to the right reveal the fraction of regions where recombination is more strongly locally concentrated.

Population Sequencing 1000 Genomes Project

Population Sequencing 1000 Genomes Project

Population Sequencing - UK10K

b

c

Population Sequencing

Population Sequencing

Population Sequencing

When C is high ($>30 x$),
$\operatorname{Prob}\left(\mathrm{g}_{\mathrm{ij}}=g \mid\right.$ data $) \sim$
$\operatorname{Prob}\left(\mathrm{g}_{\mathrm{ij}}=g \mid\right.$ reads mapping on $\left.(\mathrm{i}, \mathrm{j})\right)$
fast \& easy

When C is low,
$\operatorname{Prob}\left(\mathrm{g}_{\mathrm{ij}}=g \mid\right.$ data $)$ needs to leverage LD:
positions j^{\prime} = j in all individuals
in principle, intractable

HMM-based models

- Li and Stephens 2003

Given m reference haplotypes, and a target sample,
Find the most likely path of haplotype pairs
m^{2} states, m^{4} transitions per position

Informative Neighbors

- target SNP
| k-"nearest" neighbors
in terms of linkage disequilibrium

$$
\left(R_{\text {ref }}, R_{\text {alt }}\right)=\Sigma_{\{\text {target, nbrs }\}}\left(r_{\text {ref }}, r_{\text {alt }}\right)=(20,0)
$$

Informative Neighbors

- target SNP
| k-"nearest" neighbors
in terms of linkage disequilibrium

$$
\left(R_{\text {ref }}, R_{\text {alt }}\right)=\Sigma_{\{\text {target, nbrs\} }}\left(r_{\text {ref }}, r_{\text {alt }}\right)=(11,9)
$$

How to pick k nearest neighbors fast

Correlation Coefficient:
$r^{2}=\left(p_{A B}-p_{A} p_{B}\right)^{2} / p_{A} p_{B} p_{a} p_{b}$
Caveat: need genotyping, phasing

$$
\begin{aligned}
& \text { Let } \\
& S_{i}=\{\text { samples covering minor allele }\} \\
& S_{i}^{\prime}=\{\text { read counts of minor allele }\} \\
& S_{i}=\{1,2,3,10\} \\
& S_{j}=\{1,3,4\} \\
& S_{i}^{\prime}=\{1,2,3,3,3,10\} \\
& S_{j}^{\prime}=\{1,3,3,3,3,3,4,4\}
\end{aligned}
$$

Sample 10

Genetic distance between NNs

Reveel: Variant Discovery and Imputation

Reveel:

1. Identify candidate polymorphic sites
2. Calculate k nearest neighbors

- Jaccard indices $\operatorname{Sim}_{1}, \operatorname{Sim}_{2}, \operatorname{Sim}_{3}$

3. Initialize $\mathrm{G}^{(0)}$
4. Summarization/Maximization

$$
\begin{aligned}
& \mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{N}} ; \quad \mathrm{G}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i} 1} \ldots \mathrm{~g}_{\mathrm{in}} ; \quad \mathrm{g}_{\mathrm{ij}} \in\{0,1,2\} \\
& \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}} ; \quad \mathrm{P}_{\mathrm{i}}:\left[\mathrm{p}_{\mathrm{ij} g}=\operatorname{Prob}\left(\mathrm{g}_{\mathrm{ij}}=g \mid \text { data }\right)\right]
\end{aligned}
$$

Candidate Polymorphic site

Essentially, pos'n j where some individuals have at least 2 reads with same minor allele

Molecular Evolution and Phylogenetic Tree Reconstruction

Evolution at the DNA level

SEQUENCE EDITS

...AC----CAGTCCACCA...

REARRANGEMENTS
Inversion
Translocation
Duplication

Protein Phylogenies

- Proteins (genes) evolve by both duplication and species divergence

Orthology and Paralogy

Orthology, Paralogy, Inparalogs, Outparalogs

Fig. 1. The definition of inparalogs and cutparalogs. (a) Consider an ancient gene inherited in the yeast, worm and human lineages. The gene wascuplicated early in the animal lineage, before the human-worm split, irto genes A and B . After the human-worm split, the A form was in turn duplicated independently inthe human and worm lineages. In this scenario, the yeast gene is orthologous to all worm and human genes, which are all co-orthologous to the yeast gene. When comparing the human and worm genes, all genes in the HA^{*} set are co-orthologous to all genes in the WA' set The genes HA' are hence 'inparalogs' to each other when comparing buman to worm. By contrast, the genes HB and HA ' are 'cutparalogs' when comparing human with worm.. However, HB and HA ', and WB and WA 'are inparalogs when comparing with yeast, because the animal-yeast split pre-dates the HA^{*} - HB duplicaxion. (b) Real-life example of inparalogs: γ-bukyrobetaine hydroxylases. The points of speciation and duplication are easily iderxifiable. The alignmert is a subset of Pfam:PF06322 and the tree was generated by neigtbor-joining in Belvu. All nodes have a bockstrap support exceeding 95%.

Phylogenetic Trees

- Nodes: species
- Edges: time of independent evolution
- Edge length represents evolution time
- AKA genetic distance
- Not necessarily chronological time

Inferring Phylogenetic Trees

Trees can be inferred by several criteria:

- Morphology of the organisms
- Can lead to mistakes
- Sequence comparison

Example:

Mouse:
Rat:
Baboon: Chimp: Human:

Inferring Phylogenetic Trees

- Sequence-based methods
- Deterministic (Parsimony)
- Probabilistic (SEMPHY)
- Distance-based methods
- UPGMA
- Neighbor-Joining
- Can compute distances from sequences

Distance Between Two Sequences

Basic principle:

- Distance proportional to degree of independent sequence evolution

Given sequences x^{i}, x^{j},

$$
\mathrm{d}_{\mathrm{ij}}=\text { distance between the two sequences }
$$

One possible definition:

$$
\mathrm{d}_{\mathrm{ij}}=\text { fraction } \mathrm{f} \text { of sites } u \text { where } x^{\mathrm{i}}[\mathrm{u}] \neq x^{\mathrm{j}}[\mathrm{u}]
$$

Better scores are derived by modeling evolution as a continuous change process

Molecular Evolution

Modeling sequence substitution:

Consider what happens at a position for time Δt,

- $\mathrm{P}(\mathrm{t})=$ vector of probabilities of $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ at time t
- $\mu_{\mathrm{AC}}=$ rate of transition from A to C per unit time
- $\mu_{\mathrm{A}}=\mu_{\mathrm{AC}}+\mu_{\mathrm{AG}}+\mu_{\mathrm{AT}}$ rate of transition out of A
- $p_{A}(t+\Delta t)=p_{A}(t)-p_{A}(t) \mu_{A} \Delta t+p_{C}(t) \mu_{C A} \Delta t+p_{G}(t) \mu_{G A} \Delta t+p_{T}(t) \mu_{T A} \Delta t$

Molecular Evolution

In matrix/vector notation, we get

$$
P(t+\Delta t)=P(t)+Q P(t) \Delta t
$$

where Q is the substitution rate matrix

$$
Q=\left(\begin{array}{cccc}
-\mu_{A} & \mu_{G A} & \mu_{C A} & \mu_{T A} \\
\mu_{A G} & -\mu_{G} & \mu_{C G} & \mu_{T G} \\
\mu_{A C} & \mu_{G C} & -\mu_{C} & \mu_{T C} \\
\mu_{A T} & \mu_{G T} & \mu_{C T} & -\mu_{T}
\end{array}\right)
$$

Molecular Evolution

- This is a differential equation:

$$
P^{\prime}(t)=Q P(t)
$$

- $\mathrm{Q}=>$ prob. distribution over $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ at each position, stationary (equilibrium) frequencies $\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}$
- Each Q is an evolutionary model
- Some work better than others

Evolutionary Models

- Jukes-Cantor
- Kimura
- Felsenstein

$$
Q=\left(\begin{array}{llll}
* & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\
\frac{\mu}{4} & * & \frac{\mu}{4} & \frac{\mu}{4} \\
\frac{\mu}{4} & \frac{\mu}{4} & * & \frac{\mu}{4} \\
\frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & *
\end{array}\right)
$$

$$
Q=\left(\begin{array}{cccc}
* & \pi_{T} & \pi_{T} & \pi_{T} \\
\pi_{C} & * & \pi_{C} & \pi_{C} \\
\pi_{A} & \pi_{A} & * & \pi_{A} \\
\pi_{G} & \pi_{G} & \pi_{G} & *
\end{array}\right)
$$

- HKY

$$
Q=\left(\begin{array}{llll}
* & \kappa & 1 & 1 \\
\kappa & * & 1 & 1 \\
1 & 1 & * & \kappa \\
1 & 1 & \kappa & *
\end{array}\right)
$$

$$
Q=\left(\begin{array}{cccc}
* & \kappa \pi_{T} & \pi_{T} & \pi_{T} \\
\kappa \pi_{C} & * & \pi_{C} & \pi_{C} \\
\pi_{A} & \pi_{A} & * & \kappa \pi_{A} \\
\pi_{G} & \pi_{G} & \kappa \pi_{G} & *
\end{array}\right)
$$

Estimating Distances

- Solve the differential equation and compute expected evolutionary time given sequences

$$
P^{\prime}(t)=Q P(t)
$$

Jukes-Cantor:
Let

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{AA}}(\mathrm{t})=\mathrm{P}_{\mathrm{CC}}(\mathrm{t})=\mathrm{P}_{\mathrm{CC}}(\mathrm{t})=\mathrm{P}_{\mathrm{CC}}(\mathrm{t})=\mathrm{r} \\
& \mathrm{P}_{\mathrm{AC}}(\mathrm{t})=\ldots=\mathrm{P}_{\mathrm{TG}}(\mathrm{t})=\mathrm{s}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& r^{\prime}(t)=-3 / 4 r(t) \mu+3 / 4 s(t) \mu \\
& s^{\prime}(t)=-1 / 4 s(t) \mu+1 / 4 r(t) \mu
\end{aligned}
$$

Which is satisfied by

$$
\begin{aligned}
& r(t)=1 / 4\left(1+3 e^{-\mu t}\right) \\
& s(t)=1 / 4\left(1-e^{-\mu t}\right)
\end{aligned}
$$

Estimating Distances

- Solve the differential equation and compute expected evolutionary time given sequences

$$
P^{\prime}(t)=Q P(t)
$$

Jukes-Cantor:

$$
P=\left(\begin{array}{llll}
\frac{1}{4}+\frac{3}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} \\
\frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}+\frac{3}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} \\
\frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}+\frac{3}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} \\
\frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}-\frac{1}{4} e^{-t \mu} & \frac{1}{4}+\frac{3}{4} e^{-t \mu}
\end{array}\right)
$$

Estimating Distances

Let $p=$ probability a base is different between two sequences, Solve to find t

- Jukes-Cantor

$$
\begin{aligned}
& r(t)=1-p=1 / 4\left(1+3 e^{-\mu t}\right) \\
& p=3 / 4-3 / 4 e^{-\mu t} \\
& 3 / 4-p=3 / 4 e^{-\mu t} \\
& 1-4 p / 3=e^{-\mu t}
\end{aligned}
$$

Therefore,

$$
\mu t=-\ln (1-4 p / 3)
$$

Letting

$$
d=3 / 4 \mu t \text {, denoting substitutions per site, }
$$

$$
d=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)
$$

Estimating Distances

d: Branch length in terms of substitutions per site

- Jukes-Cantor

$$
d=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)
$$

- Kimura

$$
d=-\frac{1}{2} \ln (1-2 P-Q)-\frac{1}{4} \ln (1-2 Q)
$$

Simple method for building tree: UPGMA

UPGMA (unweighted pair group method using arithmetic averages) Or the Average Linkage Method

Given two disjoint clusters C_{i}, C_{j} of sequences,

$$
\mathrm{d}_{\mathrm{ij}}=\frac{1}{\left|\mathrm{C}_{\mathrm{i}}\right| \times\left|\mathrm{C}_{\mathrm{j}}\right|} \Sigma_{\left\{\mathrm{p} \in \mathrm{Ci}, \mathrm{q} \in \mathrm{Ci} \mathrm{~d}_{\mathrm{pq}}\right.}
$$

Claim that if $\mathrm{C}_{\mathrm{k}}=\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$, then distance to another cluster C_{l} is:

$$
\mathrm{d}_{\mathrm{kl}}=\frac{\mathrm{d}_{\mathrm{il}}\left|\mathrm{C}_{\mathrm{i}}\right|+\mathrm{d}_{\mathrm{jl}}\left|\mathrm{C}_{\mathrm{j}}\right|}{\left|\mathrm{C}_{\mathrm{i}}\right|+\left|\mathrm{C}_{\mathrm{j}}\right|}
$$

Algorithm: Average Linkage

Initialization:

Assign each x_{i} into its own cluster C_{i} Define one leaf per sequence, height 0

Iteration:

Find two clusters C_{i}, C_{j} s.t. $d_{i j}$ is min
Let $C_{k}=C_{i} \cup C_{j}$

Define node connecting $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}$, and place it at height $\mathrm{d}_{\mathrm{ij}} / 2$
Delete $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}$

Termination:

When two clusters i, j remain, place root at height $\mathrm{d}_{\mathrm{ij}} / 2$

Average Linkage Example

	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}
\mathbf{v}	0	6	8	8	8
\mathbf{w}		0	8	8	8
\mathbf{x}			0	4	4
\mathbf{y}				0	2
\mathbf{z}					0

	\mathbf{v}	\mathbf{w}	$\mathbf{x y z}$
\mathbf{v}	0	6	8
\mathbf{w}		0	8
$\mathbf{x y z}$			0

	vw	xyz
$\mathbf{v w}$	0	8
$\mathbf{x y z}$		0

	\mathbf{v}	\mathbf{w}	\mathbf{x}	$\mathbf{y z}$
\mathbf{v}	0	6	8	8
\mathbf{w}		0	8	8
\mathbf{x}			0	4
$\mathbf{y z}$				0

Ultrametric Distances and Molecular Clock

Definition:

A distance function $\mathrm{d}(.,$.$) is ultrametric if for any three distances \mathrm{d}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ik}} \leq$ d_{ij}, it is true that

$$
d_{i j} \leq d_{i k}=d_{j k}
$$

The Molecular Clock:

The evolutionary distance between species x and y is $2 x$ the Earth time to reach the nearest common ancestor

That is, the molecular clock has constant rate in all species

The molecular clock results in ultrametric distances

Ultrametric Distances \& Average Linkage

Average Linkage is guaranteed to reconstruct correctly a binary tree with ultrametric distances

Proof: Exercise

Weakness of Average Linkage

Molecular clock: all species evolve at the same rate (Earth time)

However, certain species (e.g., mouse, rat) evolve much faster

Example where UPGMA messes up:

Correct tree

AL tree

Additive Distances

Given a tree, a distance measure is additive if the distance between any pair of leaves is the sum of lengths of edges connecting them

Given a tree $\mathrm{T} \&$ additive distances d_{ij}, can uniquely reconstruct edge lengths:

- Find two neighboring leaves i, j, with common parent k
- Place parent node k at distance $d_{k m}=1 / 2\left(d_{i m}+d_{j m}-d_{i j}\right)$ from any node $m \neq i, j$

Additive Distances

For any four leaves x, y, z, w, consider the three sums

$$
\begin{aligned}
& d(x, y)+d(z, w) \\
& d(x, z)+d(y, w) \\
& d(x, w)+d(y, z)
\end{aligned}
$$

One of them is smaller than the other two, which are equal

$$
d(x, y)+d(z, w)<d(x, z)+d(y, w)=d(x, w)+d(y, z)
$$

Reconstructing Additive Distances Given T

Reconstructing Additive Distances Given T

Reconstructing Additive Distances Given T

Reconstructing Additive Distances Given T

D_{1}					
	\mathbf{a}	\mathbf{x}	\mathbf{y}	\mathbf{z}	
\mathbf{a}	0	11	10	10	
\mathbf{x}		0	9	15	
\mathbf{y}			0	14	
\mathbf{z}				0	

$\mathbf{D}_{\mathbf{2}}$			
	\mathbf{a}	\mathbf{b}	\mathbf{z}
\mathbf{a}	0	6	10
\mathbf{b}		0	10
\mathbf{z}			0

D_{3}	
	\mathbf{a}
\mathbf{c}	
\mathbf{a}	\mathbf{c}
\mathbf{c}	3

Correct!!!

Neighbor-Joining

- Guaranteed to produce the correct tree if distance is additive
- May produce a good tree even when distance is not additive

Step 1: Finding neighboring leaves
Define

$$
D_{i j}=(N-2) d_{i j}-\sum_{k \neq i} d_{i k}-\sum_{k \neq j} d_{j k}
$$

Claim: The above "magic trick" ensures that i, j are neighbors if D_{ij} is minimal

Neighbor-Joining

$$
\mathrm{D}_{\mathrm{ij}}=(\mathrm{N}-2) \mathrm{d}_{\mathrm{ij}}-\sum_{\mathrm{k} \neq \mathrm{i}} \mathrm{~d}_{\mathrm{ik}}-\sum_{\mathrm{k} \neq \mathrm{j}} \mathrm{~d}_{\mathrm{jk}}
$$

Neighbor-Joining

$$
\mathrm{D}_{\mathrm{ij}}=(N-2) \mathrm{d}_{\mathrm{ij}}-\sum_{\mathrm{k} \neq \mathrm{i}} \mathrm{~d}_{\mathrm{ik}}-\sum_{\mathrm{k} \neq \mathrm{j}} \mathrm{~d}_{\mathrm{jk}}
$$

- All leaf edges appear negatively exactly twice
- All other edges appear negatively once for every path from each of the two leaves i, j, to leaves $k \neq i, j$

