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Human Genome Diversity, 
Coalescence & Haplotypes 

ACGTTTGACTGAGGAGTTTACGGGAGCAAAGCGGCGTCATTGCTATTCGTATCTGTTTAG	



Coalescence 

Y-chromosome coalescence 



The HapMap Project 
ASW  African ancestry in Southwest USA    90 
CEU  Northern and Western Europeans (Utah)  180 
CHB  Han Chinese in Beijing, China    90 
CHD  Chinese in Metropolitan Denver  100 
GIH  Gujarati Indians in Houston, Texas  100 
JPT  Japanese in Tokyo, Japan     91 
LWK  Luhya in Webuye, Kenya   100 
MXL  Mexican ancestry in Los Angeles    90 
MKK  Maasai in Kinyawa, Kenya   180 
TSI  Toscani in Italia   100 
YRI  Yoruba in Ibadan, Nigeria   100 
 
 

Genotyping: 
Probe a limited number (~1M) of 
known highly variable positions of 
the human genome 



Linkage Disequilibrium & Haplotype Blocks 

pA pG 

Linkage Disequilibrium 
(LD): 

 
D = P(A and G) - pApG 

Minor allele:   A       G 



Population Sequencing –  
1000 Genomes Project 



Population Sequencing –  
1000 Genomes Project 



Population Sequencing – UK10K 



Population Sequencing 
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Population Sequencing 
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P1, …, PN;   Pi :  [ pijg = Prob(gij = g | data) ] 



Population Sequencing 
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G1, …, GN;   Gi = gi1 … gin;   gij ∈ {0, 1, 2} 
 
P1, …, PN;   Pi :  [ pijg = Prob(gij = g | data) ] 

When C is high (>30x), 
 
  Prob(gij = g | data) ~  
 
    Prob(gij = g | reads mapping on (i, j)) 
 

 fast & easy 
 
 
When C is low,  
 
  Prob(gij = g | data) needs to leverage LD: 
 

 positions j’ ≠ j in all individuals 
 

 in principle, intractable 

1000 Genomes Project, 2535 individuals, 7x sequencing 



HMM-based models 

•  Li and Stephens 2003 

 Given m reference haplotypes, and a target sample, 
 Find the most likely path of haplotype pairs 
  m2 states, m4 transitions per position 
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Informative Neighbors 

(1,0) (5,0) (3,0) (5,0) (6,0) 

target SNP 

𝑘-”nearest” neighbors 
in terms of linkage disequilibrium 

(Rref, Ralt) = Σ{target, nbrs}(rref, ralt) = (20, 0) 



Informative Neighbors 

(1,0) (2,3) (2,1) (4,1) (2,4) 

target SNP 

𝑘-”nearest” neighbors 
in terms of linkage disequilibrium 

(Rref, Ralt) = Σ{target, nbrs}(rref, ralt) = (11, 9) 



How to pick k nearest neighbors fast 

1 1 

1 0 

3 5 

0 2 
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𝑖 𝑗 
Sample 1 

Sample 2 

Sample 3 

Sample 4 

Sample 10 

Let  
Si = { samples covering minor allele } 
Si’ = { read counts of minor allele } 
 
Si = {1, 2, 3, 10} 
Sj = {1, 3, 4} 
Si’ = {1, 2, 3, 3, 3, 10} 
Sj’ = {1, 3, 3, 3, 3, 3, 4, 4} 
 
 
Sim1(i, j) = (Si    Sj) / (Si U Sj) 
Sim2(i, j) = (Si’    Sj’) / (Si’ U Sj’) 
Sim3(i, j) = ((Si’    Sj’) / (Si’ U Sj’))2 
 
 
 
 

∩

Correlation Coefficient: 
r2 = (pAB – pApB)2 / pApBpapb 
 
Caveat: need genotyping, phasing 

∩
∩



Genetic distance between NNs 

common SNPs 

rare SNPs 



Reveel: Variant Discovery and Imputation 
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2-6x 

G1, …, GN;   Gi = gi1 … gin;   gij ∈ {0, 1, 2} 
 
P1, …, PN;   Pi :  [ pijg = Prob(gij = g | data) ] 

Reveel: 
 
1.  Identify candidate polymorphic sites 

2.  Calculate k nearest neighbors 
•  Jaccard indices Sim1, Sim2, Sim3 

3.  Initialize G(0)  
 
4.  Summarization/Maximization 

p(n+1)
ijg = Prob(gij = g | G(n), data) 

g(n+1)
ijg = argmax p(n+1)

ijg 
 

5.  Recalculate k nearest neighbors 
•  Approximate Correlation Coefficient (Schaid 2004) 
 

6.  Summarization/Maximization 

7.  Recalculate k nearest neighbors 
•  Approximate CC, Entropy 

8.  Summarization/Maximization 

Candidate Polymorphic site 
 
Essentially, pos’n j where some 
individuals have at least 2 
reads with same minor allele 



Molecular Evolution and 
Phylogenetic Tree 

Reconstruction 

1 4 

3 2 5 

1 4 2 3 5 



Evolution at the DNA level 

…ACGGTGCAGTTACCA… 

…AC----CAGTCCACCA… 

Mutation 

SEQUENCE EDITS 

REARRANGEMENTS 

Deletion 

Inversion 
Translocation 
Duplication 



Protein Phylogenies 

•  Proteins (genes) evolve by both duplication and 
species divergence 



Orthology and Paralogy 

HB Human 

WB Worm 

HA1 Human 

HA2 Human 

Yeast 

WA Worm 

Orthologs: 
Derived by 
speciation 
 
Paralogs: 
Everything 
else 



Orthology, Paralogy, Inparalogs, Outparalogs 



Phylogenetic Trees 

•  Nodes: species 

•  Edges: time of independent 
evolution 

•  Edge length represents 
evolution time 

§  AKA genetic distance 

§  Not necessarily 
chronological time 



Inferring Phylogenetic Trees 

Trees can be inferred by several criteria: 

§  Morphology of the organisms 
•  Can lead to mistakes 

§  Sequence comparison 

Example: 
 
 Mouse:   ACAGTGACGCCCCAAACGT 
 Rat:    ACAGTGACGCTACAAACGT 
 Baboon:   CCTGTGACGTAACAAACGA 
 Chimp:   CCTGTGACGTAGCAAACGA 
 Human:   CCTGTGACGTAGCAAACGA 



Inferring Phylogenetic Trees 

•  Sequence-based methods 
§  Deterministic (Parsimony) 
§  Probabilistic (SEMPHY) 

•  Distance-based methods 
§  UPGMA 
§  Neighbor-Joining 

•  Can compute distances from sequences 



Distance Between Two Sequences 

Basic principle: 
•  Distance proportional to degree of independent sequence evolution 
 
 
Given sequences xi, xj, 

  
 dij = distance between the two sequences 

 
One possible definition: 
 

 dij = fraction f of sites u where xi[u] ≠ xj[u] 
 
Better scores are derived by modeling evolution as a continuous change 

process 



Molecular Evolution 

Modeling sequence substitution: 
 
Consider what happens at a position for  time Δt,  
 
•  P(t) = vector of probabilities of {A,C,G,T} at time t 

•  µAC = rate of transition from A to C per unit time 

•  µA = µAC + µAG + µAT rate of transition out of A 

•  pA(t+Δt) = pA(t) – pA(t) µA Δt + pC(t) µCA Δt + pG(t) µGA Δt + pT(t) µTA Δt 



Molecular Evolution 

In matrix/vector notation, we get 

P(t+Δt) = P(t) + Q P(t) Δt 
 

where Q is the substitution rate matrix 



Molecular Evolution 

•  This is a differential equation: 

P’(t) = Q P(t) 

•  Q =>  prob. distribution over {A,C,G,T} at each position, 
    stationary (equilibrium) frequencies πA, πC, πG, πT 

•  Each Q is an evolutionary model  
§  Some work better than others 



Evolutionary Models 

•  Jukes-Cantor 

•  Kimura 

•  Felsenstein 

•  HKY 



Estimating Distances 

•  Solve the differential equation and compute expected evolutionary 
time given sequences 

P’(t) = Q P(t) 
 
Jukes-Cantor: 

 Let  PAA(t) = PCC(t) = PCC(t) = PCC(t) = r 
  PAC(t) = … = PTG(t) = s 
 Then,  
  r’(t) = - ¾ r(t) µ + ¾ s(t) µ	
	 	s’(t) = - ¼ s(t) µ + ¼ r(t) µ  
 Which is satisfied by 
   r(t) = ¼ (1 + 3e-µt) 
   s(t) = ¼ (1 - e-µt) 

 



Estimating Distances 

•  Solve the differential equation and compute expected evolutionary 
time given sequences 

P’(t) = Q P(t) 
 
Jukes-Cantor: 

  



Estimating Distances 

Let p = probability a base is different between two sequences, 
 Solve to find t 

 
•  Jukes-Cantor  r(t) = 1 – p = ¼ (1 + 3e-µt) 
 

   p = ¾ – ¾ e-µt 

   ¾ – p = ¾ e-µt 
   1 – 4p/3 = e-µt 

 Therefore, 
   µt = - ln(1 – 4p/3) 

 
 Letting   d = ¾ µt, denoting substitutions per site, 

 



Estimating Distances 

d:  Branch length in terms of substitutions per site 

•  Jukes-Cantor  

•  Kimura 



Simple method for building tree: UPGMA 

UPGMA (unweighted pair group method using arithmetic averages) 
Or the Average Linkage Method 
 
Given two disjoint clusters Ci, Cj of sequences, 
 

               1 
 dij = ––––––––– Σ{p ∈Ci, q ∈Cj}dpq 
  |Ci| × |Cj| 

 
Claim that if Ck = Ci ∪ Cj, then distance to another cluster Cl is: 
 

  dil |Ci| + djl |Cj| 
   dkl = –––––––––––––– 

      |Ci| + |Cj| 
  



Algorithm: Average Linkage 

Initialization: 
Assign each xi into its own cluster Ci 
Define one leaf per sequence, height 0 

 
Iteration: 

Find two clusters Ci, Cj s.t. dij is min 
Let Ck = Ci ∪ Cj 
Define node connecting Ci, Cj, and place it at 

height dij/2 
Delete Ci, Cj 

 
Termination: 

When two clusters i, j remain, place root at 
height dij/2 

1 4 

3 2 5 

1 4 2 3 5 



Average Linkage Example 

v w x y z 

v 0 6 8 8 8 

w 0 8 8 8 

x 0 4 4 

y 0 2 

z 0 

y z x w v 

1 
2 

3 

4 v w x yz 
v 0 6 8 8 

w 0 8 8 

x 0 4 

yz 0 

v w xyz 

v 0 6 8 

w 0 8 

xyz 0 

vw xyz 

vw 0 8 

xyz 0 



Ultrametric Distances and Molecular 
Clock 

Definition: 
A distance function d(.,.) is ultrametric if for any three distances dij ≤ dik ≤ 

dij, it is true that  
dij ≤ dik = djk 

 

The Molecular Clock: 
The evolutionary distance between species x and y is 2× the Earth time 

to reach the nearest common ancestor 
That is, the molecular clock has constant rate in all species 

1 4 2 3 5 years 

The molecular clock 
results in ultrametric 

distances 



Ultrametric Distances & Average Linkage 

Average Linkage is guaranteed to reconstruct correctly a binary tree with 
ultrametric distances   

 
Proof:  Exercise 

1 4 2 3 5 



Weakness of Average Linkage 

Molecular clock: all species evolve at the same rate (Earth time) 
 
However, certain species (e.g., mouse, rat) evolve much faster 
 
Example where UPGMA messes up: 

2 
3 

4 
1 

1 4 3 2 

Correct tree AL tree 



Additive Distances 

Given a tree, a distance measure is additive if the distance between any pair of 
leaves is the sum of lengths of edges connecting them 

 
Given a tree T & additive distances dij, can uniquely reconstruct edge lengths: 
 
•  Find two neighboring leaves i, j, with common parent k 
•  Place parent node k at distance dkm = ½ (dim + djm – dij) from any node m ≠ i, j 
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12 

11 

13 d1,4 



Additive Distances 

For any four leaves x, y, z, w, consider the three sums  
 

d(x, y)  +  d(z, w) 
d(x, z)  +  d(y, w) 
d(x, w)  +  d(y, z) 

 
One of them is smaller than the other two, which are equal 
 

d(x, y) + d(z, w)   <   d(x, z) + d(y, w)   =   d(x, w) + d(y, z) 

x 

y 

z 

w 



Reconstructing Additive Distances Given T 

x 

y 

z 
w 

v 

5 
4 
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3 4 
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v w x y z 

v 0 10 17 16 16 

w 0 15 14 14 

x 0 9 15 

y 0 14 

z 0 

T 

If we know T and D, but do not 
know the length of each leaf, we 
can reconstruct those lengths 

D 



Reconstructing Additive Distances Given T 

x 

y 

z 
w 

v 

v w x y z 

v 0 10 17 16 16 

w 0 15 14 14 

x 0 9 15 

y 0 14 

z 0 

T D 



Reconstructing Additive Distances Given T 

x 

y 

z 
w 

v 

v w x y z 
v 0 10 17 16 16 

w 0 15 14 14 

x 0 9 15 

y 0 14 

z 0 

T 

D 

a x y z 
a 0 11 10 10 

x 0 9 15 

y 0 14 

z 0 

a 

D1 
dax = ½ (dvx + dwx – dvw) 

day = ½ (dvy + dwy – dvw) 

daz = ½ (dvz + dwz – dvw) 



Reconstructing Additive Distances Given T 

x 

y 

z 
w 

v 

T 
a x y z 

a 0 11 10 10 

x 0 9 15 

y 0 14 

z 0 a 

D1 

a b z 
a 0 6 10 

b 0 10 

z 0 

D2 

b 

c 

a c 
a 0 3 

c 0 

D3 
d(a, c) = 3 
d(b, c) = d(a, b) – d(a, c) = 3 
d(c, z) = d(a, z) – d(a, c) = 7 
d(b, x) = d(a, x) – d(a, b) = 5 
d(b, y) = d(a, y) – d(a, b) = 4 
d(a, w) = d(z, w) – d(a, z) = 4 
d(a, v) = d(z, v) – d(a, z) = 6 
Correct!!! 
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Neighbor-Joining 

•  Guaranteed to produce the correct tree if distance is additive 
•  May produce a good tree even when distance is not additive 

Step 1: Finding neighboring leaves 
 
Define 
 
Dij = (N – 2) dij – ∑k≠i dik – ∑k≠j djk  
 
 
 
 
Claim: The above “magic trick” ensures that i, j are neighbors if Dij is minimal 
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Neighbor-Joining 

Dij = (N – 2) dij – ∑k≠i dik – ∑k≠j djk  
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Neighbor-Joining 

Dij = (N – 2) dij – ∑k≠i dik – ∑k≠j djk  
 
 
 
 
 
 

1 

2 4 

3 

0.1 
0.1 0.1 

0.4 0.4 

-  All leaf edges appear negatively 
exactly twice 

-  All other edges appear negatively 
once for every path from each of the 
two leaves i, j, to leaves k ≠ i, j 


