
010101100010010100001010101010011011100110001100101000100101	

Human Genome Diversity,
Coalescence & Haplotypes

ACGTTTGACTGAGGAGTTTACGGGAGCAAAGCGGCGTCATTGCTATTCGTATCTGTTTAG	

Coalescence

Y-chromosome coalescence

The HapMap Project
ASW African ancestry in Southwest USA 90
CEU Northern and Western Europeans (Utah) 180
CHB Han Chinese in Beijing, China 90
CHD Chinese in Metropolitan Denver 100
GIH Gujarati Indians in Houston, Texas 100
JPT Japanese in Tokyo, Japan 91
LWK Luhya in Webuye, Kenya 100
MXL Mexican ancestry in Los Angeles 90
MKK Maasai in Kinyawa, Kenya 180
TSI Toscani in Italia 100
YRI Yoruba in Ibadan, Nigeria 100

Genotyping:
Probe a limited number (~1M) of
known highly variable positions of
the human genome

Linkage Disequilibrium & Haplotype Blocks

pA pG

Linkage Disequilibrium
(LD):

D = P(A and G) - pApG

Minor allele: A G

Population Sequencing –
1000 Genomes Project

Population Sequencing –
1000 Genomes Project

Population Sequencing – UK10K

Population Sequencing

A/T

A/A

A/A

A/A

C/C

C/T

T/T

C/T

C/G

G/G

C/G

G/G

C = 2-7x

1,000 to

1,000,000

Population Sequencing

A/T

A/A

A/A

A/A

C/C

C/T

T/T

C/T

C/G

G/G

C/G

G/G

C = 2-7x

1,000 to

1,000,000

G1, …, GN; Gi = gi1 … gin; gij ∈ {0, 1, 2}

P1, …, PN; Pi : [pijg = Prob(gij = g | data)]

Population Sequencing

A/T

A/A

A/A

A/A

C/C

C/T

T/T

C/T

C/G

G/G

C/G

G/G

2-7x

1,000
to

1,000,00
0

G1, …, GN; Gi = gi1 … gin; gij ∈ {0, 1, 2}

P1, …, PN; Pi : [pijg = Prob(gij = g | data)]

When C is high (>30x),

 Prob(gij = g | data) ~

 Prob(gij = g | reads mapping on (i, j))

 fast & easy

When C is low,

 Prob(gij = g | data) needs to leverage LD:

 positions j’ ≠ j in all individuals

 in principle, intractable

1000 Genomes Project, 2535 individuals, 7x sequencing

HMM-based models

•  Li and Stephens 2003

 Given m reference haplotypes, and a target sample,
 Find the most likely path of haplotype pairs
 m2 states, m4 transitions per position

1,1

1,2

𝑚,𝑚

1,1

1,2

𝑚,𝑚

1,1

1,2

𝑚,𝑚

1,1

1,2

𝑚,𝑚

Informative Neighbors

(1,0) (5,0) (3,0) (5,0) (6,0)

target SNP

𝑘-”nearest” neighbors
in terms of linkage disequilibrium

(Rref, Ralt) = Σ{target, nbrs}(rref, ralt) = (20, 0)

Informative Neighbors

(1,0) (2,3) (2,1) (4,1) (2,4)

target SNP

𝑘-”nearest” neighbors
in terms of linkage disequilibrium

(Rref, Ralt) = Σ{target, nbrs}(rref, ralt) = (11, 9)

How to pick k nearest neighbors fast

1 1

1 0

3 5

0 2

1 0

⋮

𝑖 𝑗
Sample 1

Sample 2

Sample 3

Sample 4

Sample 10

Let
Si = { samples covering minor allele }
Si’ = { read counts of minor allele }

Si = {1, 2, 3, 10}
Sj = {1, 3, 4}
Si’ = {1, 2, 3, 3, 3, 10}
Sj’ = {1, 3, 3, 3, 3, 3, 4, 4}

Sim1(i, j) = (Si Sj) / (Si U Sj)
Sim2(i, j) = (Si’ Sj’) / (Si’ U Sj’)
Sim3(i, j) = ((Si’ Sj’) / (Si’ U Sj’))2

∩

Correlation Coefficient:
r2 = (pAB – pApB)2 / pApBpapb

Caveat: need genotyping, phasing

∩
∩

Genetic distance between NNs

common SNPs

rare SNPs

Reveel: Variant Discovery and Imputation

A/T

A/A

A/A

A/A

C/C

C/T

T/T

C/T

C/G

G/G

C/G

G/G

2-6x

G1, …, GN; Gi = gi1 … gin; gij ∈ {0, 1, 2}

P1, …, PN; Pi : [pijg = Prob(gij = g | data)]

Reveel:

1.  Identify candidate polymorphic sites

2.  Calculate k nearest neighbors
•  Jaccard indices Sim1, Sim2, Sim3

3.  Initialize G(0)

4.  Summarization/Maximization

p(n+1)
ijg = Prob(gij = g | G(n), data)

g(n+1)
ijg = argmax p(n+1)

ijg

5.  Recalculate k nearest neighbors
•  Approximate Correlation Coefficient (Schaid 2004)

6.  Summarization/Maximization

7.  Recalculate k nearest neighbors
•  Approximate CC, Entropy

8.  Summarization/Maximization

Candidate Polymorphic site

Essentially, pos’n j where some
individuals have at least 2
reads with same minor allele

Molecular Evolution and
Phylogenetic Tree

Reconstruction

1 4

3 2 5

1 4 2 3 5

Evolution at the DNA level

…ACGGTGCAGTTACCA…

…AC----CAGTCCACCA…

Mutation

SEQUENCE EDITS

REARRANGEMENTS

Deletion

Inversion
Translocation
Duplication

Protein Phylogenies

•  Proteins (genes) evolve by both duplication and
species divergence

Orthology and Paralogy

HB Human

WB Worm

HA1 Human

HA2 Human

Yeast

WA Worm

Orthologs:
Derived by
speciation

Paralogs:
Everything
else

Orthology, Paralogy, Inparalogs, Outparalogs

Phylogenetic Trees

•  Nodes: species

•  Edges: time of independent
evolution

•  Edge length represents
evolution time

§  AKA genetic distance

§  Not necessarily
chronological time

Inferring Phylogenetic Trees

Trees can be inferred by several criteria:

§  Morphology of the organisms
•  Can lead to mistakes

§  Sequence comparison

Example:

 Mouse: ACAGTGACGCCCCAAACGT
 Rat: ACAGTGACGCTACAAACGT
 Baboon: CCTGTGACGTAACAAACGA
 Chimp: CCTGTGACGTAGCAAACGA
 Human: CCTGTGACGTAGCAAACGA

Inferring Phylogenetic Trees

•  Sequence-based methods
§  Deterministic (Parsimony)
§  Probabilistic (SEMPHY)

•  Distance-based methods
§  UPGMA
§  Neighbor-Joining

•  Can compute distances from sequences

Distance Between Two Sequences

Basic principle:
•  Distance proportional to degree of independent sequence evolution

Given sequences xi, xj,

 dij = distance between the two sequences

One possible definition:

 dij = fraction f of sites u where xi[u] ≠ xj[u]

Better scores are derived by modeling evolution as a continuous change

process

Molecular Evolution

Modeling sequence substitution:

Consider what happens at a position for time Δt,

•  P(t) = vector of probabilities of {A,C,G,T} at time t

•  µAC = rate of transition from A to C per unit time

•  µA = µAC + µAG + µAT rate of transition out of A

•  pA(t+Δt) = pA(t) – pA(t) µA Δt + pC(t) µCA Δt + pG(t) µGA Δt + pT(t) µTA Δt

Molecular Evolution

In matrix/vector notation, we get

P(t+Δt) = P(t) + Q P(t) Δt

where Q is the substitution rate matrix

Molecular Evolution

•  This is a differential equation:

P’(t) = Q P(t)

•  Q => prob. distribution over {A,C,G,T} at each position,
 stationary (equilibrium) frequencies πA, πC, πG, πT

•  Each Q is an evolutionary model
§  Some work better than others

Evolutionary Models

•  Jukes-Cantor

•  Kimura

•  Felsenstein

•  HKY

Estimating Distances

•  Solve the differential equation and compute expected evolutionary
time given sequences

P’(t) = Q P(t)

Jukes-Cantor:

 Let PAA(t) = PCC(t) = PCC(t) = PCC(t) = r
 PAC(t) = … = PTG(t) = s
 Then,
 r’(t) = - ¾ r(t) µ + ¾ s(t) µ	
	 	s’(t) = - ¼ s(t) µ + ¼ r(t) µ
 Which is satisfied by
 r(t) = ¼ (1 + 3e-µt)
 s(t) = ¼ (1 - e-µt)

Estimating Distances

•  Solve the differential equation and compute expected evolutionary
time given sequences

P’(t) = Q P(t)

Jukes-Cantor:

Estimating Distances

Let p = probability a base is different between two sequences,
 Solve to find t

•  Jukes-Cantor r(t) = 1 – p = ¼ (1 + 3e-µt)

 p = ¾ – ¾ e-µt

 ¾ – p = ¾ e-µt
 1 – 4p/3 = e-µt

 Therefore,
 µt = - ln(1 – 4p/3)

 Letting d = ¾ µt, denoting substitutions per site,

Estimating Distances

d: Branch length in terms of substitutions per site

•  Jukes-Cantor

•  Kimura

Simple method for building tree: UPGMA

UPGMA (unweighted pair group method using arithmetic averages)
Or the Average Linkage Method

Given two disjoint clusters Ci, Cj of sequences,

 1
 dij = ––––––––– Σ{p ∈Ci, q ∈Cj}dpq
 |Ci| × |Cj|

Claim that if Ck = Ci ∪ Cj, then distance to another cluster Cl is:

 dil |Ci| + djl |Cj|
 dkl = ––––––––––––––

 |Ci| + |Cj|

Algorithm: Average Linkage

Initialization:
Assign each xi into its own cluster Ci
Define one leaf per sequence, height 0

Iteration:

Find two clusters Ci, Cj s.t. dij is min
Let Ck = Ci ∪ Cj
Define node connecting Ci, Cj, and place it at

height dij/2
Delete Ci, Cj

Termination:

When two clusters i, j remain, place root at
height dij/2

1 4

3 2 5

1 4 2 3 5

Average Linkage Example

v w x y z

v 0 6 8 8 8

w 0 8 8 8

x 0 4 4

y 0 2

z 0

y z x w v

1
2

3

4 v w x yz
v 0 6 8 8

w 0 8 8

x 0 4

yz 0

v w xyz

v 0 6 8

w 0 8

xyz 0

vw xyz

vw 0 8

xyz 0

Ultrametric Distances and Molecular
Clock

Definition:
A distance function d(.,.) is ultrametric if for any three distances dij ≤ dik ≤

dij, it is true that
dij ≤ dik = djk

The Molecular Clock:
The evolutionary distance between species x and y is 2× the Earth time

to reach the nearest common ancestor
That is, the molecular clock has constant rate in all species

1 4 2 3 5 years

The molecular clock
results in ultrametric

distances

Ultrametric Distances & Average Linkage

Average Linkage is guaranteed to reconstruct correctly a binary tree with
ultrametric distances

Proof: Exercise

1 4 2 3 5

Weakness of Average Linkage

Molecular clock: all species evolve at the same rate (Earth time)

However, certain species (e.g., mouse, rat) evolve much faster

Example where UPGMA messes up:

2
3

4
1

1 4 3 2

Correct tree AL tree

Additive Distances

Given a tree, a distance measure is additive if the distance between any pair of
leaves is the sum of lengths of edges connecting them

Given a tree T & additive distances dij, can uniquely reconstruct edge lengths:

•  Find two neighboring leaves i, j, with common parent k
•  Place parent node k at distance dkm = ½ (dim + djm – dij) from any node m ≠ i, j

1

2

3

4

5

6

7

8

9

10

12

11

13 d1,4

Additive Distances

For any four leaves x, y, z, w, consider the three sums

d(x, y) + d(z, w)
d(x, z) + d(y, w)
d(x, w) + d(y, z)

One of them is smaller than the other two, which are equal

d(x, y) + d(z, w) < d(x, z) + d(y, w) = d(x, w) + d(y, z)

x

y

z

w

Reconstructing Additive Distances Given T

x

y

z
w

v

5
4

7

3

3 4

6

v w x y z

v 0 10 17 16 16

w 0 15 14 14

x 0 9 15

y 0 14

z 0

T

If we know T and D, but do not
know the length of each leaf, we
can reconstruct those lengths

D

Reconstructing Additive Distances Given T

x

y

z
w

v

v w x y z

v 0 10 17 16 16

w 0 15 14 14

x 0 9 15

y 0 14

z 0

T D

Reconstructing Additive Distances Given T

x

y

z
w

v

v w x y z
v 0 10 17 16 16

w 0 15 14 14

x 0 9 15

y 0 14

z 0

T

D

a x y z
a 0 11 10 10

x 0 9 15

y 0 14

z 0

a

D1
dax = ½ (dvx + dwx – dvw)

day = ½ (dvy + dwy – dvw)

daz = ½ (dvz + dwz – dvw)

Reconstructing Additive Distances Given T

x

y

z
w

v

T
a x y z

a 0 11 10 10

x 0 9 15

y 0 14

z 0 a

D1

a b z
a 0 6 10

b 0 10

z 0

D2

b

c

a c
a 0 3

c 0

D3
d(a, c) = 3
d(b, c) = d(a, b) – d(a, c) = 3
d(c, z) = d(a, z) – d(a, c) = 7
d(b, x) = d(a, x) – d(a, b) = 5
d(b, y) = d(a, y) – d(a, b) = 4
d(a, w) = d(z, w) – d(a, z) = 4
d(a, v) = d(z, v) – d(a, z) = 6
Correct!!!

5
4

7

3

3 4

6

Neighbor-Joining

•  Guaranteed to produce the correct tree if distance is additive
•  May produce a good tree even when distance is not additive

Step 1: Finding neighboring leaves

Define

Dij = (N – 2) dij – ∑k≠i dik – ∑k≠j djk

Claim: The above “magic trick” ensures that i, j are neighbors if Dij is minimal

1

2 4

3

0.1
0.1 0.1

0.4 0.4

Neighbor-Joining

Dij = (N – 2) dij – ∑k≠i dik – ∑k≠j djk

1

2 4

3

0.1
0.1 0.1

0.4 0.4

Neighbor-Joining

Dij = (N – 2) dij – ∑k≠i dik – ∑k≠j djk

1

2 4

3

0.1
0.1 0.1

0.4 0.4

-  All leaf edges appear negatively
exactly twice

-  All other edges appear negatively
once for every path from each of the
two leaves i, j, to leaves k ≠ i, j

