Sequence Alignment
Evolutionary Rates

next generation

OK

OK

OK

X

X

Still OK?
Sequence conservation implies function

Alignment is the key to
- Finding important regions
- Determining function
- Uncovering evolutionary events
Definition

Given two strings \(x = x_1x_2...x_M, \quad y = y_1y_2...y_N, \)

an alignment is an assignment of gaps to positions 0,..., N in \(x \), and 0,..., N in \(y \), so as to line up each letter in one sequence with either a letter, or a gap in the other sequence.
What is a good alignment?

AGGCTAGTT, AGCGAAGTTTT

AGGCTAGTT- AGCGAAGTTTT 6 matches, 3 mismatches, 1 gap

AGGCTA-GTT- AG-CGAAGTTTT 7 matches, 1 mismatch, 3 gaps

AGGC-TA-GTT- AG-CG-AAGTTTT 7 matches, 0 mismatches, 5 gaps
Scoring Function

- Sequence edits:
 - Mutations
 - Insertions
 - Deletions

AGGCCTC
AGGACTC
AGGGCCTC
AGG . CTC

Alternative definition:

minimal edit distance

“Given two strings x, y, find minimum # of edits (insertions, deletions, mutations) to transform one string to the other”

Scoring Function:

- Match: +m
- Mismatch: -s
- Gap: -d

Score \(F = (# \text{ matches}) \times m - (# \text{ mismatches}) \times s - (# \text{gaps}) \times d \)
How do we compute the best alignment?

Too many possible alignments:

\[\gg 2^N \]

(exercise)
Alignment is additive

Observation:

The score of aligning $x_1 \ldots x_M$ $y_1 \ldots y_N$ is additive

Say that $x_1 \ldots x_i$ $x_{i+1} \ldots x_M$ $y_1 \ldots y_j$ $y_{j+1} \ldots y_N$ aligns to

The two scores add up:

$$F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])$$
Dynamic Programming

- There are only a polynomial number of subproblems
 - Align $x_1 \ldots x_i$ to $y_1 \ldots y_j$

- Original problem is one of the subproblems
 - Align $x_1 \ldots x_M$ to $y_1 \ldots y_N$

- Each subproblem is easily solved from smaller subproblems
 - We will show next

Let

$$F(i, j) = \text{optimal score of aligning}$$

$$x_1 \ldots x_i$$

$$y_1 \ldots y_j$$

F: Dynamic Programming table
Notice three possible cases:

1. x_i aligns to y_j

 $x_1 \ldots x_{i-1} \ x_i$

 $y_1 \ldots y_{j-1} \ y_j$

 $F(i, j) = F(i - 1, j - 1) + \begin{cases}
 m, & \text{if } x_i = y_j \\
 -s, & \text{if not}
 \end{cases}$

2. x_i aligns to a gap

 $x_1 \ldots x_{i-1} \ x_i$

 $y_1 \ldots y_j \ -$

 $F(i, j) = F(i - 1, j) - d$

3. y_j aligns to a gap

 $x_1 \ldots x_i \ -$

 $y_1 \ldots y_{j-1} \ y_j$

 $F(i, j) = F(i, j - 1) - d$
Dynamic Programming (cont’d)

How do we know which case is correct?

Inductive assumption:
\[
F(i, j - 1), F(i - 1, j), F(i - 1, j - 1) \quad \text{are optimal}
\]

Then,
\[
F(i, j) = \max \begin{cases}
 F(i - 1, j - 1) + s(x_i, y_j) \\
 F(i - 1, j) - d \\
 F(i, j - 1) - d
\end{cases}
\]

Where
\[
s(x_i, y_j) = m, \text{ if } x_i = y_j; \quad -s, \text{ if not}
\]
Example

\[F(i,j) = \begin{cases}
F(i-1,j-1) + \begin{cases} 1 & \text{if } x_i = y_j \\
-1 & \text{if } x_i \neq y_j
\end{cases} \\
F(i-1,j) - d \\
F(i,j-1) - d
\end{cases} \]

Procedure to output Alignment

- Follow the backpointers
- When diagonal, OUTPUT \(x_i, y_j \)
- When up, OUTPUT \(y_j \)
- When left, OUTPUT \(x_i \)
The Needleman-Wunsch Matrix

Every nondecreasing path from (0,0) to (M, N) corresponds to an alignment of the two sequences. An optimal alignment is composed of optimal subalignments.
The Needleman-Wunsch Algorithm

Initialization.

\[
\begin{align*}
F(0, 0) &= 0 \\
F(0, j) &= -j \times d \\
F(i, 0) &= -i \times d
\end{align*}
\]

Main Iteration. Filling-in partial alignments

For each \(i = 1 \ldots M \)

For each \(j = 1 \ldots N \)

\[
F(i, j) = \max \begin{cases}
 F(i-1, j-1) + s(x_i, y_j) & \text{[case 1]} \\
 F(i-1, j) - d & \text{[case 2]} \\
 F(i, j-1) - d & \text{[case 3]}
\end{cases}
\]

\[
\text{Ptr}(i, j) = \begin{cases}
 \text{DIAG}, & \text{if [case 1]} \\
 \text{LEFT}, & \text{if [case 2]} \\
 \text{UP}, & \text{if [case 3]}
\end{cases}
\]

3. **Termination.** \(F(M, N) \) is the optimal score, and from \(\text{Ptr}(M, N) \) can trace back optimal alignment
Performance

• Time: $O(NM)$

• Space: $O(NM)$

• Later we will cover more efficient methods
A variant of the basic algorithm:

• Maybe it is OK to have an unlimited # of gaps in the beginning and end:

```
CTATCACCTGACCTCCAGGCCGATGCCCTCTCTCGGC
---|--|---|--
GCGAGTTTCATCTATCAC--GACC--GC--GGT--CG
```

• Then, we don’t want to penalize gaps in the ends
Different types of overlaps

Example:
2 overlapping “reads” from a sequencing project

Example:
Search for a mouse gene within a human chromosome
The Overlap Detection variant

Changes:

1. **Initialization**
 - For all i, j,
 - $F(i, 0) = 0$
 - $F(0, j) = 0$

2. **Termination**
 - $F_{OPT} = \max_i F(i, N)$
 - $F_{OPT} = \max_j F(M, j)$
The local alignment problem

Given two strings

\[x = x_1 \ldots x_M, \]
\[y = y_1 \ldots y_N \]

Find substrings \(x', y' \) whose similarity (optimal global alignment value) is maximum

\[x = \text{aaaacc} \boxed{\text{cccggg}} \text{gtta} \]
\[y = \text{tt} \boxed{\text{cccggg}} \text{aaccaacc} \]
Why local alignment

- Genes are shuffled between genomes
The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: $F(0, j) = F(i, 0) = 0$

Iteration: $F(i, j) = \max \begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$
The Smith-Waterman algorithm

Termination:

1. If we want the best local alignment…

 \[F_{\text{OPT}} = \max_{i,j} F(i, j) \]

 Find \(F_{\text{OPT}} \) and trace back

2. If we want all local alignments scoring > \(t \)

 ?? For all \(i, j \) find \(F(i, j) > t \), and trace back?

Complicated by overlapping local alignments

Waterman–Eggert ’87: **find all non-overlapping local alignments with minimal recalculation of the DP matrix**
Scoring the gaps more accurately

Current model:

| Gap of length | n | incurs penalty | n×d |

However, gaps usually occur in bunches

Concave gap penalty function $\gamma(n)$ (aka Convex $-\gamma(n)$):

$\gamma(n)$: for all n, $\gamma(n + 1) - \gamma(n) \leq \gamma(n) - \gamma(n - 1)$
Convex gap dynamic programming

Initialization: same

Iteration:
\[
F(i, j) = \max \begin{cases}
F(i - 1, j - 1) + s(x_i, y_j) \\
\max_{k=0\ldots i-1} F(k, j) - \gamma(i - k) \\
\max_{k=0\ldots j-1} F(i, k) - \gamma(j - k)
\end{cases}
\]

Termination: same

Running Time: $O(N^2M)$ (assume $N>M$)

Space: $O(NM)$
Compromise: affine gaps

\[\gamma(n) = d + (n - 1) \times e \]

| gap | gap | open | extend |

To compute optimal alignment,

At position \(i, j \), need to “remember”

- best score if gap is open
- best score if gap is not open

\[
F(i, j): \text{ score of alignment } x_1 \ldots x_i \text{ to } y_1 \ldots y_j \\
\text{ if } x_i \text{ aligns to } y_j
\]

\[
G(i, j): \text{ score if } x_i \text{ aligns to a gap after } y_j \\
H(i, j): \text{ score if } y_j \text{ aligns to a gap after } x_i
\]

\[
V(i, j) = \text{ best score of alignment } x_1 \ldots x_i \text{ to } y_1 \ldots y_j
\]
Needleman-Wunsch with affine gaps

Why do we need matrices F, G, H?

Because, perhaps

$G(i, j) < V(i, j)$

(it is best to align x_i to y_j if we were aligning only $x_1 \ldots x_i$ to $y_1 \ldots y_j$ and not the rest of x, y),

but on the contrary

$G(i, j) - e > V(i, j) - d$

(i.e., had we “fixed” our decision that x_i aligns to y_j, we could regret it at the next step when aligning $x_1 \ldots x_{i+1}$ to $y_1 \ldots y_j$)

Add $-d$

$G(i+1, j) = F(i, j) - d$

Add $-e$

$G(i+1, j) = G(i, j) - e$
Needleman-Wunsch with affine gaps

Initialization:
\[
\begin{align*}
V(i, 0) &= -d - (i - 1)e \\
V(0, j) &= -d - (j - 1)e
\end{align*}
\]

Iteration:
\[
V(i, j) = \max \{ F(i, j), G(i, j), H(i, j) \}
\]

\[
F(i, j) = V(i - 1, j - 1) + s(x_i, y_j)
\]

\[
G(i, j) = \max \begin{cases}
V(i - 1, j) - d \\
G(i - 1, j) - e
\end{cases}
\]

\[
H(i, j) = \max \begin{cases}
V(i, j - 1) - d \\
H(i, j - 1) - e
\end{cases}
\]

Termination:
\[
V(i, j) \text{ has the best alignment}
\]
To generalize a bit...

... think of how you would compute optimal alignment with this gap function

\[\gamma(n) \]

... in time \(O(MN) \)
Assume we know that x and y are very similar.

Assumption: $\# \text{gaps}(x, y) < k(N)$

Then, $|i - j| < k(N)$

We can align x and y more efficiently:

Time, Space: $O(N \times k(N)) \ll O(N^2)$
Bounded Dynamic Programming

Initialization:
F(i,0), F(0,j) undefined for i, j > k

Iteration:
For i = 1…M
 For j = max(1, i – k)...min(N, i+k)
 F(i, j) = max
 \begin{align*}
 F(i – 1, j – 1) + s(x_i, y_j), \\
 F(i, j – 1) – d, & \text{ if } j > i – k(N) \\
 F(i – 1, j) – d, & \text{ if } j < i + k(N)
 \end{align*}

Termination: same

Easy to extend to the affine gap case
Outline

• Linear-Space Alignment

• BLAST – local alignment search

• Ultra-fast alignment for (human) genome resequencing