
Hidden Markov Models
1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Viterbi, Forward, Backward

 VITERBI

Initialization:

 V0(0) = 1
 Vk(0) = 0, for all k > 0

Iteration:

 Vl(i) = el(xi) maxk Vk(i-1) akl

Termination:

 P(x, π*) = maxk Vk(N)

 FORWARD

Initialization:

 f0(0) = 1
 fk(0) = 0, for all k > 0

Iteration:

 fl(i) = el(xi) Σk fk(i-1) akl

Termination:

 P(x) = Σk fk(N)

BACKWARD

Initialization:

 bk(N) = 1, for all k

Iteration:

bl(i) = Σk el(xi+1) akl bk(i+1)

Termination:

 P(x) = Σk a0k ek(x1) bk(1)

Learning

Re-estimate the parameters of the
model based on training data

Two learning scenarios

1.  Estimation when the “right answer” is known

Examples:

 GIVEN: a genomic region x = x1…x1,000,000 where we have good
 (experimental) annotations of the CpG islands

 GIVEN: the casino player allows us to observe him one evening,

 as he changes dice and produces 10,000 rolls

2.  Estimation when the “right answer” is unknown

Examples:

 GIVEN: the porcupine genome; we don’t know how frequent are the
 CpG islands there, neither do we know their composition

 GIVEN: 10,000 rolls of the casino player, but we don’t see when he

 changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ)

1. When the states are known

Given x = x1…xN
for which the true π = π1…πN is known,

Define:

 Akl = # times k→l transition occurs in π
 Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ (maximize P(x|θ)) are:

 Akl Ek(b)
 akl = ––––– ek(b) = –––––––
 Σi Aki Σc Ek(c)

1. When the states are known

Intuition: When we know the underlying states,
 Best estimate is the normalized frequency of
 transitions & emissions that occur in the training data

Drawback:

 Given little data, there may be overfitting:
 P(x|θ) is maximized, but θ is unreasonable
 0 probabilities – BAD

Example:

 Given 10 casino rolls, we observe
 x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
 π = F, F, F, F, F, F, F, F, F, F
 Then:
 aFF = 1; aFL = 0
 eF(1) = eF(3) = .2;
 eF(2) = .3; eF(4) = 0; eF(5) = eF(6) = .1

Pseudocounts

Solution for small training sets:

 Add pseudocounts

 Akl = # times k→l transition occurs in π + rkl
 Ek(b) = # times state k in π emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts (ε < 1): just to avoid 0 probabilities

2. When the states are hidden

We don’t know the true Akl, Ek(b)

Idea:

•  We estimate our “best guess” on what Akl, Ek(b) are

§  Or, we start with random / uniform values

•  We update the parameters of the model, based on our guess

•  We repeat

2. When the states are hidden

Starting with our best guess of a model M, parameters θ:

 Given x = x1…xN
 for which the true π = π1…πN is unknown,

We can get to a provably more likely parameter set θ

 i.e., θ that increases the probability P(x | θ)

Principle: EXPECTATION MAXIMIZATION

1.  Estimate Akl, Ek(b) in the training data
2.  Update θ according to Akl, Ek(b)
3.  Repeat 1 & 2, until convergence

Estimating new parameters

To estimate Akl: (assume “| θCURRENT”, in all formulas below)

At each position i of sequence x, find probability transition k→l is used:

P(πi = k, πi+1 = l | x) =

 [1/P(x)] × P(πi = k, πi+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, πi = k, πi+1 = l, xi+1…xN) =

 = P(πi+1 = l, xi+1…xN | πi = k) P(x1…xi, πi = k) =
 = P(πi+1 = l, xi+1xi+2…xN | πi = k) fk(i) =
 = P(xi+2…xN | πi+1 = l) P(xi+1 | πi+1 = l) P(πi+1 = l | πi = k) fk(i) =
 = bl(i+1) el(xi+1) akl fk(i)

 fk(i) akl el(xi+1) bl(i+1)

So: P(πi = k, πi+1 = l | x, θ) = ––––––––––––––––––
 P(x | θCURRENT)

Estimating new parameters

•  So, Akl is the E[# times transition k→l, given current θ]

 fk(i) akl el(xi+1) bl(i+1)

Akl = Σi P(πi = k, πi+1 = l | x, θ) = Σi –––––––––––––––––
 P(x | θ)

•  Similarly,

 Ek(b) = [1/P(x | θ)]Σ {i | xi = b} fk(i) bk(i)

k l

xi+1

akl

el(xi+1)

bl(i+1) fk(i)

x1………xi-1 xi+2………xN

xi

The Baum-Welch Algorithm

Initialization:
 Pick the best-guess for model parameters
 (or arbitrary)

Iteration:

1.  Forward
2.  Backward
3.  Calculate Akl, Ek(b), given θCURRENT
4.  Calculate new model parameters θNEW : akl, ek(b)
5.  Calculate new log-likelihood P(x | θNEW)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | θ) does not change much

The Baum-Welch Algorithm

Time Complexity:

 # iterations × O(K2N)

•  Guaranteed to increase the log likelihood P(x | θ)

•  Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial

conditions

•  Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:

1.  Perform Viterbi, to find π*
2.  Calculate Akl, Ek(b) according to π* + pseudocounts
3.  Calculate the new parameters akl, ek(b)

Until convergence

Notes:

§  Not guaranteed to increase P(x | θ)
§  Guaranteed to increase P(x | θ, π*)
§  In general, worse performance than Baum-Welch

Pair-HMMs and CRFs

Slide Credits: Chuong B. Do

Quick recap of HMMs

•  Formally, an HMM = (Σ, Q, A, a0, e).
§  alphabet: Σ = {b1, …, bM}
§  set of states: Q = {1, …, K}
§  transition probabilities: A = [aij]
§  initial state probabilities: a0i

§  emission probabilities: ei(bk)

•  Example:

FAIR LOADED	

0.05	

0.05	

0.95	0.95	

Pair-HMMs

•  Consider the HMM = ((Σ1 U {η}) x (Σ2 U {η}), Q, A, a0, e).

•  Instead of emitting a pair of letters, in some states we may
emit a letter paired with η (the empty string)

§  For simplicity, assume η is never emitted for both observation
sequences simultaneously

§  Call the two observation sequences x and y

Application: sequence alignment

•  Consider the following pair-HMM:

M
P(xi, yj)

I
P(xi, η)

J
P(η, yj)

1	–	2δ	

1	–	ε	

δ δ
ε ε

1	–	ε	

op(onal	

∀c	∈Σ,	P(η,	c)	=	P(c,	η)	=	Q(c)	

•  QUESTION: What are the
interpretations of P(c,d) and
Q(c) for c,d ∈ Σ?

•  QUESTION: What does
this model have to do with
alignments?

•  QUESTION: What is the
average length of a gapped
region in alignments
generated by this model?
Average length of matched
regions?

Recap: Viterbi for single-sequence HMMs

•  Algorithm:
§  Vk(i) = max π1 … πi-1 P(x1 … xi-1, π1 … πi-1, xi, πi = k)

§  Compute using dynamic programming!

1

2	

K
…	

1	

2

K
…	

1

2

K	

…	

…	

…	

…	

1

2	

K
…	

x1 x2 x3 xK

2	

1	

K	

2	

(Broken) Viterbi for pair-HMMs

•  In the single sequence case, we defined
 Vk(i) = max π1 … πi-1 P(x1 … xi-1, π1 … πi-1, xi, πi = k)
 = ek(xi) · maxj ajk Vj(i - 1)

•  In the pairwise case,
(x1, y1) … (xi -1, yi-1) no longer correspond to the first i – 1
letters of x and y

(Fixed) Viterbi for pair-HMMs

•  Consider this special case:

•  Similar for forward/backward algorithms
•  (see Durbin et al for details)

QUESTION: What’s the computational complexity of DP?

M
P(xi, yj)

I
P(xi, η)

J
P(η, yj)

1	–	2δ	

1	–	ε	

δ δ
ε ε

1	–	ε	

op(onal	

∀c	∈Σ,	P(η,	c)	=	P(c,	η)	=	Q(c)	

	
VM(i,	j)	=	P(xi,	yj)	max	

VI(i,	j)	=	Q(xi)	max	
	
	

VJ(i,	j)	=Q(yj)	max	

(1	-	2δ)	VM(i	-	1,	j	-	1)	
(1	-	ε)	VI(i	-	1,	j	-	1)	
(1	-	ε)	VJ(i	-	1,	j	-	1)	
	

δ	VM(i	-	1,	j)	
ε	VI(i	-	1,	j)	
	

δ	VM(i,	j	-	1)	
ε	VJ(i,	j	-	1)	

Connection to NW with affine gaps

•  QUESTION: How would the optimal alignment change if
we divided the probability for every single alignment by
∏i=1 … |x| Q(xi) ∏j = 1 … |y| Q(yj)?

	
VM(i,	j)	=	P(xi,	yj)	max	

VI(i,	j)	=	Q(xi)	max	
	
	

VJ(i,	j)	=Q(yj)	max	

(1	-	2δ)	VM(i	-	1,	j	-	1)	
(1	-	ε)	VI(i	-	1,	j	-	1)	
(1	-	ε)	VJ(i	-	1,	j	-	1)	
	

δ	VM(i	-	1,	j)	
ε	VI(i	-	1,	j)	
	

δ	VM(i,	j	-	1)	
ε	VJ(i,	j	-	1)	

Connection to NW with affine gaps

•  Account for the extra terms “along the way.”

	
VM(i,	j)	=				P(xi,	yj)	max	

	
	

VI(i,	j)	=	max	
	
	

VJ(i,	j)	=	max	

(1	-	2δ)	VM(i	-	1,	j	-	1)	
(1	-	ε)	VI(i	-	1,	j	-	1)	
(1	-	ε)	VJ(i	-	1,	j	-	1)	
	

δ	VM(i	-	1,	j)	
ε	VI(i	-	1,	j)	
	

δ	VM(i,	j	-	1)	
ε	VJ(i,	j	-	1)	

Q(xi)	Q(yj)		

Connection to NW with affine gaps

•  Take logs, and ignore a couple terms.

	
log	VM(i,	j)	=												P(xi,	yj)				+		max	

	
	

log	VI(i,	j)	=	max	
	
	

log	VJ(i,	j)	=	max	

log	(1	-	2δ)	+	log	VM(i	-	1,	j	-	1)	
log	(1	-	ε)	+	log	VI(i	-	1,	j	-	1)	
log	(1	-	ε)	+	log	VJ(i	-	1,	j	-	1)	
	

log	δ	+	log	VM(i	-	1,	j)	
log	ε	+	log	VI(i	-	1,	j)	
	

log	δ	+	log	VM(i,	j	-	1)	
log	ε	+	log	VJ(i,	j	-	1)	

Q(xi)	Q(yj)		
log	

Connection to NW with affine gaps

•  Rename!

	
M(i,	j)	=			S(xi,	yj)				+		max	

	
	

I(i,	j)	=	max	
	
	

J(i,	j)	=	max	

M(i	-	1,	j	-	1)	
I(i	-	1,	j	-	1)	
J(i	-	1,	j	-	1)	
	

d	+	M(i	-	1,	j)	
e	+	I(i	-	1,	j)	
	

d	+	M(i,	j	-	1)	
e	+	J(i,	j	-	1)	

A simple example

•  Let’s work out an example, assume seq. identity 88%
§  Calculate match & mismatch scores
§  P(A, A) + … + P(T, T) = 0.88, therefore P(A, A) = 0.22
§  P(A, C) + … + P(G, T) = 0.12, therefore P(x, y, x != y) = 0.01
§  Match score

•  log(0.22 / 0.252) = 1.25846

§  Mismatch score
•  log(.01 / .252) = - 1.83258

§  When is a score of an ungapped aligned region = 0?
•  Assume a fraction p of matches
•  1.25846p – 1.83258(1 – p) = 0
•  Therefore, p = 1.83258/(1.25846 + 1.83258) = 0.5929

