Hidden Markov Models




Viterbi, Forward, Backward

VITERBI FORWARD
Initialization: Initialization:
Vo(0) =1 f,(0) = 1
V. (0)=0,forallk>0 f(0)=0, forallk >0
Iteration: Iteration:
Vil) = &x) max Vi1 aq (i) = () 2 fi(i-1) ay
Termination: Termination:

P(x, m*) = max, V,(N) P(x) = Z f(N)

BACKWARD

Initialization:
b.(N) =1, for all k

Iteration:
by(i) = 2y (xi+1) a by(i+1)

Termination:

P(x) = 2k Aok €x(Xq) b(1)



Learning

Re-estimate the parameters of the
model based on training data



Two learning scenarios o

1. Estimation when the “right answer” is known

Examples:
GIVEN:

GIVEN:

a genomic region X = X,4...X4 900.000 Where we have good
(experimental) annotatlons ofpghe CpG islands

the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

2. Estimation when the “right answer” is unknown

Examples:
GIVEN:

GIVEN:

QUESTION:

the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

10,000 rolls of the casino player, but we don’t see when he
changes dice

Update the parameters 6 of the model to maximize P(x|0)



1.

When the states are known *°

Given X = X4...Xy
for which the true & = ...y is known,

Define:
Ay = # times k—| transition occurs in xt
E.(Db) = # times state k in @ emits b in x

We can show that the maximum likelihood parameters 6 (maximize P(x|0)) are:

Ay E,(b)
Ay = — e(b) =
2 Ay 2 Ey(c)




1.

When the states are known *°

Intuition: When we know the underlying states,
Best estimate is the normalized frequency of
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:

P(x|0) is maximized, but 6 is unreasonable
0 probabilities — BAD

Example:

Given 10 casino rolls, we observe
x=2,1, 5, 6, 1, 2, 3, 6, 2, 3
n=F,6 F,6 F, F,F,6 F,F, F, F, F
Then:

(1) = ex(3) = .2;

arr =1, ap =0
er(1) =
ex(2) = .3; ex(4) = 0; e(5) = e(6) = .1



Pseudocounts °°

Solution for small training sets:
Add pseudocounts

Ay = # times k—| transition occurs in © + 1y
E,(b) = # times state k in 7t emits b in x +r(b)

ras (b) are pseudocounts representing our prior belief
Larger pseudocounts = Strong priof belief

Small pseudocounts (¢ < 1): just to avoid O probabilities



2. When the states are hidden *°

We don’t know the true A, E,(b)

|dea:

- We estimate our “best guess” on what A, E,(b) are
Or, we start with random / uniform values

*  We update the parameters of the model, based on our guess

*  We repeat



2.

When the states are hidden *°

Starting with our best guess of a model M, parameters 6:

Given X = X4...Xy
for which the true x = &,...my is unknown,

We can get to a provably more likely parameter set 6
I.e., O that increases the probability P(x | 6)

Principle: EXPECTATION MAXIMIZATION

1. Estimate A, E,(b) in the training data
2. Update 6 according to A, E,(b)
3. Repeat 1 & 2, until convergence



Estimating new parameters o

To estimate A,: (assume “| Byrrent’ in all formulas below)

At each position i of sequence x, find probability transition k—l is used:

P(r, =K, my =1 X) =
[1/P(X)] x P(m; = K, m.q =1, X4...Xy) = Q/P(X)

where Q = P(X4...X;, @ = K, Tiyq =1, Xipq...Xy) =

= P(r ,+1=I,xi+1...xN|ni=k) P(x4...X, m = k)
P(miq = |, XisqXisg- - Xy | 7 = K) f ()
P(Xjsp--- XN | g = 1) P(X|+1 | Ty = 1) Plwq = 1] = k) fi (i) =
b(i+1) e/(Xi,1) ay fi(i)

fi(i) a e(x;.q) by(i+1)
So: P(x, =k, m,,,=1]|x,0)=

P(x | 6current)



Estimating new parameters o

So, A, is the E[# times transition k—I, given current 6]
fi(i) @y e(xiq) by(i+1)

Ay = 2 Pl =k, m =1 x, 8) = 2
P(x|6)

£,(7) | b(i+1) |

Similarly,

Ex(b) = [1/P( | B)] g i = by fil) bi(i)



The Baum-Welch Algorithm o

Initialization:
Pick the best-guess for model parameters
(or arbitrary)

Iteration:
Forward
Backward
Calculate A, E((b), given Bcyrrent
Calculate new model parameters  Oygy : @y, €x(b)
Calculate new log-likelihood P(X | Onew)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | 6) does not change much



The Baum-Welch Algorithm

Time Complexity:

# iterations x O(K2N)

- Guaranteed to increase the log likelihood P(x | 6)

* Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial

conditions

- Too many parameters / too large model:

Overtraining



Alternative: Viterbi Training o

Initialization: Same

Iteration:
Perform Viterbi, to find &
Calculate A, E,(b) according to " + pseudocounts
Calculate the new parameters a,, e, (b)

Until convergence

Notes:
Not guaranteed to increase P(x | 0)
Guaranteed to increase P(x | 6, «)
In general, worse performance than Baum-Welch



Pair-HMMs and CRFs

Slide Credits: Chuong B. Do



Quick recap of HMMs o

« Formally, an HMM = (%, Q, A, a,, e).
alphabet: ~ = {b,, ..., by}
set of states: Q ={1, ..., K}
transition probabilities: A = [a;]
initial state probabilities: a,
emission probabilities: e,(b,)

0.05

0.05

 Example:

0.95 0.95



Pair-HMMs *°

« Consider the HMM = ((Z,; U {n}) x (X, U {n}), Q, A, a,, e).

 Instead of emitting a pair of letters, in some states we may
emit a letter paired with n (the empty string)

For simplicity, assume n is never emitted for both observation
sequences simultaneously

Call the two observation sequences x and y



Application: sequence alignment 4

» Consider the following pair-HMM:

1-25 « QUESTION: What are the
interpretations of P(c,d) and
Q(c) forc,d € £7?

« QUESTION: What does
this model have to do with
alignments?

« QUESTION: What is the
average length of a gapped

optional region in alignments

generated by this model?

Average length of matched
Vc €3, P(n, c) = P(c, n) = Q(c) regions?




Recap: Viterbi for single-sequence HMMs o

 Algorithm:

= V(i) =max 1y i PXq oo Xiq, Ty ool T, X, T = K)

= Compute using dynamic programming!



(Broken) Viterbi for pair-HMMs

* |In the single sequence case, we defined

Vii) =max oy qiq POXg oo X, T

* |n the pairwise case,

i1, X, T; = K)

(X4, Y4) --- (X;_1, Yi.1) NO longer correspond to the first i — 1

letters of x and y



(Fixed) Viterbi for pair-HMMs

* Consider this special case:

1-28

VM(iI J) = P(Xil yJ) maXx =

. V,(i, j) = Q(x;) max -

[ (1-26)Vy(i-1,j-1)
(1-E)V|(i'1,j-1)
(1‘€)VJ(i'1:J"1)

i 6VI\/I(I - 11 J)

Vi(i, j) =Q(y;) max 7
Vc €z, P(n, c) = P(c, n) = Q(c)

I eV|(i-1,))

i 6 VM(in- 1)

L eVi,j-1)

- Similar for forward/backward algorithms

(see Durbin et al for details)

QUESTION: What's the computational complexity of DP?



Connection to NW with affine gaps o

[ (1-28)Vy(i-1,j-1)
Vali, ) = P(x, y) max 4 (1-€)V(i-1,j-1)
(1’8)VJ(i'1rj_1)

.oy -6V|\/|(i_1lj)
V (i, j) = Q(x;) max -- eV(i-1,])
. 5 V(i j- 1
VJ(II J) _Q(yJ) max -- £ Vj(i, J _ 1)

« QUESTION: How would the optimal alignment change if
we divided the probability for every single alignment by

[Tzt g QOO TTi= 1y QUY)?



Connection to NW with affine gaps o

[ (1-28)Vyi-1,j-1)
V(i i)= Px,y)maxd (1-e)V(i-1,j-1)
Q(x;) Qly;) (1-g)V,(i-1,j-1)

C o Vyli-1,))
o EVI(i -1, J)

.. 0 VM(iI J - 1)
V(i, j) = max eV(i,j-1)

V,(i, j) = max -

* Account for the extra terms “along the way.”



Connection to NW with affine gaps o

Log{1=786) +log Vy,(i- 1, - 1)
log (i, j) = log P(x, yj) + maxq logll—e+logV|(i-1,j-1)

Q(x;) Qly;) log{d=€l+log V(i-1,j-1)

" log 6 +log V(i -1, ])

log V(i, j) = max <
& ¥ih _loge+logV(i-1,j)

[ log 6 +log V,,(i, j - 1)
log V|(i, j) = max

_ loge+log Vi, j-1)

« Take logs, and ignore a couple terms.



Connection to NW with affine gaps

M(II J) = S(Xil yJ) + max o

Rename!

I(i, j) = max <

J(i, j) = max T

CM(-1,-1)
i-1,j-1)
0i-1,j-1)

T d+M(i-1,))
| e+lI(i-1,))

Cd+M(i,j-1)

Le+J(i,j-1)



A simple example o

« Let's work out an example, assume seq. identity 88%
Calculate match & mismatch scores
P(A, A)+ ...+ P(T, T) = 0.88, therefore P(A, A) = 0.22
P(A,C)+ ...+ P(G, T) =0.12, therefore P(x, y, x I=y) = 0.01

Match score
log(0.22 / 0.252) = 1.25846

Mismatch score
log(.01/ .252) = - 1.83258

When is a score of an ungapped aligned region = 0?
Assume a fraction p of matches
1.25846p — 1.83258(1 —p) =0
Therefore, p = 1.83258/(1.25846 + 1.83258) = 0.5929



