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Viterbi, Forward, Backward 

  VITERBI 
 
Initialization: 

 V0(0) = 1 
 Vk(0) = 0, for all k > 0 

 
Iteration: 
 
 Vl(i) = el(xi)  maxk Vk(i-1) akl  
 
Termination: 
 
   P(x, π*) =  maxk Vk(N) 
 

  FORWARD 
 
Initialization:   

 f0(0) = 1 
 fk(0) = 0, for all k > 0 

 
Iteration: 
 

 fl(i) = el(xi) Σk fk(i-1) akl 

 
Termination: 

  
 P(x) = Σk fk(N) 

BACKWARD 
 
Initialization:   

 bk(N) = 1, for all k 
 
 
Iteration: 
 

bl(i) = Σk el(xi+1) akl bk(i+1) 
 
Termination: 

  

   P(x) = Σk a0k ek(x1) bk(1) 



Learning 

Re-estimate the parameters of the 
model based on training data 

 



Two learning scenarios 

1.  Estimation when the “right answer” is known 
 
Examples:  

 GIVEN:  a genomic region x = x1…x1,000,000 where we have good  
  (experimental) annotations of the CpG islands 

  
 GIVEN:  the casino player allows us to observe him one evening,  

  as he changes dice and produces 10,000 rolls 
  

2.  Estimation when the “right answer” is unknown 
 
Examples: 

 GIVEN:  the porcupine genome; we don’t know how frequent are the  
  CpG islands there, neither do we know their composition 

 
 GIVEN:  10,000 rolls of the casino player, but we don’t see when he  

  changes dice 
 
QUESTION:  Update the parameters θ of the model to maximize P(x|θ) 



1.  When the states are known 

Given x = x1…xN 
for which the true π = π1…πN is known, 
 
Define: 
 

 Akl   = # times k→l transition occurs in π 
 Ek(b)  = # times state k in π emits b in x 

 
 
We can show that the maximum likelihood parameters θ (maximize P(x|θ)) are: 
 

            Akl             Ek(b) 
  akl = –––––    ek(b) =   –––––––  
          Σi Aki        Σc Ek(c) 



1.  When the states are known 

Intuition: When we know the underlying states, 
            Best estimate is the normalized frequency of    
            transitions & emissions that occur in the training data 

 
Drawback:  

 Given little data, there may be overfitting: 
 P(x|θ) is maximized, but θ is unreasonable 
 0 probabilities – BAD 

 
Example: 

  Given 10 casino rolls, we observe  
   x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 
   π = F, F, F, F, F, F, F, F, F, F 
  Then: 
   aFF = 1;    aFL = 0 
   eF(1) = eF(3) = .2;  
   eF(2) = .3; eF(4) = 0; eF(5) = eF(6) = .1    



Pseudocounts 

Solution for small training sets: 
 

 Add pseudocounts 
 

 Akl   = # times k→l transition occurs in π  + rkl 
 Ek(b)  = # times state k in π emits b in x  + rk(b) 

 
rkl, rk(b) are pseudocounts representing our prior belief 
 
Larger pseudocounts ⇒ Strong priof belief 
 
Small pseudocounts (ε < 1): just to avoid 0 probabilities   



2.  When the states are hidden 

We don’t know the true Akl, Ek(b) 
 
Idea: 
 
•  We estimate our “best guess” on what Akl, Ek(b) are 

§  Or, we start with random / uniform values 

•  We update the parameters of the model, based on our guess 

•  We repeat 



2.  When the states are hidden 

Starting with our best guess of a model M, parameters θ: 
 

 Given x = x1…xN 
  for which the true π = π1…πN is unknown, 

 
We can get to a provably more likely parameter set θ 

 i.e., θ that increases the probability  P(x | θ) 
 
Principle: EXPECTATION MAXIMIZATION 
 
1.  Estimate Akl, Ek(b) in the training data 
2.  Update θ according to Akl, Ek(b) 
3.  Repeat 1 & 2, until convergence 



Estimating new parameters 

To estimate Akl: (assume “| θCURRENT”, in all formulas below) 
 
At each position i of sequence x, find probability transition k→l is used: 
 
P(πi = k, πi+1 = l | x) =  

      [1/P(x)] × P(πi = k, πi+1 = l, x1…xN) = Q/P(x) 
 
where Q = P(x1…xi, πi = k, πi+1 = l, xi+1…xN) = 

    = P(πi+1 = l, xi+1…xN | πi = k) P(x1…xi, πi = k) = 
    = P(πi+1 = l, xi+1xi+2…xN | πi = k) fk(i) = 
    = P(xi+2…xN | πi+1 = l) P(xi+1 | πi+1 = l) P(πi+1 = l | πi = k) fk(i) = 
    = bl(i+1) el(xi+1) akl fk(i) 

 
         fk(i) akl el(xi+1) bl(i+1) 

So:   P(πi = k, πi+1 = l | x, θ) =   –––––––––––––––––– 
             P(x | θCURRENT) 



Estimating new parameters 

•  So, Akl is the E[# times transition k→l, given current θ] 

                                 fk(i) akl el(xi+1) bl(i+1) 

Akl = Σi P(πi = k, πi+1 = l | x, θ) = Σi ––––––––––––––––– 
                             P(x | θ) 

 
 
 
 

•  Similarly, 

        Ek(b) = [1/P(x | θ)]Σ {i | xi = b} fk(i) bk(i) 

k l 

xi+1 

akl 

el(xi+1) 

bl(i+1) fk(i) 

x1………xi-1 xi+2………xN 

xi 



The Baum-Welch Algorithm 

Initialization: 
 Pick the best-guess for model parameters 
  (or arbitrary) 

 
Iteration: 

1.  Forward 
2.  Backward 
3.  Calculate    Akl, Ek(b), given θCURRENT 
4.  Calculate new model parameters     θNEW : akl, ek(b) 
5.  Calculate new log-likelihood  P(x | θNEW) 
  

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION 
 
Until P(x | θ) does not change much 



The Baum-Welch Algorithm 

Time Complexity: 
  
 # iterations × O(K2N) 

 
•  Guaranteed to increase the log likelihood P(x | θ)  

 
 
•  Not guaranteed to find globally best parameters 

 
Converges to local optimum, depending on initial 

conditions 

•  Too many parameters / too large model:  Overtraining 



Alternative: Viterbi Training 

Initialization:  Same 
 
Iteration: 

1.  Perform Viterbi, to find π* 
2.  Calculate Akl, Ek(b) according to π* + pseudocounts 
3.  Calculate the new parameters akl, ek(b) 

Until convergence 
 
Notes: 

§  Not guaranteed to increase P(x | θ) 
§  Guaranteed to increase P(x | θ, π*) 
§  In general, worse performance than Baum-Welch 



Pair-HMMs and CRFs 

Slide Credits: Chuong B. Do 



Quick recap of HMMs 

•  Formally, an HMM = (Σ, Q, A, a0, e). 
§  alphabet: Σ = {b1, …, bM} 
§  set of states: Q = {1, …, K} 
§  transition probabilities: A = [aij] 
§  initial state probabilities: a0i 

§  emission probabilities: ei(bk) 

•  Example: 

FAIR LOADED	

0.05	

0.05	

0.95	0.95	



Pair-HMMs 

•  Consider the HMM = ((Σ1 U {η}) x (Σ2 U {η}), Q, A, a0, e). 

•  Instead of emitting a pair of letters, in some states we may 
emit a letter paired with η (the empty string) 

§  For simplicity, assume η is never emitted for both observation 
sequences simultaneously 

§  Call the two observation sequences x and y 



Application: sequence alignment 

•  Consider the following pair-HMM: 

M 
P(xi, yj) 

I 
P(xi, η) 

J 
P(η, yj) 

1	–	2δ	

1	–	ε	

δ δ 
ε ε 

1	–	ε	

op(onal	

∀c	∈Σ,	P(η,	c)	=	P(c,	η)	=	Q(c)	

•  QUESTION: What are the 
interpretations of P(c,d) and 
Q(c) for c,d ∈ Σ? 

•  QUESTION:  What does 
this model have to do with 
alignments? 

•  QUESTION:  What is the 
average length of a gapped 
region in alignments 
generated by this model?   
Average length of matched 
regions? 



Recap: Viterbi for single-sequence HMMs 

•  Algorithm: 
§  Vk(i) = max π1 … πi-1 P(x1 … xi-1, π1 … πi-1, xi, πi = k) 

§  Compute using dynamic programming! 
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(Broken) Viterbi for pair-HMMs 

•  In the single sequence case, we defined 
  Vk(i)   = max π1 … πi-1 P(x1 … xi-1, π1 … πi-1, xi, πi = k) 
            = ek(xi) · maxj ajk Vj(i - 1) 

 
 

•  In the pairwise case,  
(x1, y1) … (xi -1, yi-1) no longer correspond to the first i – 1 
letters of x and y 



(Fixed) Viterbi for pair-HMMs 

•  Consider this special case: 

•  Similar for forward/backward algorithms  
•  (see Durbin et al for details) 

QUESTION: What’s the computational complexity of DP? 

M 
P(xi, yj) 

I 
P(xi, η) 

J 
P(η, yj) 

1	–	2δ	

1	–	ε	

δ δ 
ε ε 

1	–	ε	

op(onal	

∀c	∈Σ,	P(η,	c)	=	P(c,	η)	=	Q(c)	

	
VM(i,	j)	=	P(xi,	yj)	max	

VI(i,	j)	=	Q(xi)	max	
	
	

VJ(i,	j)	=Q(yj)	max	

(1	-	2δ)	VM(i	-	1,	j	-	1)	
(1	-	ε)	VI(i	-	1,	j	-	1)	
(1	-	ε)	VJ(i	-	1,	j	-	1)	
	

δ	VM(i	-	1,	j)	
ε	VI(i	-	1,	j)	
	

δ	VM(i,	j	-	1)	
ε	VJ(i,	j	-	1)	



Connection to NW with affine gaps 

•  QUESTION:  How would the optimal alignment change if 
we divided the probability for every single alignment by 
∏i=1 … |x| Q(xi) ∏j = 1 … |y| Q(yj)? 

	
VM(i,	j)	=	P(xi,	yj)	max	

VI(i,	j)	=	Q(xi)	max	
	
	

VJ(i,	j)	=Q(yj)	max	

(1	-	2δ)	VM(i	-	1,	j	-	1)	
(1	-	ε)	VI(i	-	1,	j	-	1)	
(1	-	ε)	VJ(i	-	1,	j	-	1)	
	

δ	VM(i	-	1,	j)	
ε	VI(i	-	1,	j)	
	

δ	VM(i,	j	-	1)	
ε	VJ(i,	j	-	1)	



Connection to NW with affine gaps 

•  Account for the extra terms “along the way.” 

	
VM(i,	j)	=				P(xi,	yj)	max	

	
	

VI(i,	j)	=	max	
	
	

VJ(i,	j)	=	max	

(1	-	2δ)	VM(i	-	1,	j	-	1)	
(1	-	ε)	VI(i	-	1,	j	-	1)	
(1	-	ε)	VJ(i	-	1,	j	-	1)	
	

δ	VM(i	-	1,	j)	
ε	VI(i	-	1,	j)	
	

δ	VM(i,	j	-	1)	
ε	VJ(i,	j	-	1)	

Q(xi)	Q(yj)		



Connection to NW with affine gaps 

•  Take logs, and ignore a couple terms. 

	
log	VM(i,	j)	=												P(xi,	yj)				+		max	

	
	

log	VI(i,	j)	=	max	
	
	

log	VJ(i,	j)	=	max	

log	(1	-	2δ)	+	log	VM(i	-	1,	j	-	1)	
log	(1	-	ε)	+	log	VI(i	-	1,	j	-	1)	
log	(1	-	ε)	+	log	VJ(i	-	1,	j	-	1)	
	

log	δ	+	log	VM(i	-	1,	j)	
log	ε	+	log	VI(i	-	1,	j)	
	

log	δ	+	log	VM(i,	j	-	1)	
log	ε	+	log	VJ(i,	j	-	1)	

Q(xi)	Q(yj)		
log	



Connection to NW with affine gaps 

•  Rename! 

	
M(i,	j)	=			S(xi,	yj)				+		max	

	
	

I(i,	j)	=	max	
	
	

J(i,	j)	=	max	

M(i	-	1,	j	-	1)	
I(i	-	1,	j	-	1)	
J(i	-	1,	j	-	1)	
	

d	+	M(i	-	1,	j)	
e	+	I(i	-	1,	j)	
	

d	+	M(i,	j	-	1)	
e	+	J(i,	j	-	1)	



A simple example 

•  Let’s work out an example, assume seq. identity 88% 
§  Calculate match & mismatch scores 
§  P(A, A) + … + P(T, T) = 0.88, therefore P(A, A) = 0.22 
§  P(A, C) + … + P(G, T) = 0.12, therefore P(x, y, x != y) = 0.01 
§  Match score 

•  log(0.22 / 0.252) = 1.25846 

§  Mismatch score 
•  log(.01 / .252) = - 1.83258 

§  When is a score of an ungapped aligned region = 0? 
•  Assume a fraction p of matches 
•  1.25846p – 1.83258(1 – p) = 0 
•  Therefore, p = 1.83258/(1.25846 + 1.83258) = 0.5929 


