
PRACTICE Midterm Exam Solution CS265, Winter 2026

Instructions that will appear on the real exam
• DO NOT OPEN THE EXAM UNTIL YOU ARE INSTRUCTED TO.

• The last page of this exam is a sheet with some useful formulas and theorem
statements. Feel free to rip it off of the exam.

• Answer all of the questions as well as you can. You have 150 minutes.

• The exam is non-collaborative; you must complete it on your own. If you have any
clarification questions, please ask the course staff. We cannot provide any hints or
help.

• This exam is closed-book, except for up to three double-sided sheets of paper
that you have prepared ahead of time. You can have anything you want written on
these sheets of paper.

• Please DO NOT separate pages of your exam (other than the reference sheet on
the last page). The course staff is not responsible for finding lost pages, and you may
not get credit for a problem if it goes missing.

• There are a few pages of extra paper at the back of the exam in case you run out of
room on any problem. If you use them, please clearly indicate on the relevant problem
page that you have used them, and please clearly label any work on the extra pages.

• Please make sure to sign out of the roster when handing in your completed exam to
the teaching team.

• Please do not discuss the exam until after solutions are posted!

General Advice
• If you get stuck on a question or a part, move on and come back to it later. The

questions on this exam have a wide range of difficulty, and you can do well on the
exam even if you don’t get a few questions.

• Pay attention to the point values. Don’t spend too much time on questions that are
not worth a lot of points.

• There are 100 total points on this exam.

Name and SUNet ID (please print clearly):

SOLUTION
________________________________________________________
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Honor Code
The Honor Code is an undertaking of the Stanford academic community, individually and
collectively. Its purpose is to uphold a culture of academic honesty. Students will support
this culture of academic honesty by neither giving nor accepting unpermitted academic aid
on this examination.

This course is participating in the proctoring pilot overseen by the Academic Integrity
Working Group (AIWG), therefore proctors will be present in the exam room. The purpose
of this pilot is to determine the efficacy of proctoring and develop effective practices for
proctoring in-person exams at Stanford.

Unpermitted Aid on this exam includes but is not limited to the following: collab-
oration with anyone else; reference materials other than your cheat-sheet (see below); and
internet access.

Permitted aid on this exam includes a “cheat-sheet:” two double-sided sheets of paper
with anything written on them, which you have prepared yourself ahead of time.

I acknowledge and attest that I will abide by the Honor Code:

[signed] ___________________________________

Exam Break Sign-out
I pledge that during my exam break:

• I will not bring any paper, electronic devices (phone, smart watch, smart glasses, etc),
or aid (permitted or unpermitted) out of or into the exam room.

• I will not communicate with anyone other than the course instructional staff about the
content of the exam.

Signature Confirming
Honor Code Pledge Exit Time Return Time Proctor Initial Length (min)

If you are feeling unwell and are not able to complete the exam, please connect with the
proctor to discuss options.

Good Luck!
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1. (12 pt.) For each of the parts below, select the best bound you can to correctly fill in
the blank.

(a) (4 pt.) Let G be a finite group and let H be a subgroup of G, so that H ̸= G.
Choose g ∈ G uniformly at random. Then Pr[g ∈ H] ≤ ______.

(A) 1 (B) 1− 1/|G| (C) 1/2 (D) 1/|S|

SOLUTION:
The answer is (C). This is the reason why our primality testing algorithm worked!
(Aka, Lagrange’s theorem).

(b) (4 pt.) Let f(x, y, z) be a 3-variate polynomial of total degree at most d, and
suppose that f is not identically zero. Choose a, b, c independently and uniformly
at random from the set {1, 2, . . . , 10}. Then Pr[f(a, b, c) = 0] ≤ _____.

(A) 1 (B) d/10 (C) d/103 (D) d3/103

SOLUTION:
The answer is (B). This follows from the Schwartz-Zippel lemma.

(c) (4 pt.) Let G be the following graph:

Then Pr[One run of Karger’s algorithm succeeds starting from this graph] ≥ _____

(A) 0 (B) 8/15 (C) 2/3 (D) 4/5

SOLUTION:
The answer is (B). The probability that it succeeds in the first step is 4/5. Condi-
tioned on succeeding, we are left with a graph with three (mega)-vertices, A,B,C,
with a double edge between A and B and a single edge between C, and so the
probability of succeeding in the next step is 2/3, at which point we are down to
only two nodes and we are done. So the probability of success is 4/5 · 2/3 = 8/15.

2. (26 pt.) For all of the parts of this problem, suppose that Y1, Y2, . . . , Yn are random
variables (not necessarily independent) that take on values in {0, 1}.
For each of the following scenarios, select the smallest correct way, among the options
provided, to fill in the blank in the following expression

Pr

[
n∑

i=1

Yi > n/2

]
< ______________,
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and also identify which inequality/theorem you would use to show this. It’s okay to
identify the inequality/theorem by name or uniquely identifying description; you don’t
need to write out a formula. In this problem, all the big-Oh notation below is as
n → ∞, so in particular you can assume n is sufficiently large.

For parts (a)-(c), no justification is required (or will be considered), beyond the name
of the inequality.

(a) (6 pt.) For each i, E[Yi] = 1/5. (And you know nothing else about them other
than that they are binary).

(A) 1/2 (B) O(1/
√
n) (C) O(1/n) (D) O(1/n2) (E) e−Ω(n)

I would use the inequality: _________________________________

SOLUTION:
The answer is A. I would use Markov’s inequality.

(b) (6 pt.) For each i, E[Yi] = 1/5, and the Yi are pairwise independent. That is, for
all i ̸= j, Yi and Yj are independent.

(A) 1/2 (B) O(1/
√
n) (C) O(1/n) (D) O(1/n2) (E) e−Ω(n)

I would use the inequality: _________________________________

SOLUTION:
The answer is C. I would use Chebyshev’s inequality.

(c) (6 pt.) For each i, E[Yi] = 1/5, and the Yi are fully independent.

(A) 1/2 (B) O(1/
√
n) (C) O(1/n) (D) O(1/n2) (E) e−Ω(n)

I would use the inequality: _________________________________

SOLUTION:
The answer is E. I would use a Chernoff bound.
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(d) (8 pt.) The Yi are defined as follows. We drop 30 · n balls into n bins, and Yi is
1 if bin i has at least 100 balls in it and is 0 otherwise.

(A) 1/2 (B) O(1/
√
n) (C) O(1/n) (D) O(1/n2) (E) e−Ω(n)

In a few sentences, explain what you would do to establish your answer. That
is, say what inequalities/theorems would you use, and clearly define the random
variables you would use them on. You don’t need to work out the details. You
don’t need to justify why your answer is tight (e.g., if your answer is (A), you
should explain how to show that (A) is true, but you don’t need to explain how
to show that (B) is not true).

SOLUTION:
The answer is E. To see this, we approximate the occupancies by Poisson random
variables. In more detail, let k ∼ Poi(40n), and consider dropping k balls into n
bins. Let Zi be the occupancy of the i’th bin, so Zi ∼ Poi(40). Then let Wi be 1
if Zi ≥ 100 and 0 otherwise. Thus, Pr[Wi = 1] =: p is some constant, and by our
tail bound for Poisson random variables,

p ≤ 2 exp(−602/(2 · 100)),

which is very small and certainly less than 1/2.
Now the Wi are fully independent and we can use a Chernoff bound to show that
Pr[

∑
i Wi > n/2] ≤ exp(−Ω(n)). To de-Poissonify, we observe that the probability

that k < 40n is exp(−Ω(n)) by our tail bound for Poisson random variables. If
that happens, then

Pr[
∑
i

Yi > n/2] ≤ Pr[
∑
i

Wi > n/2|k ≥ 40n],

because the Yi correspond to a situation where fewer balls have been dropped, so
it is less likely that there are many bins with at least 100 balls. Finally, we can use
the fact that

Pr[
∑
i

Wi > n/2|k ≥ 40n] ≤ Pr[
∑

i Wi > n/2]

Pr[k ≥ 40n]
≤ exp(−Ω(n)).

Grading note: We would not require so much detail, especially about de-
Poissonification, since we only asked for a sentence or two. But we’ve included
it here to make the answer clear.
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3. (20 pt.) For each of the tasks below, explain briefly how you would do them. You
can (and, HINT, probably should) use any algorithm we have seen as a black box.

(a) (10 pt.) Let X = {x1, . . . , xn} ⊂ Rd. Fix T > 0. You want to split X into two
disjoint parts, X = Y1 ∪ Y2, so that there are few pairs xi, xj in different parts
that are close to each other. Formally, the goal is to minimize

∑
xi∈Y1,xj∈Y2

1[∥xi−
xj∥2 ≤ T ]. Give a randomized algorithm that runs in time poly(n) and finds a
minimizing Y1,Y2 with probability at least 0.9.

SOLUTION:
Let G = (V,E) be a graph with V = X , and so that {x, y} ∈ E if and only
f ∥x − y∥2 ≤ T . The run Karger’s algorithm on G (repeating enough times to
ensure a success probability of at least 0.9), and return the partition given by the
minimum cut.

(b) (10 pt.) Let X = {x1, x2, . . . , xn} ⊆ Rd. Fix T > 0. Suppose you have black-box
access to a deterministic algorithm A that runs on any such set X and partitions
it into k disjoint parts, X = Y1 ∪ Y2 ∪ · · · ∪ Yk, so that the diameter of each Yi

is at most T .1 (The diameter of a set Y is diam(Y) = maxy ̸=y′∈Y ∥y − y′∥2). The
algorithm A runs in time polynomial in n, k, and 2d.
Give a randomized algorithm that runs in time polynomial in n, k, and d (not 2d)
that does the following. Given such a set X and a parameter T , your algorithm
should return a partition Y1, . . . ,Yk of X so that each part Yi has diameter at
most 1.1 · T . Your algorithm should be correct with probability 0.9, and should
use A as a black box.

SOLUTION:
Let Φ ∈ Rm×d be a JL transform with distortion ε < 1/100 and target dimension
m = O(log n). Then let yi = Φxi for all i. Run A on the points {yi : i ∈ [n]} to
obtain a partition Ỹ1, . . . , Ỹk . Then return Y1, . . . ,Yk , where

Yj =
{
xi : yi ∈ Ỹj

}
.

To see why this works (which is not required for credit), note that

diam(Yj) = max
x̸=x′∈Yj

∥x− x′∥2 ≤ max
x̸=x′∈Yj

∥Φx− Φx′∥2
(

1

1− ε

)
≤ T

1− ε
≤ 1.1 · T.

1For the purposes of this problem, suppose that such a partition always exists.
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4. (21 pt.) There are n users, each of whom have an unlimited number of jobs to com-
plete. Each job takes one timestep to complete. At each timestep, you independently
choose a uniformly random user and complete a job for them. Note that you choose
the users with replacement, so it’s possible that over time you could complete multiple
jobs for the same user.

(a) (5 pt.) Let T be the first time you have completed at least one job for each of
the n users. What is E[T ]? Circle the best (smallest) answer that is true, and
briefly justify it. You do not need to do a formal proof, and you can appeal to
anything we have seen in class.

(A) O(n) (B) O(n log n) (C) O(n2) (D) 2O(n)

Justification:

SOLUTION:
The answer is (B). This is coupon collecting.

(b) (8 pt.) Let S be the first time you have completed a job for 99% of the n users.
What is E[S]? Circle the best (smallest) answer that is true, and briefly justify
it. You do not have to give a formal proof, and you can appeal to anything we
have seen in class.

(A) O(n) (B) O(n log n) (C) O(n2) (D) 2O(n)

Justification:

SOLUTION:
The answer is (A). To see this, we can use the same logic we used when deriving
the answer to the coupon collector’s problem:

ES =
0.99n∑
i=1

E[time to see the i’th new user after you see the i+ 1’st]

=
0.99n∑
i=1

n

n− i+ 1
.

Now, notice that n− i+1 ≥ 0.01n+1, so n
n−i+1

≤ 100. Thus, the above is at most∑0.99n
i=1 100 ≤ 100n = O(n).

[Another part on next page!]
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[Continued from previous page]

(c) (8 pt.) Suppose you run for t ∼ Poi(n2) timesteps. Prove that with probability
at least 0.99, no user has had more than 1.1n jobs run. You may assume that n
is sufficiently large.

SOLUTION:
Let Xi be the number of jobs for user i. Then Xi ∼ Poi(n) for all i. Thus,

Pr[Xi > 1.1n] ≤ Pr[|Xi − n| ≥ 0.1n]

≤ 2 exp

(
−(0.1n)2

1.1n

)
≤ 2 exp(−Ω(n)),

where above we used our tail bound for Poisson random variables. Union bounding
over all i = 1, . . . , n, we have

Pr[∃i,Xi > 1.1n] ≤ 2n exp(−Ω(n)) ≤ 0.01

for large enough n.
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5. (21 pt.) Suppose you are interested in computing a function f : D1 → D2, for some
domains D1 and D2.

(a) (8 pt.) Let ε ∈ (0, 1/2), and suppose D2 = {0, 1}. Suppose you have a ran-
domized algorithm A so that, for any x ∈ D1, A(x) = f(x) with probability at
least 1

2
+ ε. You decide to make a more robust algorithm, Ã, that just runs A

independently T times and returns the most frequent answer. Show that Ã is
correct with probability 0.99 for some value T that is O(1/ε2).

SOLUTION:
Fix x ∈ D1. Ã(x) will fail if the number of times that A(x) fails to output f(x) is
greater than T/2. Let Xi be the indicator variable that is 1 if A(x) ̸= f(x) on the
i’th trial. Then, EXi = 1− p1 ≤ 1/2− ε. By Chebyshev’s inequality,

P

{∑
i

Xi ≥ T/2

}
= P

{∣∣∣∣∣∑
i

(Xi − EXi)

∣∣∣∣∣ ≥ εT

}

≤ E (
∑

i(Xi − EXi))
2

ε2T 2

≤ Tp1(1− p1)

ε2T 2

=
p1(1− p1)

ε2T

Thus, if we choose T = Ω(1/ε2) sufficiently large, this will be smaller than 0.01.

(b) (8 pt.) Now suppose that D2 = {0, 1, . . . , n}, instead of {0, 1}. Suppose that
for any x ∈ D1, f(x) = A(x) with probability at least p ≥ C logn

n log logn
, where C

is some constant that you get to choose. Further suppose that for any incorrect
answer i ∈ {0, 1, . . . , n}, the probability that A outputs i is at most 1/n. Prove
that there exists some C so that, for sufficiently large n, Ã (which still returns
the most frequent answer out of the T trials) is correct with probability at least
0.99 when T = n. You may use anything we have seen in class as a black box.

SOLUTION:

Imagine that we have a bin for each element of D2, and a ball for each trial.
We will win as long as (A) the number of times that A(x) = f(x) is at least
C log n/ log log n (half its expectation), and (B) the maximum load in the bins
corresponding to D2 \ {f(x)} is less than C log n/ log log n. We will show that with
high probability, both (A) and (B) occur.
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We know that (A) will happen with high probability by a Chernoff bound (the second
one on the reference sheet, with δ = 1/2). In more detail, letting Xi be the event
that A(x) = f(x) and letting µ = pT , we have

P { not (A)} = P

{∑
i

Xi <
µ

2

}
≤ exp(−µ/8)

= exp(−pT/8)

= exp(−C log n/ log log n) = o(1).

In particular, this is less than 0.05 for large enough n.
To analyze (B), consider the situation where each of Pr[A(x) = y] is exactly equal
to 1/n for all y ∈ D2 \ {f(x)}, and where none of the balls land in the bin
corresponding to f(x). The maximum load in this situation will only be higher
than in our situation, so without loss of generality we may examine this balanced
situation, where we are dropping n balls uniformly into n bins.
We saw in class that, with probability 1−o(1), the maximum load in this situation is
Θ(log n/ log log n), for sufficiently large n. In particular, there is some constant C ′

so that the max load is at most C ′ log n/ log log n with probability 1− o(1). Choose
C = 2C ′, and let n be large enough that the o(1) failure probability is at most
0.05. Then (B) happens with probability at least 1− 0.05.

Finally, by the union bound that both (A) and (B) occur (and thus (1) holds) with
probability at least 0.99.
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(c) (5 pt.) Note: this one may be more difficult, and is only worth 5 points.
As above, suppose D2 = {0, 1, . . . , n}. Now suppose that A is correct with prob-
ability 1/4, and can output any particular incorrect answer i with probability at
most 1/8. How small can you take T to still allow the guarantee that Ã is correct
with probability at least 0.99?

SOLUTION:
You can do it with T = O(1). To see this, fix x ∈ D2. For y ∈ D2, let p(y) = P {A(x) = y}.
Partition D2 \ f(x) into at most 16 chunks, so that for each chunk S ⊆ D2 \ {f(x)},∑

y∈S

p(y) ∈ [1/16, 3/16].

You can do this by the greedy algorithm: start taking elements of D2 \ {f(x)} until you
have at least 1/16 probability mass, then move on to the next chunk. Because all of the
items in D2 \ {f(x)} have probability at most 1/8, the maximum mass you’ll accrue in
any chunk is at most 1/16+1/8 = 3/16. Now, we can have at most 16 of these chunks,
because otherwise the total probability mass across the chunks would be more than 1.
Next, we observe that the maximum number of votes for any element y in a chunk S
is upper bounded by the number of votes for any element in S .

Fix a chunk S ⊆ D2 \ {f(x)}. The probability that the number of votes for S is more
than (3/16+1/32)T is exp(−Ω(T )) by a Chernoff bound. Similarly, the probability that
the number of votes for f(x) is less than 3/16 is also exp(−Ω(T )) by a Chernoff bound.
Union bounding over the ≤ 17 bad events (one for each chunk S , and one for f(x)),
we see that if we take T = O(1) to be a large enough constant, the probability that any
of these bad events occur is small.

If none of the bad events occur, then Ã returns the correct answer.

This is the end of the exam!
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This is the end of the exam! You can use this page for extra work on any problem.
Keep this page attached to the exam packet (whether or not you use it), and if you

want extra work on this page to be graded, clearly label which question your extra work is
for, and make a note on the problem page itself.
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This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.
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This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.
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This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.
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Some useful inequalities, definitions and theorem statements
Note: We have not always stated full theorems here, just the quantitative punchlines. You are responsible

for knowing when each theorem applies.

Inequalities and Series
• 1− x ≤ e−x for any x.

• (n/k)k ≤
(
n
k

)
≤ (en/k)k for all k ≤ n.

•
(
n
k

)
≤ nk

k!
for all k ≤ n.

•
∑n

i=1 1/i = Θ(log n)

•
∑n

i=1 1/i
c = O(1) for all c > 1.

Definitions
• f(n) = O(g(n)) means that there are some constants c, n0 > 0 so that for all n ≥ n0,
f(n) ≤ cg(n).

• f(n) = Ω(g(n)) means that there are some constants c, n0 > 0 so that for all n ≥ n0,
f(n) ≥ cg(n).

• f(n) = o(g(n)) means that f(n)
g(n)

→ 0 as n → ∞.

• f(n) = ω(g(n)) means that f(n)
g(n)

→ ∞ as n → ∞.

• If X ∼ Poi(λ), then Pr[X = k] = e−λλk

k!
.

• If X ∼ N(µ, σ2), then Pr[X = x] = 1
σ
√
2π

exp
(
−1

2

(
x−µ
σ

)2)
• If X ∼ Ber(p), then X ∈ {0, 1} and Pr[X = 1] = p.

More on other side
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Concentration Inequalities
• Markov’s inequality: For a non-negative random variable X, Pr[X > t] ≤ EX

t
.

• Chebyshev’s inequality: For any random variable X, Pr[|X − EX| > t] ≤ Var(X)
t2

.

• A few Chernoff bounds: For independent Xi ∈ {0, 1}, if X =
∑n

i=1Xi, then:

– For δ > 0, Pr[X ≥ (1 + δ)E[X]] ≤
(

eδ

(1+δ)1+δ

)E[X]

. If δ ∈ (0, 1] this is ≤
exp(−δ2E[X]/3).

– For δ ∈ (0, 1], Pr[X ≤ (1 − δ)E[X]] ≤
(

e−δ

(1−δ)1−δ

)E[X]

. If δ ∈ (0, 1], this is
≤ exp(−δ2E[X]/2).

– For c ≥ 6, Pr[X ≥ cEX] ≤ 2−cEX .

• Tail bound for Poisson random variables: If X ∼ Poi(λ), then for any c > 0, Pr[|X −
λ| ≥ c] ≤ 2 exp

(
−c2

2(c+λ)

)
.

Balls and Bins
• The maximum load, when dropping n balls into n bins, is Θ

(
logn

log logn

)
with probability

1− o(1).

• Coupon collecting: limn→∞ Pr[X ≥ n log n+ cn] = 1− e−e−c

Dimension Reduction
• Bourgain’s Embedding: for any finite metric space (X, d) with |X| = n, there is

an embedding of (X, d) into Rk under the ℓ1 metric with distortion O(log n), where
k = O((log n)2).

• Johnson-Lindenstrauss Lemma: for any ε ∈ (0, 1), for any X ⊆ Rd with |X| = n, there
is a linear map f : Rd → Rm with m = O(ε−2 log n) that embeds (X, ℓ2) into (Rm, ℓ2)
with distortion at most (1 + ε).

More on other side
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