
Welcome to CS265/CME309!
Randomized Algorithms and Probabilistic Analysis

Please make a nametag while we wait for class to get started!



Welcome to CS265/CME309!

• Instructor: 
• Mary Wootters

• CAs:
• Dorsa Fathollahi

• Spencer Compton

Dorsa Spencer

Mary



Who are you?

• Now’s a good time to try out PollEverywhere!

PollEv.com/marykw







CS265/CME309 Course Overview



Course Information

web.stanford.edu/class/cs265



Course Pitch
Randomized Algorithms and Probabilistic Analysis

• Randomness can help in computation!
• There are many problems where the best solutions known are randomized.

• There are many problems where the best solutions possible are randomized.

• In this class, we will:
• Learn techniques for analyzing randomized processes and structures.

• Concentration inequalities, Poissonization, Probabilistic Method, Markov Chains, Martingales, ... 

• Learn to design random structures and algorithms to solve problems.
• Topics may include: Graph Algorithms, Scheduling, Routing, Dimension Reduction, Computational 

Geometry, Constraint Satisfaction, Sketching & Streaming, Counting & Sampling, …



Course Structure
• This is a flipped class.

• Before class: (except this one)
• You watch mini-lecture videos and/or read lecture notes.

• Videos are available either on YouTube or on Canvas
• You take a short (open-book, untimed) quiz, due BEFORE each class. 

• FIRST ONE IS DUE WEDNESDAY!  Find it on Gradescope.

• During class:
• We’ll answer any questions from the Before-Class material.
• We’ll practice/develop the material, mostly via group work.
• (There might be a few short bits of lecture as needed).

• Homework:
• Weekly homework, done in small teams.

• Find teammates in class, on Ed, in OH, …
• First one is due a week from Friday.

• Exams:
• Midterm: Wednesday Feb 11, 9am-11:50am
• Final: Monday March 16, 3:30pm-6:30pm
• If you cannot make an exam, email the course staff list ASAP!!!!

This first class will have 
more lecture, since you 

didn’t have time to watch 
videos beforehand!

The course website tells you what you are 
supposed to watch/read/do before each class. 



A few policies
See course website for complete list

• Grading policy
• See website for breakdown

• Two schemes: one with some weight on attendance, one where that weight is 
shifted to exams.
• We will automatically choose which one is best for your grade.

• Please do not come to class if you are sick.  You can skip 5 classes with no 
penalty; this skips are meant for illness and other emergencies.

• Exam Conflicts
• Let us know ASAP if you have a conflict with either exam!!  (Before the add/drop 

deadline, if possible!)



Logistics Recap

web.stanford.edu/class/cs265



If you scroll down or click to “Class-by-class resources” …

Let’s get started!

web.stanford.edu/class/cs265

Either access the 
agenda on your 
preferred device now or 
else grab a print-out.



Identically zero polynomials

• (Multivariate) polynomials:

Eg., 𝑓 𝑥1, 𝑥2 = 𝑥1 + 1 (𝑥2 + 1) − 1 − 𝑥1𝑥2 − (𝑥1 + 𝑥2)

• A polynomial 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛  is identically zero if when you simplify 
it, you get zero.

• The one above is identically zero.



Group work time!

Start on all 
these 

questions!

While you work, we’ll wander around, 
check in, and also take attendance!



Anyone not register their attendance?

• Find Dorsa or Spencer before/at the end of class if we missed you



Group work time!

Start on all 
these 

questions!

While you work, we’ll wander around, 
check in, and also take attendance!











Solutions (pre-challenge)

• Question 3: 
• f(x,y) is identically zero.

• Question 4: 
• This takes time 2Ω(𝑛)

• There are 2Ω(𝑛) possible monomials, so even writing them all down takes that 
much time.

• Questions 5,6,7…let’s see how well your strategies work!



Challenge time!!











Solutions (post-challenge)

• f(x,y) is identically zero, g(x,y) is not.

• There are many good strategies!  The one we had in mind was:
• Choose a random point (x,y).  Check if f(x,y) = 0.

• Detail: how do we choose a random point?  What distribution should 
we use?  And does it matter if we only have finite precision?
• Choose a uniformly random point from some pre-defined set.

• How well does this work?  



Polynomial Identity Testing



Polynomial Identity Testing (PIT)

• Given a polynomial 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 , is P identically zero?



We care about polynomial identity testing

• Applications to graph theory
• Whether a graph has a perfect matching or a particular subgraph can be 

encoded as a particular polynomial being identically zero

• See optional question on HW1!

• Applications in Error Correcting Codes and Cryptography
• Quickly verifying algebraic constraints 

• Applications in computational geometry
• Quickly verifying relationships between algebraic curves

• …



Algorithm

• Given a polynomial 𝑃 𝑥1, … , 𝑥𝑛 : 
• Fix a finite set 𝑆

• Choose 𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑆 independently and uniformly at random.

• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, output “P is zero!”

• Else output “P is not zero!”



Theorem

• If 𝑃 is identically zero:
• The algorithm always outputs “P is zero!”

• If 𝑃 is not identically zero:

• The algorithm outputs “P is not zero!” with probability at least 1 −
degree(𝑃)

|𝑆|

Easy!

Focus on this partAlgorithm:
Given a polynomial 𝑃 𝑥1, … , 𝑥𝑛 : 

• Fix a finite set 𝑆
• Choose 𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑆 independently 

and uniformly at random.
• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, output “P is zero!”
• Else output “P is not zero!”



Fact

• A nonzero univariate polynomial 𝑃(𝑥) of degree 𝑑 has at most 𝑑 roots.

e.g., this cubic 
polynomial* has at 
most 3 roots

*disclaimer: not actually a cubic polynomial, this is a Powerpoint drawing…



Schwartz-Zippel Lemma

• Suppose 𝑃 𝑥1, … , 𝑥𝑛  has total degree d and is not identically 0

• Fix any set 𝑆

• Draw 𝑟1, … , 𝑟𝑛 ∈ 𝑆 independently, uniformly at random

• Then Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤ 𝑑/ 𝑆

Algorithm:
Given a polynomial 𝑃 𝑥1, … , 𝑥𝑛 : 

• Fix a finite set 𝑆
• Choose 𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑆 independently 

and uniformly at random.
• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, output “P is zero!”
• Else output “P is not zero!”

Total degree:  For example, the polynomial 
𝑃 𝑥1, 𝑥2 = 𝑥1

2𝑥2
3 + 𝑥2

4 has total degree 5.

This lemma implies our theorem!
• Aka, if 𝑃 ≠ 0, Algorithm is correct 

with probability ≥ 1 − 𝑑/ 𝑆



Schwartz-Zippel Lemma

• Suppose 𝑃 𝑥1, … , 𝑥𝑛  has total degree d and is not identically 0

• Fix any set 𝑆

• Draw 𝑟1, … , 𝑟𝑛 ∈ 𝑆 independently, uniformly at random

• Then Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤ 𝑑/ 𝑆

Total degree:  For example, the polynomial 
𝑃 𝑥1, 𝑥2 = 𝑥1

2𝑥2
3 + 𝑥2

4 has total degree 5.

The n=1 case follows from our Fact!
Fact 

• A nonzero univariate polynomial 𝑃(𝑥) 
of degree 𝑑 has at most 𝑑 roots.

But for n>1, the fact is false!
So we can’t just appeal to it in general…

E.g., 𝑃 𝑥, 𝑦 = 𝑥 − 𝑦 has total 
degree 1 but infinitely many roots.



Proof of Schwartz-Zippel
By induction on n

• Base Case: statement is true for n=1.

Say 𝑃 𝑥1, … , 𝑥𝑛  has (total) degree d and is not identically 0
Fix any set 𝑆
Draw 𝑟1, … , 𝑟𝑛 ∈ 𝑆 independently, uniformly at random
Then Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤ 𝑑/ 𝑆

Follows from fact!



Proof of Schwartz-Zippel
By induction on n

• Inductive Step: suppose statement is true for ≤ 𝑛 − 1 variables.

• ...then the statement holds for 𝑛 variables.

Say 𝑃 𝑥1, … , 𝑥𝑛  has (total) degree d and is not identically 0
Fix any set 𝑆
Draw 𝑟1, … , 𝑟𝑛 ∈ 𝑆 independently, uniformly at random
Then Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤ 𝑑/ 𝑆

Write

 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1
𝑘𝑄 𝑥2, … , 𝑥𝑛 + 𝑇(𝑥1, … , 𝑥𝑛),

 

where 𝑄 ≠ 0 and the maximum degree of 𝑥1 in 𝑇 is < 𝑘, for some 𝑘 > 0

Example: 𝑃 𝑥1, 𝑥2 = 𝑥1
3𝑥2 + 𝑥1

3𝑥2
4 + 𝑥1

2 + 𝑥1𝑥2
7 + 𝑥2 



Proof of Schwartz-Zippel
By induction on n

• Inductive Step: suppose statement is true for ≤ 𝑛 − 1 variables.

• ...then the statement holds for 𝑛 variables.

Say 𝑃 𝑥1, … , 𝑥𝑛  has (total) degree d and is not identically 0
Fix any set 𝑆
Draw 𝑟1, … , 𝑟𝑛 ∈ 𝑆 independently, uniformly at random
Then Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤ 𝑑/ 𝑆

Write

 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1
𝑘𝑄 𝑥2, … , 𝑥𝑛 + 𝑇(𝑥1, … , 𝑥𝑛),

 

where 𝑄 ≠ 0 and the maximum degree of 𝑥1 in 𝑇 is < 𝑘, for some 𝑘 > 0

Example: 𝑃 𝑥1, 𝑥2 = 𝑥1
3𝑥2 + 𝑥1

3𝑥2
4 + 𝑥1

2 + 𝑥1𝑥2
7 + 𝑥2 

𝑥1
3 𝑥2 + 𝑥2

4 + (𝑥1
2 + 𝑥1𝑥2

7 + 𝑥2)

𝑄(𝑥2) 𝑇(𝑥1, 𝑥2)



Proof of Schwartz-Zippel
By induction on n

• Inductive Step: suppose statement is true for ≤ 𝑛 − 1 variables.

• ...then the statement holds for 𝑛 variables.

Say 𝑃 𝑥1, … , 𝑥𝑛  has (total) degree d and is not identically 0
Fix any set 𝑆
Draw 𝑟1, … , 𝑟𝑛 ∈ 𝑆 independently, uniformly at random
Then Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤ 𝑑/ 𝑆

Write

 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1
𝑘𝑄 𝑥2, … , 𝑥𝑛 + 𝑇(𝑥1, … , 𝑥𝑛),

 

where 𝑄 ≠ 0 and the maximum degree of 𝑥1 in 𝑇 is < 𝑘, for some 𝑘 > 0

Pr
𝑟2,…,𝑟𝑛

𝑄 𝑟2, … , 𝑟𝑛 ≠ 0 If this happens, then 𝑃(𝑥1, 𝑟2, … , 𝑟𝑛) is a 
nonzero univariate polynomial in 𝑥1 of degree 𝑘

Pr
𝑟1

𝑃 𝑟1, 𝑟2, … , 𝑟𝑛 ≠ 0

Assuming that happens…
⇒ The probability that 
𝑃 𝑟1, 𝑟2, … , 𝑟𝑛 ≠ 0 is at least 

1 −
𝑑−𝑘

𝑆
1 −

𝑘

|𝑆|
≥ 1 −

𝑑

|𝑆|

≥ 1 −
𝑑 − 𝑘

|𝑆|

≥ 1 −
𝑘

|𝑆|



What have we learned?

• Our randomized algorithm works w.h.p. (provided 𝑆 ≫  deg(𝑃)).

This means “with 
high probability.”

In this course, we’ll use it in 
an informal way to mean 

“with probability close to 1”

This means “much 
bigger than.”

Here we are also using it 
informally.



Is there an efficient deterministic algorithm?

• No one knows!

• There are algorithms for special cases.

• We* believe that there are polynomial-time deterministic algorithms
• Otherwise there would be some weird complexity-theoretic consequences

• But if we could find one, it would solve a hard open problem in 
complexity theory
• It would imply strong circuit lower bounds

• General theme in this class:
• Simple randomized algorithms, often with simple (if clever) analyses.
• Maybe there are deterministic algorithms, but they are probably pretty 

complicated.

*We = most theoretical computer scientists



What is a randomized algorithm?



Computational Model

• …don’t worry too much about the 
formal model for this class.

0100101011101010110101010101011011111100010101110100000101011110101000001011010100110011111010

Infinite read-only string of random bits

Turing Machine
 or

 Random Access 
Machine

1011010100101011101010110101010101011011111100010101110100000101011110101000001011010100110

10010101110101011010101010101101111110001010111010000010101111010100000101101

Memory

Input



Computational Model

• Allow your algorithm to flip random coins.

• Computation path on a specific input:

Turing Machine
 or

 Random Access Machine

Possible outcomes

First coin flip

H

H

H

H

HHH

T

T

T

T

T T T

One possible 
computation path



Observations

• Meaningful statements:
• “For any input x, the algorithm is successful on x with high probability.”
• “For any input x, the running time of the algorithm on x is small with high 

probability.”

Possible outcomes

H

H

H

H

HHH

T

T

T

T

T T T

One possible 
computation 

path

• The output of a randomized 
algorithm is a random variable.

• The execution path of a 
randomized algorithm is a 
random variable.



Two types of randomized algorithms

• Las Vegas Algorithms always output the correct answer, but might be 
slow.
• Output is deterministic.

• Running time is a random variable.  (We will demand 𝔼 runtime < ∞).

• Monte Carlo Algorithms are always fast, but might be wrong.
• Output is a random variable.

• Running time is bounded by something deterministic.



One-sided vs. two-sided error

• Two-sided error:
• No matter what the answer is, 

the algorithm is correct with 

probability at least 
1

2
+ 𝜖, for 

some 𝜖 > 0.

• One-sided error:
• If the answer is “Yes,” the 

algorithm says “Yes” with 
probability 1.

• If the answer is “No,” the 
algorithm says “No” with 
probability at least 𝜖 >  0.

• For Monte-Carlo algorithms that output yes/no:



One-sided vs. two-sided error

• Two-sided error:
• No matter what the answer is, 

the algorithm is correct with 

probability at least 
1

2
+ 𝜖, for 

some 𝜖 > 0.

• One-sided error:
• If the answer is “Yes,” the 

algorithm says “Yes” with 
probability 1.

• If the answer is “No,” the 
algorithm says “No” with 
probability at least 𝜖 >  0.

• For Monte-Carlo algorithms that output yes/no:

How can we turn this into an algorithm 
that is correct 90% of the time?



Repeat it a bunch of times

• For 𝑖 =  1, … , 𝑡:

• Run one-sided algorithm.

• If it says “No”, return “No.”

• Return “Yes”.

Pr incorrect = Pr each of 𝑡 trials says “𝑌𝑒𝑠”
                                     ≤ 1 − 𝜖 𝑡 
                                     ≤ 𝑒−𝜖𝑡

• If the correct answer is “Yes”, will always return “Yes.”
• If the correct answer is “No”, 

Can make this tiny by choosing 𝑡 ≫ 1/𝜖 sufficiently large.

Very useful facts:
• 1 − 𝑥 ≤ 𝑒−𝑥

• 1 − 𝑥 ≈ 𝑒−𝑥  for small x

𝑒−𝑥

1 − 𝑥



One-sided vs. two-sided error

• Two-sided error:
• No matter what the answer is, 

the algorithm is correct with 

probability at least 
1

2
+ 𝜖, for 

some 𝜖 > 0.

• One-sided error:
• If the answer is “Yes,” the 

algorithm says “Yes” with 
probability 1.

• If the answer is “No,” the 
algorithm says “No” with 
probability at least 𝜖 >  0.

• For Monte-Carlo algorithms that output yes/no:

How can we turn this into an algorithm 
that is correct 90% of the time?



Repeat it a bunch of times

• For 𝑖 =  1, … , 𝑡:

• Run two-sided algorithm.

• Return the majority answer

Claim: Pr[ this gets the wrong answer ] ≤ 𝑒−2𝑡𝜖2

Proof: See lecture notes.

So if 𝑡 ≫
1

2𝜖2, this is tiny!



Wrap-up



What have we learned?

• Polynomial Identity Testing is a useful primitive.
• We know an efficient randomized algorithm.

• No efficient deterministic algorithm known!

• Randomized algorithms are algorithms that use randomness.
• We won’t stress the exact model too much.

• Going forward in this class, we’re going to learn lots more about 
randomized algorithms and ways to analyze them!
• Next time: Karger’s algorithm!



Before next time

• Watch the video lectures for Wednesday before class, and do the 
corresponding quiz.

• Let us know if you have conflicts with the exams!
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