
CS265 Class 3
Primality-Testing and the Miller-Rabin Test

If you don’t have a nametag or forgot to bring yours back, please make a new one!
Markers and paper are up front.

Also, if you want a paper agenda, come grab one from the front of the room!

If you don’t have a nametag or forgot to bring yours back, please make a new one!
Markers and paper are up front.

Also, if you want a paper agenda, come grab one from the front of the room!

Announcements

• HW1 Due Friday!

• Check Ed for some resources on big-Oh notation

• Also check Ed for a quantitatively betters solution to Wednesday’s
group work!
• Thanks Shurui and Ruochuan!

Recall: Primality testing

• Goal: Given 𝑛, is it prime?

• Today we’ll see a pretty simple randomized algorithm.

• It was open for a long time to give a deterministic algorithm.
• Finally solved in 2002 by Agrawal, Kayal, and Saxena.

• We won’t talk about the deterministic algorithm in class: see links on website
if you want to learn about it on your own.

When we last left our heroes…

• We saw Fermat’s test.
• Check if 𝑥𝑛−1 = 1 for a random 𝑥

• If so, say 𝑛 is prime; if not, say it’s not.

• We proved that it mostly worked:
• For lots of numbers 𝑛 (all those that are not Carmichael numbers):

• If 𝑛 is prime, Fermat’s test will always say so.

• If 𝑛 is not prime, Fermat’s test will say “not prime” with probability at least
1

2
.

Goal for today:

• Can we come up with a test that gives this guarantee for all 𝑛?

But first, questions?

• Warm-up, quiz, mini-lectures?

• Also, can you see the solutions to the quiz now?
• Both last week and today?

Warm-up

• Yes, this is a group!
• Since ℤ𝑛

∗ is a group (and 1 ∈ 𝑆𝑟), we have identity and associativity.
• We just need to establish that it’s closed under multiplication and inverses.

• Closure under multiplication:
• if 𝑥𝑟 = ±1 and 𝑦𝑟 = ±1, then 𝑥𝑦 𝑟 = 𝑥𝑟𝑦𝑟 = ±1 ±1 = ±1

• Inverses:
• Let 𝑥 ∈ 𝑆𝑟 and let 𝑦 = 𝑥−1 ∈ ℤ𝑛

∗ . Want to show 𝑦 ∈ 𝑆𝑟 .

• 𝑥𝑦 = 1

• 𝑥𝑟𝑦𝑟 = 1

• ±1 𝑦𝑟 = 1

• 𝑦𝑟 = ±1
• So 𝑦 ∈ 𝑆𝑟 ☺

Plan for today

• We will develop the Miller-Rabin algorithm for primality testing.

• We will mostly* prove that it works.

Compare to Fermat’s test,
where we proved that it
mostly works.

*We will skip over stuff that’s interesting from an algebra perspective but
not so interesting from a “randomized algorithms and probabilistic
analysis” perspective. Details in lecture notes if you are curious.

How many square roots of 1 in ℤ𝑛
∗ ?

• Example: 𝑛 = 7

• That is, how many 𝑥 ∈ ℤ𝑛
∗ have 𝑥2 = 1?

12 = 1
22 = 4
32 = 2
42 = 2
52 = 4
62 = 1

• Example: 𝑛 = 15

12 = 1
22 = 4
42 = 1
72 = 4
82 = 4
112 = 1
132 = 4
142 = 1

Why are we only
looking at the

numbers
1,2,4,7,8,11,13,14?

12 = 1

−1 2 = 1

±1 are the only
square roots of 1

There are more than
two square roots of 1

Idea of the Miller-Rabin Algorithm

• If 𝑛 is prime, then there are exactly two square roots of 1 in ℤ𝑛
∗ , +1

and −1.

• If 𝑛 is an odd composite number that is not the power of a prime,
then there are more than two square roots of 1 in ℤ𝑛

∗ .

• The Miller-Rabin Algorithm gives a clever way to find some 𝑥 ≠ ±1 so
that 𝑥2 = 1 when one exists.

• Assume that this is true for now!
• We may come back to it later if time
• (If we don’t have time, it’s in the lecture notes, or try yourself!)

Here is a way to generate a list of numbers
Why? We’ll see soon…

• Suppose that 𝑛 is odd, and not a power of a prime.

• Find 𝑘 and 𝑚 so that 𝑛 − 1 = 2𝑘𝑚 where 𝑚 is odd.

• Choose 𝑥 ∈ {1, … , 𝑛 − 1} uniformly at random, and compute the list:

𝑥𝑚 , 𝑥2𝑚 , 𝑥22𝑚 , … , 𝑥2𝑘𝑚 mod 𝑛

Here is a way to generate a list of numbers
Why? We’ll see soon…

• Suppose that 𝑛 is odd, and not a power of a prime.

• Find 𝑘 and 𝑚 so that 𝑛 − 1 = 2𝑘𝑚 where 𝑚 is odd.

• Choose 𝑥 ∈ {1, … , 𝑛 − 1} uniformly at random, and compute the list:

𝑥𝑚 , 𝑥2𝑚 , 𝑥22𝑚 , … , 𝑥2𝑘𝑚 mod 𝑛

Example • Say 𝑛 = 21

• Then 𝑛 − 1 = 22 ⋅ 5, so 𝑘 = 2, 𝑚 = 5

• Choose 𝑥 = 3.
• The list is:

• 35 = 12 mod 21,

• 310= 18 mod 21,

• 320= 9 mod 21.

Group work

1. Mess around with web.stanford.edu/~marykw/CS265Class3.html

2. Say n is prime. What is the last number generated by this list?

3. Say n is prime. What are the options for the second-to-last number?

4. Say n=561 (the first Carmichael number). Consider x=23,13,63,458.
What list of numbers to do you get for each? Does this list prove to
you that n is not prime?

5. If time, come up with (and analyze) an algorithm for primality testing.

GenerateSomeNumbers:
• Write 𝑛 − 1 = 2𝑘 ⋅ 𝑚 where 𝑚 is odd.
• Choose 𝑥 ∈ 1, … , 𝑛 − 1 uniformly at random.

• Consider 𝑥𝑚 , x2𝑚 , 𝑥22𝑚 , … , 𝑥2𝑘𝑚 mod 𝑛.

Solutions to group work

• If 𝑛 is prime, the last number generated should be _____.

• If 𝑛 is prime, the second-to-last number should be _____.

• If n=561,

• x=23 → [386, 331, 166, 67, 1].

• x=13 → [208, 67, 1, 1, 1].

• x=63 → [351, 342, 276, 441, 375].

• x=458 → [560, 1, 1, 1, 1].

1

±1

Not prime! 67 2 = 1

Not prime! 67 2 = 1

Not prime! 63 𝑛−1 = 375 ≠ 1

Could be prime…

Miller-Rabin Algorithm

• Given an input 𝑛:

• If 𝑛 is even, or the power of a prime, output Composite!

• Choose a random 𝑥 and find the special list of numbers.

• Make sure it looks like [*,*,*,-1,1,1,1,1] or [1,1,1,1,1,1,1,1]:

• If the last thing isn’t 1, output Composite!

• If there’s ever (not ±1) followed by 1, output Composite!

• Output Prime!

How do we
check for these

efficiently?

𝑛 fails Fermat’s test!

There’s some number other than ±1
that squares to 1 mod 𝑛

Theorem

• If 𝑛 is prime, the Miller-Rabin Test will always output “Prime!”

• If 𝑛 is composite, the Miller-Rabin Test will output “Composite!” with
probability at least ½.

• The running time is polynomial in log 𝑛

When 𝑛 is composite
and odd and not a prime power

Algorithm
running on 𝑛

𝑥

Composite!

Algorithm
running on 𝑛

𝑥

Prime!

Good x:

Bad x:

ℤ𝑛
∗

𝑆 ≤ ℤ𝑛
∗

• We will define a proper subgroup 𝑆 ≤ ℤ𝑛
∗

that contains all of the bad x’s.

All bad x’s
in here.

• By Lagrange’s theorem, 𝑆 ≤
1

2
ℤ𝑛

∗

• The algorithm succeeds with probability ≥
1

2
.

Defining 𝑆

• Consider all the 𝑥 ∈ ℤ𝑛
∗ where -1 shows up:

• Let 𝑏 be the largest value of 𝑖 less than 𝑘 so that there exists an 𝑥 ∈ ℤ𝑛
∗

so that 𝑥2𝑖𝑚 = −1 mod 𝑛.

• Define 𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

𝑆 ≤ ℤ𝑛
∗

𝒙
⇒

Say that this is 𝑥2𝑏𝑚

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

…

Algorithm
running on

𝑛

𝑥

Prime!

Claim 1

• For any 𝑥 so that the algorithm says “Prime!”, 𝑥 ∈ 𝑆

• Consider all the 𝑥 ∈ ℤ𝑛
∗ where -1 shows up:

• Let 𝑏 be the largest value of 𝑖 less than 𝑘 so that there exists an 𝑥 ∈ ℤ𝑛
∗ so

that 𝑥2𝑖𝑚 = −1 mod 𝑛.

• Define 𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

Say that this is 𝑥2𝑏𝑚

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

…

If 𝑥 ∈ ℤ𝑛
∗ , then…

If 𝑥 ∉ ℤ𝑛
∗ , then…

𝑥 ∈ 𝑆, by definition
of 𝑏 and the fact
that all such x’s look
like this →

…the algorithm won’t say “Prime”

𝑥𝑛−1 ≠ 1, so fails Fermat’s test.

Otherwise 𝑥𝑛−2 ⋅ 𝑥 = 1, but
supposedly 𝑥 doesn’t have an
inverse

Claim 2

• 𝑆 is a subgroup of ℤ𝑛
∗ .

This was the warm-up!

Claim 3

• If 𝑛 is odd, composite, and not a prime power, then 𝑆 ≠ ℤ𝑛
∗

Fun exercise if you have time!

Three claims:

• Claim 1: For any 𝑥 so that the algorithm says “Prime!”, 𝑥 ∈ 𝑆

• Claim 2: 𝑆 is a subgroup of ℤ𝑛
∗ .

• Claim 3: If 𝑛 is odd, composite, and not a prime power, 𝑆 ≠ ℤ𝑛
∗

𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

Group work:
Claims 1, 2 and 3 imply that the algorithm
works with probability at least ½.

• Claim 1: For any 𝑥 so that the algorithm says “Prime!”, 𝑥 ∈ 𝑆

• Claim 2: 𝑆 is a subgroup of ℤ𝑛
∗ .

• Claim 3: If 𝑛 is odd, composite, and not a prime power, 𝑆 ≠ ℤ𝑛
∗

• If 𝑛 is odd, composite, not a prime power, then by Claims 2 and 3,
S < ℤ𝑛

∗ is a proper subgroup.

• That means that 𝑆 ≤
ℤ𝑛

∗

2
 by Lagrange’s theorem.

• Pr test says 𝑛 is prime ≤ Pr test picks 𝑥 ∈ 𝑆 ≤
1

2

By Claim 1 By the above

Theorem: for any 𝑛,

• If 𝑛 is prime, the Miller-Rabin Test will always output “Prime!”

• If 𝑛 is composite, the Miller-Rabin Test will output “Composite!” with
probability at least ½.

• The running time is polynomial in log 𝑛

Modulo the missing proposition…

Modulo proof of
Claim 3…

Running time

• If 𝑛 is even, or the power of a prime,
output Composite!

• Choose random 𝑥 and find
 𝑥𝑚, 𝑥2𝑚 , … 𝑥2𝑘𝑚

• Make sure it looks like [*,*,*,-1,1,1,1,1]
or [1,1,1,1,1,1,1,1]:
• If the last thing isn’t 1, output

Composite!
• If there’s ever (not ±1) followed by 1,

output Composite!
• Output Prime!

Time poly(log 𝑛)

• Compute 𝑥𝑚 by repeated squaring
• 𝑂(log 𝑚) = 𝑂(log 𝑛) multiplications

• Square 𝑥𝑚 𝑘 = 𝑂(log 𝑛) times

𝑛 − 1 = 2𝑘𝑚 where 𝑚 is odd

• Need to check 𝑘 = O(log n) things

Total time poly(log 𝑛)

To see if 𝑛 = 𝑎𝑘 for a fixed 𝑘, binary
search for an appropriate 𝑎 between 1
and n. Then try all 𝑘 = 2, … , log 𝑛 to see

if 𝑛 is a perfect 𝑘th power. (If it is, we don’t
really care if it’s a prime power or not…)

Theorem: for any 𝑛,

• If 𝑛 is prime, the Miller-Rabin Test will always output “Prime!”

• If 𝑛 is composite, the Miller-Rabin Test will output “Composite!” with
probability at least ½.

• The running time is polynomial in log 𝑛

Modulo the missing proposition…

Modulo proof of
Claim 3…

Recap

The Miller-Rabin Primality Test

• Cleverly generate a list of numbers for a random 𝑥.

• If 𝑛 isn’t prime, probably these numbers will give it away.

• The point: There is a fast and not-too-hard randomized algorithm for
primality testing!

• It was open for a long time to get a deterministic algorithm
• (And it isn’t that simple).

Next time! Markov and Chebyshev!

• Before next time:
• Watch the videos/read the lecture notes

• Do the quiz

Missing piece 1:

Square Roots of 1 in ℤ𝑛
∗ when 𝑛 is prime

• Suppose that 𝑥2 ≡ 1 mod n.

• Then 𝑥 − 1 𝑥 + 1 ≡ 0 mod n

• That means that 𝑛 divides 𝑥 − 1 (𝑥 + 1)

• Since 𝑛 is prime, 𝑛 must divide either 𝑥 − 1 or 𝑥 + 1
• Example:

• 3 (prime) divides 6 × 4, and that implies that 3 divides one of 6 or 4.

• OTOH 6 (not prime) divides 3 × 8, but it doesn’t divide either 3 or 8.

• But then either 𝑥 ≡ 1 mod n or 𝑥 ≡ −1 mod n.

Missing piece 2:

Proof of Claim 3
If 𝑛 is odd, composite, and not a prime power, 𝑆 ≠ ℤ𝑛

∗

• Let 𝑟 = 2𝑏𝑚 for convenience.

• Write 𝑛 = 𝑠 ⋅ 𝑡 where 𝑠, 𝑡 > 1 are relatively prime.

• Suppose 𝑥 ∈ ℤ𝑛
∗ is such that 𝑥𝑟 = −1.

• Claim: There exists a 𝑦 ∈ ℤ𝑛
 so that 𝑦 = 𝑥 mod 𝑠, and 𝑦 = 1 mod 𝑡

• Claim: 𝑦 ∈ ℤ𝑛
∗

• Claim: 𝑦 ∉ 𝑆𝑟

• Let 𝑏 be the largest value of 𝑖 less than 𝑘 so that there exists an 𝑥 with 𝑥2𝑖𝑚 = −1 mod 𝑛.

• 𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

This 𝑥 exists by the definition of 𝑟 and 𝑏

We can do this since n is composite,
and not a prime power.

This follows from the Chinese Remainder Theorem

By def of ℤ𝑛
∗ , gcd 𝑥, 𝑛 = 1

Then gcd(𝑥, 𝑠) = 1, since 𝑠|𝑛.
But then we also have gcd(𝑦, 𝑠) = 1, since 𝑦 ≡ 𝑥 mod 𝑠.

𝑦𝑟 = 1 mod 𝑡, and 𝑦𝑟 = 𝑥𝑟 = −1 mod 𝑠.
 Case 1: 𝑦𝑟 = −1 mod 𝑛 ⇒ 𝑦𝑟 = −1 mod 𝑡. (Since 𝑡|𝑛)
 Case 2: 𝑦𝑟 = 1 mod 𝑛 ⇒ 𝑦𝑟 = 1 mod 𝑠. (Since s|𝑛)
Either way it’s a contradiction.

	Slide 1: CS265 Class 3
	Slide 2
	Slide 3: Announcements
	Slide 4: Recall: Primality testing
	Slide 5: When we last left our heroes…
	Slide 6: But first, questions?
	Slide 7: Warm-up
	Slide 9: Plan for today
	Slide 10: How many square roots of 1 in double-struck cap Z sub n to the asterisk operator ?
	Slide 11: Idea of the Miller-Rabin Algorithm
	Slide 13: Here is a way to generate a list of numbers Why? We’ll see soon…
	Slide 14: Here is a way to generate a list of numbers Why? We’ll see soon…
	Slide 15: Group work
	Slide 16: Solutions to group work
	Slide 19: Miller-Rabin Algorithm
	Slide 20: Theorem
	Slide 21: When n is composite and odd and not a prime power
	Slide 23: Defining cap S
	Slide 24: Claim 1
	Slide 25: Claim 2
	Slide 26: Claim 3
	Slide 28: Three claims:
	Slide 34
	Slide 35: Theorem: for any n,
	Slide 36: Running time
	Slide 37: Theorem: for any n,
	Slide 38: Recap
	Slide 39: The Miller-Rabin Primality Test
	Slide 40: Next time! Markov and Chebyshev!
	Slide 42: Missing piece 1: Square Roots of 1 in double-struck cap Z sub n to the asterisk operator when n is prime
	Slide 43: Missing piece 2: Proof of Claim 3 If n is odd, composite, and not a prime power, cap S not equal double-struck cap Z sub n to the asterisk operator

