
CS265 Class 3
Primality-Testing and the Miller-Rabin Test

If you don’t have a nametag or forgot to bring yours back, please make a new one!  
Markers and paper are up front.

Also, if you want a paper agenda, come grab one from the front of the room!
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Also, if you want a paper agenda, come grab one from the front of the room!



Announcements

• HW1 Due Friday!

• Check Ed for some resources on big-Oh notation

• Also check Ed for a quantitatively betters solution to Wednesday’s 
group work!
• Thanks Shurui and Ruochuan!



Recall: Primality testing

• Goal: Given 𝑛, is it prime?

• Today we’ll see a pretty simple randomized algorithm.

• It was open for a long time to give a deterministic algorithm.
• Finally solved in 2002 by Agrawal, Kayal, and Saxena.

• We won’t talk about the deterministic algorithm in class: see links on website 
if you want to learn about it on your own.



When we last left our heroes…

• We saw Fermat’s test.
• Check if 𝑥𝑛−1 = 1 for a random 𝑥

• If so, say 𝑛 is prime; if not, say it’s not.

• We proved that it mostly worked:
• For lots of numbers 𝑛 (all those that are not Carmichael numbers):

• If 𝑛 is prime, Fermat’s test will always say so.

• If 𝑛 is not prime, Fermat’s test will say “not prime” with probability at least 
1

2
.

Goal for today:

• Can we come up with a test that gives this guarantee for all 𝑛?



But first, questions?

• Warm-up, quiz, mini-lectures?

• Also, can you see the solutions to the quiz now?  
• Both last week and today?  



Warm-up

• Yes, this is a group!
• Since ℤ𝑛

∗  is a group (and 1 ∈ 𝑆𝑟), we have identity and associativity.
• We just need to establish that it’s closed under multiplication and inverses.

• Closure under multiplication: 
• if 𝑥𝑟 =  ±1 and 𝑦𝑟 = ±1, then 𝑥𝑦 𝑟 = 𝑥𝑟𝑦𝑟 = ±1 ±1 =  ±1

• Inverses:
• Let 𝑥 ∈ 𝑆𝑟  and let 𝑦 = 𝑥−1 ∈ ℤ𝑛

∗ .  Want to show 𝑦 ∈ 𝑆𝑟  .

• 𝑥𝑦 = 1

• 𝑥𝑟𝑦𝑟 = 1

• ±1 𝑦𝑟 = 1

• 𝑦𝑟 = ±1
• So 𝑦 ∈ 𝑆𝑟  ☺ 



Plan for today

• We will develop the Miller-Rabin algorithm for primality testing.

• We will mostly* prove that it works.

Compare to Fermat’s test, 
where we proved that it 
mostly works.

*We will skip over stuff that’s interesting from an algebra perspective but 
not so interesting from a “randomized algorithms and probabilistic 
analysis” perspective.  Details in lecture notes if you are curious.



How many square roots of 1 in ℤ𝑛
∗ ?

• Example:  𝑛 = 7

• That is, how many 𝑥 ∈ ℤ𝑛
∗  have 𝑥2 = 1?

12 = 1
22 = 4
32 = 2
42 = 2
52 = 4
62 = 1

• Example:  𝑛 = 15

12 = 1
22 = 4
42 = 1
72 = 4
82 = 4
112 = 1
132 = 4
142 = 1

Why are we only 
looking at the 

numbers 
1,2,4,7,8,11,13,14?

12 = 1

−1 2 = 1

±1 are the only 
square roots of 1

There are more than 
two square roots of 1



Idea of the Miller-Rabin Algorithm

• If 𝑛 is prime, then there are exactly two square roots of 1 in ℤ𝑛
∗ , +1 

and −1.

• If 𝑛 is an odd composite number that is not the power of a prime, 
then there are more than two square roots of 1 in ℤ𝑛

∗ .

• The Miller-Rabin Algorithm gives a clever way to find some 𝑥 ≠ ±1 so 
that 𝑥2 = 1 when one exists.

• Assume that this is true for now!  
• We may come back to it later if time
• (If we don’t have time, it’s in the lecture notes, or try yourself!)



Here is a way to generate a list of numbers
Why?  We’ll see soon…

• Suppose that 𝑛 is odd, and not a power of a prime.

• Find 𝑘 and 𝑚 so that 𝑛 − 1 = 2𝑘𝑚 where 𝑚 is odd.

• Choose 𝑥 ∈ {1, … , 𝑛 − 1} uniformly at random, and compute the list:

𝑥𝑚 , 𝑥2𝑚 , 𝑥22𝑚 , … , 𝑥2𝑘𝑚 mod 𝑛



Here is a way to generate a list of numbers
Why?  We’ll see soon…

• Suppose that 𝑛 is odd, and not a power of a prime.

• Find 𝑘 and 𝑚 so that 𝑛 − 1 = 2𝑘𝑚 where 𝑚 is odd.

• Choose 𝑥 ∈ {1, … , 𝑛 − 1} uniformly at random, and compute the list:

𝑥𝑚 , 𝑥2𝑚 , 𝑥22𝑚 , … , 𝑥2𝑘𝑚 mod 𝑛

Example • Say 𝑛 = 21

• Then 𝑛 − 1 = 22 ⋅ 5, so 𝑘 = 2, 𝑚 = 5

• Choose 𝑥 = 3.
• The list is:

•  35 = 12 mod 21, 

•  310= 18 mod 21, 

•  320= 9 mod 21.



Group work

1. Mess around with web.stanford.edu/~marykw/CS265Class3.html

2. Say n is prime.  What is the last number generated by this list?

3. Say n is prime.  What are the options for the second-to-last number?

4. Say n=561 (the first Carmichael number).  Consider x=23,13,63,458. 
What list of numbers to do you get for each?  Does this list prove to 
you that n is not prime?

5. If time, come up with (and analyze) an algorithm for primality testing.

GenerateSomeNumbers:
• Write 𝑛 − 1 =  2𝑘 ⋅ 𝑚 where 𝑚 is odd.
• Choose 𝑥 ∈ 1, … , 𝑛 − 1  uniformly at random.

• Consider 𝑥𝑚 , x2𝑚 , 𝑥22𝑚 , … , 𝑥2𝑘𝑚 mod 𝑛.



Solutions to group work

• If 𝑛 is prime, the last number generated should be _____.

• If 𝑛 is prime, the second-to-last number should be _____.

• If n=561,

• x=23 → [386, 331, 166, 67, 1].  

• x=13 → [208, 67, 1, 1, 1]. 

• x=63 → [351, 342, 276, 441, 375]. 

• x=458 → [560, 1, 1, 1, 1].  

1

±1

Not prime!  67 2 = 1

Not prime!  67 2 = 1

Not prime!  63 𝑛−1 = 375 ≠ 1

Could be prime…



Miller-Rabin Algorithm

• Given an input 𝑛:

• If 𝑛 is even, or the power of a prime, output Composite!

• Choose a random 𝑥 and find the special list of numbers.

• Make sure it looks like [*,*,*,-1,1,1,1,1] or [1,1,1,1,1,1,1,1]:

• If the last thing isn’t 1, output Composite!

• If there’s ever (not ±1) followed by 1, output Composite!

• Output Prime!

How do we 
check for these 

efficiently?

𝑛 fails Fermat’s test!

There’s some number other than ±1 
that squares to 1 mod 𝑛



Theorem

• If 𝑛 is prime, the Miller-Rabin Test will always output “Prime!”

• If 𝑛 is composite, the Miller-Rabin Test will output “Composite!” with 
probability at least ½.

• The running time is polynomial in log 𝑛



When 𝑛 is composite
and odd and not a prime power

Algorithm 
running on 𝑛

𝑥

Composite!

Algorithm 
running on 𝑛

𝑥

Prime!

Good x:

Bad x:

ℤ𝑛
∗

𝑆 ≤ ℤ𝑛
∗

• We will define a proper subgroup 𝑆 ≤ ℤ𝑛
∗  

that contains all of the bad x’s.

All bad x’s 
in here.

• By Lagrange’s theorem, 𝑆 ≤
1

2
ℤ𝑛

∗

• The algorithm succeeds with probability ≥
1

2
.



Defining 𝑆

• Consider all the 𝑥 ∈ ℤ𝑛
∗  where -1 shows up:

• Let 𝑏 be the largest value of 𝑖 less than 𝑘 so that there exists an 𝑥 ∈ ℤ𝑛
∗  

so that  𝑥2𝑖𝑚 = −1 mod 𝑛.

• Define 𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

𝑆 ≤ ℤ𝑛
∗

𝒙
⇒

Say that this is 𝑥2𝑏𝑚

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

…

Algorithm 
running on 

𝑛

𝑥

Prime!



Claim 1

• For any 𝑥 so that the algorithm says “Prime!”, 𝑥 ∈ 𝑆

• Consider all the 𝑥 ∈ ℤ𝑛
∗  where -1 shows up:

• Let 𝑏 be the largest value of 𝑖 less than 𝑘 so that there exists an 𝑥 ∈ ℤ𝑛
∗  so 

that  𝑥2𝑖𝑚 = −1 mod 𝑛.

• Define 𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

Say that this is 𝑥2𝑏𝑚

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

(anything) -1 (all 1’s)

…

If 𝑥 ∈ ℤ𝑛
∗ , then… 

If 𝑥 ∉ ℤ𝑛
∗ , then… 

𝑥 ∈ 𝑆, by definition 
of 𝑏 and the fact 
that all such x’s look 
like this →

…the algorithm won’t say “Prime”

𝑥𝑛−1 ≠ 1, so fails Fermat’s test.

Otherwise 𝑥𝑛−2 ⋅ 𝑥 = 1, but 
supposedly 𝑥 doesn’t have an 
inverse



Claim 2

• 𝑆 is a subgroup of ℤ𝑛
∗ .

This was the warm-up!



Claim 3

• If 𝑛 is odd, composite, and not a prime power, then 𝑆 ≠ ℤ𝑛
∗

Fun exercise if you have time!



Three claims:

• Claim 1: For any 𝑥 so that the algorithm says “Prime!”, 𝑥 ∈ 𝑆

• Claim 2: 𝑆 is a subgroup of ℤ𝑛
∗ .

• Claim 3: If 𝑛 is odd, composite, and not a prime power, 𝑆 ≠ ℤ𝑛
∗

𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

Group work:
Claims 1, 2 and 3 imply that the algorithm 
works with probability at least ½.



• Claim 1: For any 𝑥 so that the algorithm says “Prime!”, 𝑥 ∈ 𝑆

• Claim 2: 𝑆 is a subgroup of ℤ𝑛
∗ .

• Claim 3: If 𝑛 is odd, composite, and not a prime power, 𝑆 ≠ ℤ𝑛
∗

• If 𝑛 is odd, composite, not a prime power, then by Claims 2 and 3, 
S < ℤ𝑛

∗  is a proper subgroup.

• That means that 𝑆 ≤
ℤ𝑛

∗

2
 by Lagrange’s theorem.

• Pr test says 𝑛 is prime ≤ Pr test picks 𝑥 ∈ 𝑆 ≤
1

2

By Claim 1 By the above



Theorem: for any 𝑛,

• If 𝑛 is prime, the Miller-Rabin Test will always output “Prime!”

• If 𝑛 is composite, the Miller-Rabin Test will output “Composite!” with 
probability at least ½.

• The running time is polynomial in log 𝑛

Modulo the missing proposition…

Modulo proof of 
Claim 3…



Running time

• If 𝑛 is even, or the power of a prime, 
output Composite!

• Choose random 𝑥 and find
 𝑥𝑚, 𝑥2𝑚 , … 𝑥2𝑘𝑚

• Make sure it looks like [*,*,*,-1,1,1,1,1] 
or [1,1,1,1,1,1,1,1]:
• If the last thing isn’t 1, output 

Composite!
• If there’s ever (not ±1) followed by 1, 

output Composite!
• Output Prime!

Time poly(log 𝑛 )

• Compute 𝑥𝑚 by repeated squaring
• 𝑂(log 𝑚) = 𝑂(log 𝑛) multiplications

• Square 𝑥𝑚 𝑘 = 𝑂(log 𝑛) times

𝑛 − 1 = 2𝑘𝑚 where 𝑚 is odd

• Need to check 𝑘 = O(log n) things

Total time poly(log 𝑛)

To see if 𝑛 = 𝑎𝑘 for a fixed 𝑘, binary 
search for an appropriate 𝑎 between 1 
and n.  Then try all 𝑘 = 2, … , log 𝑛 to see 

if 𝑛 is a perfect 𝑘th power.  (If it is, we don’t 
really care if it’s a prime power or not…)



Theorem: for any 𝑛,

• If 𝑛 is prime, the Miller-Rabin Test will always output “Prime!”

• If 𝑛 is composite, the Miller-Rabin Test will output “Composite!” with 
probability at least ½.

• The running time is polynomial in log 𝑛

Modulo the missing proposition…

Modulo proof of 
Claim 3…



Recap



The Miller-Rabin Primality Test

• Cleverly generate a list of numbers for a random 𝑥.

• If 𝑛 isn’t prime, probably these numbers will give it away.

• The point: There is a fast and not-too-hard randomized algorithm for 
primality testing!

• It was open for a long time to get a deterministic algorithm
• (And it isn’t that simple).



Next time!  Markov and Chebyshev!

• Before next time: 
• Watch the videos/read the lecture notes

• Do the quiz



Missing piece 1: 

Square Roots of 1 in ℤ𝑛
∗  when 𝑛 is prime

• Suppose that 𝑥2 ≡ 1 mod n.

• Then 𝑥 − 1 𝑥 + 1 ≡ 0 mod n

• That means that 𝑛 divides 𝑥 − 1 (𝑥 + 1)

• Since 𝑛 is prime, 𝑛 must divide either 𝑥 − 1 or 𝑥 + 1
• Example: 

• 3 (prime) divides 6 × 4, and that implies that 3 divides one of 6 or 4.

• OTOH 6 (not prime) divides 3 × 8, but it doesn’t divide either 3 or 8.

• But then either 𝑥 ≡ 1 mod n or 𝑥 ≡ −1 mod n.



Missing piece 2:

Proof of Claim 3
If 𝑛 is odd, composite, and not a prime power, 𝑆 ≠ ℤ𝑛

∗

• Let 𝑟 = 2𝑏𝑚 for convenience.

• Write 𝑛 = 𝑠 ⋅ 𝑡 where 𝑠, 𝑡 > 1 are relatively prime.

• Suppose 𝑥 ∈ ℤ𝑛
∗  is such that 𝑥𝑟 = −1.

• Claim: There exists a 𝑦 ∈ ℤ𝑛
 so that 𝑦 = 𝑥 mod 𝑠, and 𝑦 = 1 mod 𝑡

• Claim: 𝑦 ∈ ℤ𝑛
∗

• Claim: 𝑦 ∉ 𝑆𝑟

• Let 𝑏 be the largest value of 𝑖 less than 𝑘 so that there exists an 𝑥 with 𝑥2𝑖𝑚 = −1 mod 𝑛.

• 𝑆 = 𝑦 ∈ ℤ𝑛
∗ ∶ 𝑦2𝑏𝑚 = ±1

This 𝑥 exists by the definition of 𝑟 and 𝑏

We can do this since n is composite, 
and not a prime power.

This follows from the Chinese Remainder Theorem

By def of ℤ𝑛
∗ , gcd 𝑥, 𝑛 =  1

Then gcd(𝑥, 𝑠)  =  1, since 𝑠|𝑛.  
But then we also have gcd(𝑦, 𝑠)  =  1, since 𝑦 ≡ 𝑥 mod 𝑠.

𝑦𝑟 =  1 mod 𝑡, and 𝑦𝑟 = 𝑥𝑟 = −1 mod 𝑠.  
 Case 1: 𝑦𝑟 = −1 mod 𝑛 ⇒  𝑦𝑟 = −1 mod 𝑡. (Since 𝑡|𝑛)
 Case 2: 𝑦𝑟 = 1 mod 𝑛 ⇒  𝑦𝑟 = 1 mod 𝑠.     (Since s|𝑛)
Either way it’s a contradiction.
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