

CS265 Class 3

Primality-Testing and the Miller-Rabin Test

If you don't have a nametag or forgot to bring yours back, please make a new one!
Markers and paper are up front.

Also, if you want a paper agenda, come grab one from the front of the room!

1 Warm-Up

Let $S_r = \{x \in \mathbb{Z}_n^* : x^r = \pm 1 \pmod{n}\}$. Is S_r a group?

If you don't have a nametag or forgot to bring yours back, please make a new one!
Markers and paper are up front.

Also, if you want a paper agenda, come grab one from the front of the room!

Announcements

- HW1 Due Friday!
- Check Ed for some resources on big-Oh notation
- Also check Ed for a quantitatively betters solution to Wednesday's group work!
 - Thanks Shurui and Ruochuan!

Recall: Primality testing

- **Goal:** Given n , is it prime?
- Today we'll see a pretty simple randomized algorithm.
- It was open for a long time to give a deterministic algorithm.
 - Finally solved in 2002 by Agrawal, Kayal, and Saxena.
 - We won't talk about the deterministic algorithm in class: see links on website if you want to learn about it on your own.

When we last left our heroes...

- We saw **Fermat's test**.
 - Check if $x^{n-1} = 1$ for a random x
 - If so, say n is prime; if not, say it's not.
- We proved that it mostly worked:
 - For lots of numbers n (all those that are not Carmichael numbers):
 - If n is prime, Fermat's test will always say so.
 - If n is not prime, Fermat's test will say “not prime” with probability at least $\frac{1}{2}$.

Goal for today:

- Can we come up with a test that gives this guarantee for *all* n ?

But first, questions?

- Warm-up, quiz, mini-lectures?
- Also, can you see the solutions to the quiz now?
 - Both last week and today?

1 Warm-Up

Let $S_r = \{x \in \mathbb{Z}_n^* : x^r = \pm 1 \pmod{n}\}$. Is S_r a group?

1 Warm-Up

Warm-up

Let $S_r = \{x \in \mathbb{Z}_n^* : x^r = \pm 1 \pmod{n}\}$. Is S_r a group?

- Yes, this is a group!
 - Since \mathbb{Z}_n^* is a group (and $1 \in S_r$), we have identity and associativity.
 - We just need to establish that it's closed under multiplication and inverses.
- Closure under multiplication:
 - if $x^r = \pm 1$ and $y^r = \pm 1$, then $(xy)^r = x^r y^r = (\pm 1)(\pm 1) = \pm 1$
- Inverses:
 - Let $x \in S_r$ and let $y = x^{-1} \in \mathbb{Z}_n^*$. Want to show $y \in S_r$.
 - $xy = 1$
 - $x^r y^r = 1$
 - $(\pm 1)y^r = 1$
 - $y^r = \pm 1$
 - So $y \in S_r \circlearrowright$

Plan for today

- We will develop the Miller-Rabin algorithm for primality testing.
- We will mostly* prove that it works.

Compare to Fermat's test,
where we proved that it
mostly works.

*We will skip over stuff that's interesting from an algebra perspective but not so interesting from a "randomized algorithms and probabilistic analysis" perspective. Details in lecture notes if you are curious.

How many square roots of 1 in \mathbb{Z}_n^* ?

- That is, how many $x \in \mathbb{Z}_n^*$ have $x^2 = 1$?

- Example: $n = 7$

$$\begin{array}{l} 1^2 = 1 \\ 2^2 = 4 \\ 3^2 = 2 \\ 4^2 = 2 \\ 5^2 = 4 \\ 6^2 = 1 \end{array}$$

$$1^2 = 1$$

$$(-1)^2 = 1$$

- Example: $n = 15$

$$\begin{array}{l} 1^2 = 1 \\ 2^2 = 4 \\ 4^2 = 1 \\ 7^2 = 4 \\ 8^2 = 4 \\ 11^2 = 1 \\ 13^2 = 4 \\ 14^2 = 1 \end{array}$$

± 1 are the only square roots of 1

There are more than two square roots of 1

Why are we only looking at the numbers
1,2,4,7,8,11,13,14?

Idea of the Miller-Rabin Algorithm

- If n is prime, then there are exactly two square roots of 1 in \mathbb{Z}_n^* , $+1$ and -1 .
 - Assume that this is true for now!
 - We may come back to it later if time
 - (If we don't have time, it's in the lecture notes, or try yourself!)
- If n is an odd composite number that is not the power of a prime, then there are **more** than two square roots of 1 in \mathbb{Z}_n^* .
- The Miller-Rabin Algorithm gives a clever way to find some $x \neq \pm 1$ so that $x^2 = 1$ when one exists.

Here is a way to generate a list of numbers

Why? We'll see soon...

- Suppose that n is odd, and not a power of a prime.
- Find k and m so that $n - 1 = 2^k m$ where m is odd.
- Choose $x \in \{1, \dots, n - 1\}$ uniformly at random, and compute the list:

$$x^m, x^{2m}, x^{2^2m}, \dots, x^{2^k m} \pmod{n}$$

Here is a way to generate a list of numbers

Why? We'll see soon...

- Suppose that n is odd, and not a power of a prime.
- Find k and m so that $n - 1 = 2^k m$ where m is odd.
- Choose $x \in \{1, \dots, n - 1\}$ uniformly at random, and compute the list:

$$x^m, x^{2m}, x^{2^2m}, \dots, x^{2^k m} \pmod{n}$$

Example

- Say $n = 21$
- Then $n - 1 = 2^2 \cdot 5$, so $k = 2, m = 5$
- Choose $x = 3$.
- The list is:
 - $3^5 = 12 \pmod{21}$,
 - $3^{10} = 18 \pmod{21}$,
 - $3^{20} = 9 \pmod{21}$.

Group work

GenerateSomeNumbers:

- Write $n - 1 = 2^k \cdot m$ where m is odd.
- Choose $x \in \{1, \dots, n - 1\}$ uniformly at random.
- Consider $x^m, x^{2m}, x^{2^2m}, \dots, x^{2^k m} \pmod{n}$.

1. Mess around with web.stanford.edu/~marykw/CS265Class3.html
2. Say n is prime. What is the last number generated by this list?
3. Say n is prime. What are the options for the second-to-last number?
4. Say $n=561$ (the first Carmichael number). Consider $x=23, 13, 63, 458$. What list of numbers do you get for each? Does this list prove to you that n is not prime?
5. If time, come up with (and analyze) an algorithm for primality testing.

Solutions to group work

- If n is prime, the last number generated should be 1.
- If n is prime, the second-to-last number should be ± 1 .
- If $n=561$,
 - $x=23 \rightarrow [386, 331, 166, 67, 1]$. Not prime! $(67)^2 = 1$
 - $x=13 \rightarrow [208, 67, 1, 1, 1]$. Not prime! $(67)^2 = 1$
 - $x=63 \rightarrow [351, 342, 276, 441, 375]$. Not prime! $(63)^{n-1} = 375 \neq 1$
 - $x=458 \rightarrow [560, 1, 1, 1, 1]$. Could be prime...

Miller-Rabin Algorithm

- Given an input n :
 - If n is even, or the power of a prime, output **Composite!**
 - Choose a random x and find the special list of numbers.
 - Make sure it looks like $[*, *, *, -1, 1, 1, 1, 1]$ or $[1, 1, 1, 1, 1, 1, 1, 1]$:
 - If the last thing isn't 1, output **Composite!** n fails Fermat's test!
 - If there's ever (not ± 1) followed by 1, output **Composite!**
 - Output **Prime!**

How do we
check for these
efficiently?

There's some number other than ± 1
that squares to 1 mod n

Theorem

- If n is prime, the Miller-Rabin Test will always output “Prime!”
- If n is composite, the Miller-Rabin Test will output “Composite!” with probability at least $\frac{1}{2}$.
- The running time is polynomial in $\log n$

When n is composite

and odd and not a prime power

- We will define a proper subgroup $S \leq \mathbb{Z}_n^*$ that contains all of the bad x 's.

Good x :

x

Composite!

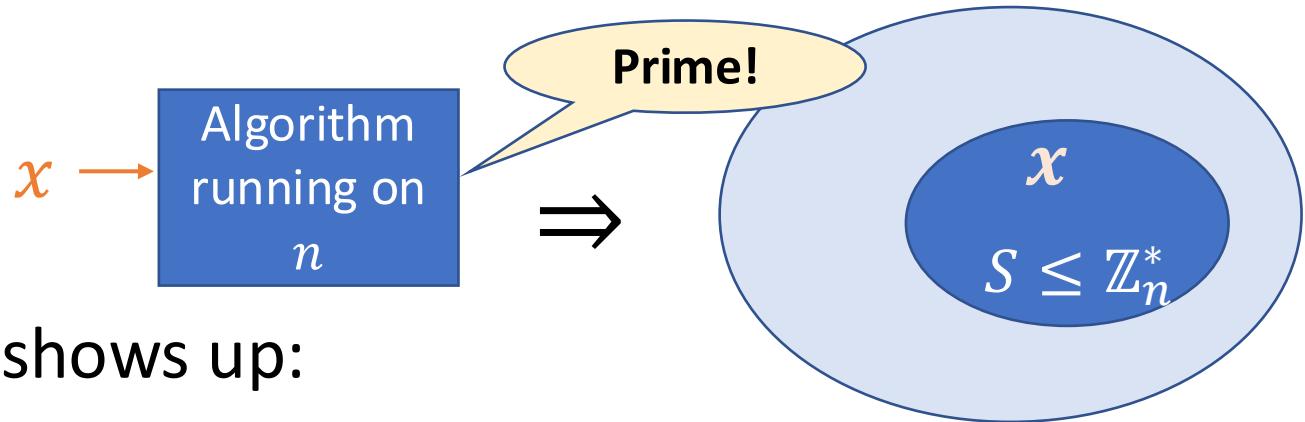
Bad x :

x

Prime!

- By Lagrange's theorem, $|S| \leq \frac{1}{2} |\mathbb{Z}_n^*|$
- The algorithm succeeds with probability $\geq \frac{1}{2}$.

Defining S



- Consider all the $x \in \mathbb{Z}_n^*$ where -1 shows up:

...

Say that this is $x^{2^b m}$

- Let b be the **largest** value of i less than k so that there exists an $x \in \mathbb{Z}_n^*$ so that $x^{2^i m} = -1 \bmod n$.
- Define $S = \{y \in \mathbb{Z}_n^* : y^{2^b m} = \pm 1\}$

Claim 1

- For any x so that the algorithm says “Prime!”, $x \in S$

If $x \in \mathbb{Z}_n^*$, then...

$x \in S$, by definition of b and the fact that all such x 's look like this →

If $x \notin \mathbb{Z}_n^*$, then...

...the algorithm won't say “Prime”

$x^{n-1} \neq 1$, so fails Fermat's test.

Otherwise $x^{n-2} \cdot x = 1$, but supposedly x doesn't have an inverse

- Consider all the $x \in \mathbb{Z}_n^*$ where -1 shows up:

(anything) -1 (all 1's)

(anything) -1 (all 1's)

...

(anything) -1 (all 1's)

Say that this is $x^{2^b m}$

- Let b be the **largest** value of i less than k so that there exists an $x \in \mathbb{Z}_n^*$ so that $x^{2^i m} = -1 \pmod{n}$.
- Define $S = \{y \in \mathbb{Z}_n^* : y^{2^b m} = \pm 1\}$

Claim 2

- S is a subgroup of \mathbb{Z}_n^* .

This was the warm-up!

Claim 3

- If n is odd, composite, and not a prime power, then $S \neq \mathbb{Z}_n^*$

Fun exercise if you have time!

$$S = \{y \in \mathbb{Z}_n^* : y^{2^b m} = \pm 1\}$$

Three claims:

- Claim 1: For any x so that the algorithm says “Prime!”, $x \in S$
- Claim 2: S is a subgroup of \mathbb{Z}_n^* .
- Claim 3: If n is odd, composite, and not a prime power, $S \neq \mathbb{Z}_n^*$

Group work:

Claims 1, 2 and 3 imply that the algorithm works with probability at least $\frac{1}{2}$.

- Claim 1: For any x so that the algorithm says “Prime!”, $x \in S$
- Claim 2: S is a subgroup of \mathbb{Z}_n^* .
- Claim 3: If n is odd, composite, and not a prime power, $S \neq \mathbb{Z}_n^*$

- If n is odd, composite, not a prime power, then by Claims 2 and 3, $S < \mathbb{Z}_n^*$ is a proper subgroup.
- That means that $|S| \leq \frac{|\mathbb{Z}_n^*|}{2}$ by Lagrange's theorem.
- $\Pr[\text{test says } n \text{ is prime}] \leq \Pr[\text{test picks } x \in S] \leq \frac{1}{2}$

By Claim 1

By the above

Theorem: for any n ,

- If n is prime, the Miller-Rabin Test will always output “Prime!”
- If n is composite, the Miller-Rabin Test will output “Composite!” with probability at least $\frac{1}{2}$.
- The running time is polynomial in $\log n$

Modulo the missing proposition...

Modulo proof of
Claim 3...

$$n - 1 = 2^k m \text{ where } m \text{ is odd}$$

Running time

- If n is even, or the power of a prime, output **Composite**!
- Choose random x and find $x^m, x^{2m}, \dots x^{2^k m}$
- Make sure it looks like $[*, *, *, -1, 1, 1, 1, 1]$ or $[1, 1, 1, 1, 1, 1, 1, 1]$:
 - If the last thing isn't 1, output **Composite**!
 - If there's ever (not ± 1) followed by 1, output **Composite**!
- Output **Prime**!

Time $\text{poly}(\log(n))$

To see if $n = a^k$ for a fixed k , binary search for an appropriate a between 1 and n . Then try all $k = 2, \dots, \log n$ to see if n is a perfect k th power. (If it is, we don't really care if it's a prime power or not...)

- Compute x^m by repeated squaring
 - $O(\log m) = O(\log n)$ multiplications
- Square x^m $k = O(\log n)$ times
- Need to check $k = O(\log n)$ things

Total time $\text{poly}(\log n)$

Theorem: for any n ,

- If n is prime, the Miller-Rabin Test will always output “Prime!”
- If n is composite, the Miller-Rabin Test will output “Composite!” with probability at least $\frac{1}{2}$.
- The running time is polynomial in $\log n$

Modulo the missing proposition...

Modulo proof of
Claim 3...

Recap

The Miller-Rabin Primality Test

- Cleverly generate a list of numbers for a random x .
- If n isn't prime, probably these numbers will give it away.
- The point: There is a fast and not-too-hard randomized algorithm for primality testing!
- It was open for a long time to get a deterministic algorithm
 - (And it isn't that simple).

Next time! Markov and Chebyshev!

- Before next time:
 - Watch the videos/read the lecture notes
 - Do the quiz

Missing piece 1:

Square Roots of 1 in \mathbb{Z}_n^* when n is prime

- Suppose that $x^2 \equiv 1 \pmod{n}$.
- Then $(x - 1)(x + 1) \equiv 0 \pmod{n}$
- That means that n divides $(x - 1)(x + 1)$
- Since n is prime, n must divide either $x - 1$ or $x + 1$
 - Example:
 - 3 (prime) divides 6×4 , and that implies that 3 divides one of 6 or 4.
 - OTOH 6 (not prime) divides 3×8 , but it doesn't divide either 3 or 8.
- But then either $x \equiv 1 \pmod{n}$ or $x \equiv -1 \pmod{n}$.

Missing piece 2:

- Let b be the largest value of i less than k so that there exists an x with $x^{2^i m} = -1 \pmod{n}$.
- $S = \{y \in \mathbb{Z}_n^* : y^{2^b m} = \pm 1\}$

Proof of Claim 3

If n is odd, composite, and not a prime power, $S \neq \mathbb{Z}_n^*$

- Let $r = 2^b m$ for convenience.
We can do this since n is composite, and not a prime power.
- Write $n = s \cdot t$ where $s, t > 1$ are relatively prime.
- Suppose $x \in \mathbb{Z}_n^*$ is such that $x^r = -1$.
This x exists by the definition of r and b
- Claim: There exists a $y \in \mathbb{Z}_n$ so that $y = x \pmod{s}$, and $y = 1 \pmod{t}$
This follows from the Chinese Remainder Theorem
- Claim: $y \in \mathbb{Z}_n^*$
By def of \mathbb{Z}_n^* , $\gcd(x, n) = 1$
Then $\gcd(x, s) = 1$, since $s|n$.
But then we also have $\gcd(y, s) = 1$, since $y \equiv x \pmod{s}$.
- Claim: $y \notin S_r$
 $y^r = 1 \pmod{t}$, and $y^r = x^r = -1 \pmod{s}$.
Case 1: $y^r = -1 \pmod{n} \Rightarrow y^r = -1 \pmod{t}$. (Since $t|n$)
Case 2: $y^r = 1 \pmod{n} \Rightarrow y^r = 1 \pmod{s}$. (Since $s|n$)
Either way it's a contradiction.