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Lecture 6 

Sequence Similarity, continued 
Scribe: Andrei Aron 

 
Acknowledgement: Images have been copied from the class slides, text is based on the 
class lecture. 
 
 
 
The Viterbi Alignment Algorithm (continued) 
 

The 3 state automaton described in Lecture 5 can also be interpreted as a Pair 
Hidden Markov Model (HMM) by assigning probabilities to the transitions. The 
alignment that generates the highest joint alignment probability is chosen. 
 

Another way of representing the model is by imagining we’re threading the 
sequence Y through sequence X. The current y index may be gapped, we may skip an x 
or we can align y to some x: 

The probabilities associated with transitions in this model are computed based on a 
database of known, curated alignments. This model can actually yield additional 
statistics, such as posteriors for individual instance alignments/gappings. Here is an 
example query: “What’s the probability that xi and yj align, given that sequences x and y 
align?” Such queries can also be computed by using Dynamic Programming techniques. 
 
 
Database Search Tools 
 
BLAST - Fast database search: 

First published in “Journal of Molecular Biology” in 1990 by Altschul, Gish, 
Miller, Myers and Lipman, “Basic local alignment search tool”, or BLAST, is one of the 
most cited papers in computational biology (Google Scholar alone shows it’s been cited 
16 thousand times). 
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BLAST approximates the results of the Dynamic Programming algorithm, only 
without the associated time cost. 

BLAST first creates a dictionary of query words (the word length is typically 4 
for amino-acids and 11 for nucleotides), which it sorts in linear time by using RADIX. It 
then runs once through the database, matching the query words above a certain similarity 
threshold. There are two approaches for matching words in the database: the first method 
creates an inverted index of words in the query and iterates through the database once in 
order to find potential matches; the second method uses a Direct Finite Automaton to find 
matches in the database. The second method was preferred by the authors of the BLAST 
paper. 

BLAST then creates a list of database location candidates, which it then attempts 
to extend to the left and to the right. (The first version of BLAST did not allow gaps.) 
The results are then ranked according to the similarity score. 
 The word length can be increased, improving sensitivity and trading off speed. 
 
PSI-BLAST 

Position specific iterative BLAST was created in 1997. PSI-BLAST represents an 
extension of BLAST where position specific scoring is used. What this means is that 
when looking for word matches in the database, we create a “profile” or family for the 
words we’re looking for. Once we found all matches within a certain significance 
threshold, we use the obtained profiles to refine the search by repeating the procedure. 
This allows us to find more significant matches. The profiles are represented as 
substitution matrices. 
 
Other Blast Variants 

TBlastX “compares the six-frame translations of a nucleotide query sequence 
against the six-frame translations of a nucleotide sequence database using the BLAST 
algorithm” (2). For example, one of the six-frame translations of “5’    ACCGTTA   3’” is 
TGGCAAT (3’s complement) 

Other versions include: BLAST-N, used for genomic sequences, BLAST-P used 
for proteins, BLAST-X for translated genome versus proteins and TBLASTN for proteins 
versus translated genomes. 
 
 
 
Multiple Sequence Alignment 
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 One of the reasons why multiple sequence alignments are necessary lies within 
the protein phylogenies. The events that define the phylogenies are: duplication (within 
the same species) and speciation (when two or more species diverge).  
 There are two types of similarity encountered in multiple sequence alignments: 
weak similarity and helix similarity. 
 But what is a multiple sequence alignment? What we want is to take a number of 
sequences and introduce gaps (but not actually allow gaps in all positions) in such a way 
that in the end, all sequences have the same length, and the global scoring function is 
maximized. Many times, aligning multiple sequences also yields better pair-wise 
alignments. Due to the fact that we need an evolution model in order to make accurate 
alignment predictions, the Scoring Function is, unfortunately, still an area of research. 
However, a good heuristic scoring function is the weighted sum of induced pair-wise 
alignment scores. The induced pair-wise alignment is the pair-wise alignment obtained 
from the corresponding multiple sequences alignment, by removing matching gaps. The 
weights are increasing with evolutionary tree distance: 
  

S(m) = ∑
<lk

lkkl mmsw ),(  

 
The reason for the weighting of the pair-wise sums is that some parts may be more 
densely sampled than others, thus incorrectly weighing more.  
Here is an example: 

Any multiple sequences alignment naturally generates a profile (as discussed above). 
Essentially, a profile represents a set of statistical distributions for each position in the 
final aligned sequences, computed by simple ML: 
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Multidimensional Alignment Algorithms 
 
Multidimensional DP is a generalization of the Needleman-Wunsh algorithm. The total 
score for a multiple alignment is the sum of column-wise scores: 
    S(m) = Σi S(mi) 
The dynamic programming algorithm for two sequences can be generalized to work for 
any number of sequences. Let’s say we have N sequences, i, j andk are positions within 
the sequence, and let’s denote F as the optimal score function. Let’s also assume the final 
length (including gaps) is L. Here is an illustrative example, for the case of 3 sequences: 
 
 

 
 
 
 
 
 

 
The problem is that now, we have a DP matrix of size LN and we have O(2N) neighbors, 
so we get a time complexity of O(2NLN) which is huge.  
The generalization of the pair HMM for the 3-state DFA is even worse, having a running 
time of O(4NLN). 
 
Fortunately, there exists a simpler way of performing the alignment, by making use of the 
evolution tree. The alignment is called “Progressive Alignment”. Here, there are two 
possible situations: 
 
1. The evolution tree is known (for instance, by noticing sequential similarities 

between rat, mouse, human and using them to build the tree). In this case, in the 
order of the tree, at each node, we align exactly two sequences or two profiles. 
We then propagate the resulting alignment. There is a problem with this 
approach, however: the algorithm is greedy – once we align XY for instance, 
when looking at XZ, we can no longer change the XY alignment. 

 
2. If the evolution tree is unknown, then we need to compute all pair-wise 

alignments, build the distance matrix (which defines evolutionary distance 
based on the computed pair-wise alignments), and use a clustering algorithm in 
order to re-create the evolution tree. Finally, the evolution tree can be used just 
like in the first case. 

 
Some heuristics may be used in order to improve alignments: Iterative refinement, A* 
search, Consistency and Simulated Annealing for instance. 
 
We shall briefly analyze Iterative Refinement as an alignment improving heuristic. 
Iterative Refinement addresses the problem of the immutability of alignments made 
earlier in the tree.  
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The algorithm is due to Barton and Stenberg and is extremely simple: remove a 
sequence from the original set, align the others, and then align the one we removed to the 
others; once all are aligned, repeat the procedure by removing the next sequence; repeat 
the procedure until convergence is achieved.  

This algorithm works well in general, but there are cases when it does not work at 
all.  

Another variant of this algorithm is the Tree Partition algorithm. Here, we pick 
sequences from a the original set, and then randomly decide to put them in the left or 
right sub-trees. 
 
Multiple Alignment Resources 
 

LUSTALW is the most widely used software. It has high throughput, and it is 
accurate. Unfortunately it only scales to a few hundred sequences. MUSCLE scales to 
thousands of proteins – which is important for instance when comparing histoms, or 
when comparing HIV characteristics for many patients. PROBCONS only scales up to 
one hundred and it is slower, but it is the most accurate. 

 
MUSCLE’s secret lies in the first two steps: since the phylogeny tree is unknown, 

it needs to do all pair-wise alignments in order to build the tree. However, MUSCLE 
avoids this quadratic alignment cost. MUSCLE creates a dictionary and gets a crude idea 
of how many common terms the sequences have; based on this crude idea, it creates a 
candidate tree, DDRAFT which it then refines. The running time for this procedure is given 
by the number of sequence pairs times linear time in L, so we get: 

 
(N-1)2*l 2  

MUSCLE’s time is O(N2*l) so it is smaller by almost a factor of “l”. 
 
PROBCONS on the other hand, relies on consistency by parameterizing a probability 
distribution over all possible alignments of all pairs of sequences. It uses a HMM/DFA 
similar to the one used in pair-wise alignment. The Viterbi algorithm is then used in order 
to determine the highest probability alignment. Unfortunately, this is not necessarily the 
most accurate alignment. Therefore, Maximum Expected Accuracy is used instead. 
 
 
A good analogy is that of the lazy teacher. The teacher gives his students an exam 
comprised of one question with a True/False answer. The teacher doesn’t actually know 
the answer himself, but needs to build an answer key based on the answers of his 
students. The equivalent of Viterbi would be that the teacher chooses the student with the 
highest previous grade, and decides that whatever his answer here, on this test, it must be 
correct. MEA computes instead the weighted vote (where the weights are a function of 
the previous grades) of the whole class – so the best student would get more weight than 
any other one student, but would not decide by himself the answer.  
 
Here is an example of how to compute accuracy; say we got this alignment: 
  



 6 

A  A  C  _  C   C 
A  A  T  G  G   C 
==================================== 
good    good     bad      50/50   unclear  good 
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