Introduction to Information Retrieval

CS276
Information Retrieval and Web Search
Chris Manning and Pandu Nayak
Systems issues
Introduction to Information Retrieval

Background

- Score computation is a large (10s of %) fraction of the CPU work on a query
 - Generally, we have a tight budget on latency (say, 250ms)
 - CPU provisioning doesn’t permit exhaustively scoring every document on every query
- Today we’ll look at ways of cutting CPU usage for scoring, without compromising the quality of results (much)
- Basic idea: avoid scoring docs that won’t make it into the top K
Safe vs non-safe ranking

- The terminology “safe ranking” is used for methods that guarantee that the K docs returned are the K absolute highest scoring documents
- Is it ok to be non-safe?
Ranking function is only a proxy

- User has a task and a query formulation
- Ranking function matches docs to query
- Thus the ranking function is anyway a proxy for user happiness
- If we get a list of K docs “close” to the top K by the ranking function measure, should be ok
Recap: Queries as vectors

- **Key idea 1:** Do the same for queries: represent them as vectors in the space
- **Key idea 2:** Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors, measured by cosine similarity
Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query $\Rightarrow K$ largest query-doc cosines.

- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the K largest cosine values efficiently.
 - Can we do this without computing all N cosines?
Computing the K largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with K highest cosines?
- Let $J =$ number of docs with nonzero cosines
 - We seek the K best of these J
Use heap for selecting top K

- Binary tree in which each node’s value > the values of children
- Takes $2J$ operations to construct, then each of K “winners” read off in $2\log J$ steps.
- For $J=1M$, $K=100$, this is about 10% of the cost of sorting.
Bottlenecks

- Primary computational bottleneck in scoring: **cosine computation**
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong
 - a doc *not* in the top K may creep into the list of K output docs
 - As noted earlier, this may not be a bad thing
SPEEDING COSINE COMPUTATION BY PRUNING
Generic approach

- Find a set \(A \) of *contenders*, with \(K < \frac{|A|}{N} \)
 - \(A \) does not necessarily contain the top \(K \), but has many docs from among the top \(K \)
 - Return the top \(K \) docs in \(A \)
- Think of \(A \) as *pruning* non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach
Index elimination

- Basic cosine computation algorithm only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from *catcher* and *rye*
- Intuition: *in* and *the* contribute little to the scores and so don’t alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders
Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a “soft conjunction” on queries seen on web search engines (early Google)
- Easy to implement in postings traversal
3 of 4 query terms

Scores only computed for docs 8, 16 and 32.
Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t’s postings
 - Call this the **champion list** for t
 - (aka **fancy list** or **top docs** for t)
- **Note** that r has to be chosen at index build time
 - Thus, it’s possible that $r < K$
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the K top-scoring docs from amongst these
Exercises

- How can Champion Lists be implemented in an inverted index?
QUERY-INDEPENDENT DOCUMENT SCORES
Static quality scores

- We want top-ranking documents to be both *relevant* and *authoritative*.
- *Relevance* is being modeled by cosine scores.
- *Authority* is typically a query-independent property of a document.
- Examples of authority signals:
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many bitlys, likes, or bookmarks
 - Pagerank
Modeling authority

- Assign to each document a *query-independent* quality score in [0,1] to each document d
 - Denote this by $g(d)$

- Thus, a quantity like the number of citations is scaled into [0,1]
 - Exercise: suggest a formula for this.
Net score

- Consider a simple total score combining cosine relevance and authority

\[\text{net-score}(q,d) = g(d) + \cosine(q,d) \]

- Can use some other linear combination
- Indeed, any function of the two “signals” of user happiness

- Now we seek the top \(K \) docs by \text{net score}
Top K by net score – fast methods

- First idea: Order all postings by $g(d)$
- Key: this is a common ordering for all postings
- Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine score computation
- Exercise: write pseudocode for cosine score computation if postings are ordered by $g(d)$
Why order postings by $g(d)$?

- Under $g(d)$-ordering, top-scoring docs likely to appear early in postings traversal.
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early.
 - Short of computing scores for all docs in postings.
Champion lists in $g(d)$-ordering

- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_{td}$
- Seek top-K results from only the docs in these champion lists
Cluster pruning: preprocessing

- Pick \sqrt{N} docs at random: call these *leaders*

- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its *followers*;
 - **Likely**: each leader has $\sim \sqrt{N}$ followers.
Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L’s followers.
Visualization

- Leader
- Follower

Query
Why use random sampling

- Fast
- Leaders reflect data distribution
General variants

- Have each follower attached to $b1=3$ (say) nearest leaders.
- From query, find $b2=4$ (say) nearest leaders and their followers.
- Can recurse on leader/follower construction.
TIERED INDEXES
High and low lists

- For each term, we maintain two postings lists called *high* and *low*
 - Think of *high* as the champion list
- When traversing postings on a query, only traverse *high* lists first
 - If we get more than K docs, select the top K and stop
 - Else proceed to get docs from the *low* lists
- Can be used even for simple cosine scores, without global quality $g(d)$
- A means for segmenting index into two tiers
Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- Can be done by $g(d)$ or another measure
- Inverted index thus broken up into tiers of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers
Example tiered index

Tier 1
- auto → Doc2
- best
- car
- insurance
 → Doc2
 → Doc3

Tier 2
- auto
- best
- car
- insurance

Tier 3
- auto
- best
- car
- insurance
 → Doc2
Impact-ordered postings

- We only want to compute scores for docs for which $w_{f,t,d}$ is high enough
- We sort each postings list by $w_{f,t,d}$
- Now: not all postings in a common order!
- How do we compute scores in order to pick off top K?
 - Two ideas follow
1. Early termination

- When traversing t's postings, stop early after either
 - a fixed number of r docs
 - $w_{f_{t,d}}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union
2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores
SAFE RANKING
Safe vs non-safe ranking

- The terminology “safe ranking” is used for methods that guarantee that the K docs returned are the K absolute highest scoring documents
 - (Not necessarily just under cosine similarity)
Safe ranking

- When we output the top K docs, we have a proof that these are indeed the top K
- Does this imply we always have to compute all N cosines?
 - We’ll look at pruning methods
 - So we only fully score some J documents
WAND scoring

- An instance of DAAT scoring
- Basic idea reminiscent of branch and bound
 - We maintain a running *threshold* score – e.g., the K^{th} highest score computed so far
 - We prune away all docs whose cosine scores are guaranteed to be below the threshold
 - We compute exact cosine scores for only the un-pruned docs

Index structure for WAND

- Postings ordered by docID
- Assume a special iterator on the postings of the form “go to the first docID greater than or equal to X”
- Typical state: we have a “finger” at some docID in the postings of each query term
 - Each finger moves only to the right, to larger docIDs
- Invariant – all docIDs lower than any finger have already been processed, meaning
 - These docIDs are either pruned away or
 - Their cosine scores have been computed
Upper bounds

- At all times for each query term \(t \), we maintain an upper bound \(UB_t \) on the score contribution of any doc to the right of the finger
 - Max (over docs remaining in \(t \)’s postings) of \(w_t(doc) \)

As finger moves right, \(UB \) drops
Pivoting

- Query: *catcher in the rye*
- Let’s say the current finger positions are as below

\[
\begin{align*}
UB_{catcher} &= 2.3 \\
UB_{rye} &= 1.8 \\
UB_{in} &= 3.3 \\
UB_{the} &= 4.3
\end{align*}
\]

Threshold = 6.8
Prune docs that have no hope

- Terms sorted in order of finger positions
- Move fingers to 589 or right

$catcher$ \quad 273 \quad \text{Hopeless docs}

rye \quad 304 \quad \text{Hopeless docs}

in \quad 589

the \quad 762

Threshold = 6.8

$UB_{catcher} = 2.3$

$UB_{rye} = 1.8$

$UB_{in} = 3.3$

$UB_{the} = 4.3$

Update UB's
Compute 589’s score if need be

- If 589 is present in enough postings, compute its full cosine score – else some fingers to right of 589
- Pivot again ...

- catcher
- rye
- in
- the

589
762
WAND summary

- In tests, WAND leads to a 90+% reduction in score computation
 - Better gains on longer queries
- Nothing we did was specific to cosine ranking
 - We need scoring to be additive by term
- WAND and variants give us safe ranking
 - Possible to devise “careless” variants that are a bit faster but not safe (see summary in Ding+Suel 2011)
 - Ideas combine some of the non-safe scoring we considered
FINISHING TOUCHES FOR A COMPLETE SCORING SYSTEM
Query term proximity

- **Free text queries**: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the smallest window in a doc containing all query terms, e.g.,
- For the query *strained mercy* the smallest window in the doc *The quality of mercy is not strained* is 4 (words)
- Would like scoring function to take this into account – how?
Query parsers

- Free text query from user may in fact spawn one or more queries to the indexes, e.g., query *rising interest rates*
 - Run the query as a phrase query
 - If <K docs contain the phrase *rising interest rates*, run the two phrase queries *rising interest* and *interest rates*
 - If we still have <K docs, run the vector space query *rising interest rates*
 - Rank matching docs by vector space scoring
- This sequence is issued by a query parser
Aggregate scores

- We’ve seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications – expert-tuned
- Increasingly common: machine-learned
Putting it all together