
1

Introduction to Information Retrieval

Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search

Chris Manning, Pandu Nayak and Prabhakar Raghavan

Efficient scoring

Introduction to Information Retrieval

Today’s focus

 Retrieval – get docs matching query from inverted
index

 Scoring+ranking

 Assign a score to each doc

 Pick K highest scoring docs

 Our emphasis today will be on doing each of these
efficiently, rather than on the quality of the ranking

 We’ll consider the impact of the scoring function –
whether it’s simple, complicated etc.

 In turn, some “efficiency tricks” will impact the ranking
quality

2

Introduction to Information Retrieval

Background

 Score computation is a large (10s of %) fraction of
the CPU work on a query

 Generally, we have a tight budget on latency (say, 250ms)

 CPU provisioning doesn’t permit exhaustively scoring every
document on every query

 Today we’ll look at ways of cutting CPU usage for
scoring, without compromising the quality of results
(much)

 Basic idea: avoid scoring docs that won’t make it into
the top K

3

Introduction to Information Retrieval

Recap: Queries as vectors

 We have a weight for each term in each doc

 Key idea 1: Do the same for queries: represent them
as vectors in the space

 Key idea 2: Rank documents according to their cosine
similarity to the query in this space

 Vector space scoring is

 Entirely query dependent

 Additive on term contributions – no conditionals etc.

 Context insensitive (no interactions between query terms)

 We’ll later look at scoring that’s not as simple …

Introduction to Information Retrieval

TAAT vs DAAT techniques

 TAAT = “Term At A Time”

 Scores for all docs computed concurrently, one query term
at a time

 DAAT = “Document At A Time”

 Total score for each doc (incl all query terms) computed,
before proceeding to the next

 Each has implications for how the retrieval index is
structured and stored

5

Introduction to Information Retrieval

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the
query  K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

2

Introduction to Information Retrieval

Safe vs non-safe ranking

 The terminology “safe ranking” is used for methods
that guarantee that the K docs returned are the K
absolute highest scoring documents

 (Not necessarily just under cosine similarity)

 Is it ok to be non-safe?

 If it is – then how do we ensure we don’t get too far
from the safe solution?

 How do we measure if we are far?

7

Introduction to Information Retrieval

SAFE RANKING

8

Introduction to Information Retrieval

We first focus on safe ranking

 Thus when we output the top K docs, we have a
proof that these are indeed the top K

 Does this imply we always have to compute all N
cosines?

 We’ll look at pruning methods

 Do we have to sort the resulting cosine scores? (No)

9

Introduction to Information Retrieval

Computing the K largest cosines:
selection vs. sorting

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Introduction to Information Retrieval

Use heap for selecting top K

 Binary tree in which each node’s value > the values
of children

 Takes 2J operations to construct, then each of K
“winners” read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of
sorting.

Introduction to Information Retrieval

WAND scoring

 An instance of DAAT scoring

 Basic idea reminiscent of branch and bound

 We maintain a running threshold score – e.g., the Kth
highest score computed so far

 We prune away all docs whose cosine scores are
guaranteed to be below the threshold

 We compute exact cosine scores for only the un-pruned
docs

12

3

Introduction to Information Retrieval

Index structure for WAND

 Postings ordered by docID

 Assume a special iterator on the postings of the form
“go to the first docID greater than X”

 Typical state: we have a “finger” at some docID in the
postings of each query term

 Each finger moves only to the right, to larger docIDs

 Invariant – all docIDs lower than any finger have
already been processed, meaning

 These docIDs are either pruned away or

 Their cosine scores have been computed

13

Introduction to Information Retrieval

Upper bounds

 At all times for each query term t, we maintain an
upper bound UBt on the score contribution of any
doc to the right of the finger

 Max (over docs remaining in t’s postings) of wt(doc)

14

t 3 7 11 17 29 38 57 79 UB
t
 = w

t
(38)

UB

Introduction to Information Retrieval

Pivoting

 Query: catcher in the rye

 Let’s say the current finger positions are as below

15

catcher

rye

in

the

273

304

589

762

UB
catcher

 =

2.3

UB
rye

 = 1.8

UB
in
 = 3.3

UB
the

 = 4.3

Introduction to Information Retrieval

Prune docs that have no hope

 Terms sorted in order of finger positions

 Move fingers to 589 or right

16

catcher

rye

in

the

273

304

589

762

UB
catcher

 =

2.3

UB
rye

 = 1.8

UB
in
 = 3.3

UB
the

 = 4.3

Hopeless docs

Hopeless docs

UB

Introduction to Information Retrieval

Compute 589’s score if need be

 If 589 is present in enough postings, compute its full
cosine score – else some fingers to right of 589

 Pivot again …

17

catcher

rye

in

the

589

762

589

589

Introduction to Information Retrieval

WAND summary

 In tests, WAND leads to a 90+% reduction in score
computation

 Better gains on longer queries

 Nothing we did was specific to cosine ranking

 We need scoring to be additive by term

 WAND and variants give us safe ranking

 Possible to devise “careless” variants that are a bit faster
but not safe (see summary in Ding+Suel 2011)

 Ideas combine some of the non-safe scoring we consider
next

18

4

Introduction to Information Retrieval

NON SAFE RANKING

19

Introduction to Information Retrieval

Non-safe (cosine) ranking

 Return K docs whose cosine similarities to the query
are high

 Relative to the safe top K

 Reminiscent of normalization in NDCG

 Can we prune more aggressively?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Introduction to Information Retrieval

Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by
cosine measure, should be ok

 All this is true for just about any scoring function

Introduction to Information Retrieval

Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has
many docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 Unlike WAND, pruning here can be lossy

 The same approach is also used for other (non-
cosine) scoring functions

 Will look at several schemes following this approach

 Often A may not be explicitly spelled out a priori

Introduction to Information Retrieval

Index elimination

 Basic cosine computation algorithm only considers
docs containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Introduction to Information Retrieval

High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores
and so don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs  these (many)
docs get eliminated from set A of contenders

5

Introduction to Information Retrieval

Docs containing many query terms (DAAT)

 Any doc with at least one query term is a candidate
for the top K output list

 For multi-term queries, only compute scores for docs
containing several of the query terms

 Say, at least 3 out of 4

 Imposes a “soft conjunction” on queries seen on web
search engines (early Google)

 Easy to implement in postings traversal

Introduction to Information Retrieval

Champion lists

 Precompute for each dictionary term t, the r docs of
highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the
champion list of some query term

 Pick the K top-scoring docs from amongst these

Introduction to Information Retrieval

High and low lists

 For each term, we maintain two postings lists called
high and low

 Think of high as the champion list

 When traversing postings on a query, only traverse
high lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 A means for segmenting index into two tiers

Introduction to Information Retrieval

Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Inverted index thus broken up into tiers of decreasing
importance

 At query time use top tier unless it fails to yield K
docs

 If so drop to lower tiers

 Common practice in web search engines

Introduction to Information Retrieval

Example tiered index

Introduction to Information Retrieval

RECAP OF SOME FINAL SCORING
IDEAS

30

6

Introduction to Information Retrieval

Document dependent scoring

 Sometimes we’ll have scoring functions that don’t
add up term-wise scores

 We’ll look at two instances here, but industry
practice is rife with these

 Static document goodness measures

 Term proximity

31

Introduction to Information Retrieval

Quantitative

Static quality scores

 We want top-ranking documents to be both relevant
and authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property
of a document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 Many bitly’s, likes or social referrals marks

 (Pagerank)

Introduction to Information Retrieval

Modeling authority

 Assign to each document a query-independent
quality score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled
into [0,1]

Introduction to Information Retrieval

Net score

 Consider a simple total score combining cosine
relevance and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination

 Indeed, any function of the two “signals” of user
happiness – more later

 Now we seek the top K docs by net score

Introduction to Information Retrieval

Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’
postings for

 Postings intersection

 Cosine (or other) score computation

Introduction to Information Retrieval

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal

 In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows
us to stop postings traversal early

 Short of computing scores for all docs in postings

7

Introduction to Information Retrieval

Champion lists in g(d)-ordering

 Can combine champion lists with g(d)-ordering

 Maintain for each term a champion list of the r docs
with highest g(d) + tf-idftd

 Seek top-K results from only the docs in these
champion lists

 Combine with other heuristics we’ve seen …

Introduction to Information Retrieval

Different idea – Query term proximity

 Free text queries: just a set of terms typed into the
query box – common on the web

 Users prefer docs in which query terms occur within
close proximity of each other

 Let w be the smallest window in a doc containing all
query terms, e.g.,

 For the query strained mercy the smallest window in
the doc The quality of mercy is not strained is 4
(words)

 Would like scoring function to take this into account
– how?

Introduction to Information Retrieval

Scoring factors

 The ideas we’ve seen are far from exhaustive

 But they give some of the principal components in a
typical scoring function

 They reflect some intuition of how users phrase queries,
and what they expect in return

 Scoring goes beyond adding up numbers

 E.g., if we get too few hits – how should we increase recall
on the fly?

 If it’s an obvious “nav query” how do we cut recall?

39

Introduction to Information Retrieval

Non-additive scoring

 Free text query from user may in fact spawn one or
more queries to the indexes, e.g., query rising
interest rates

 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the
two phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising
interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query handler

