
1

Introduction to Information Retrieval

Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search

Chris Manning, Pandu Nayak and Prabhakar Raghavan

Efficient scoring

Introduction to Information Retrieval

Today’s focus

 Retrieval – get docs matching query from inverted
index

 Scoring+ranking

 Assign a score to each doc

 Pick K highest scoring docs

 Our emphasis today will be on doing each of these
efficiently, rather than on the quality of the ranking

 We’ll consider the impact of the scoring function –
whether it’s simple, complicated etc.

 In turn, some “efficiency tricks” will impact the ranking
quality

2

Introduction to Information Retrieval

Background

 Score computation is a large (10s of %) fraction of
the CPU work on a query

 Generally, we have a tight budget on latency (say, 250ms)

 CPU provisioning doesn’t permit exhaustively scoring every
document on every query

 Today we’ll look at ways of cutting CPU usage for
scoring, without compromising the quality of results
(much)

 Basic idea: avoid scoring docs that won’t make it into
the top K

3

Introduction to Information Retrieval

Recap: Queries as vectors

 We have a weight for each term in each doc

 Key idea 1: Do the same for queries: represent them
as vectors in the space

 Key idea 2: Rank documents according to their cosine
similarity to the query in this space

 Vector space scoring is

 Entirely query dependent

 Additive on term contributions – no conditionals etc.

 Context insensitive (no interactions between query terms)

 We’ll later look at scoring that’s not as simple …

Introduction to Information Retrieval

TAAT vs DAAT techniques

 TAAT = “Term At A Time”

 Scores for all docs computed concurrently, one query term
at a time

 DAAT = “Document At A Time”

 Total score for each doc (incl all query terms) computed,
before proceeding to the next

 Each has implications for how the retrieval index is
structured and stored

5

Introduction to Information Retrieval

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the
query K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

2

Introduction to Information Retrieval

Safe vs non-safe ranking

 The terminology “safe ranking” is used for methods
that guarantee that the K docs returned are the K
absolute highest scoring documents

 (Not necessarily just under cosine similarity)

 Is it ok to be non-safe?

 If it is – then how do we ensure we don’t get too far
from the safe solution?

 How do we measure if we are far?

7

Introduction to Information Retrieval

SAFE RANKING

8

Introduction to Information Retrieval

We first focus on safe ranking

 Thus when we output the top K docs, we have a
proof that these are indeed the top K

 Does this imply we always have to compute all N
cosines?

 We’ll look at pruning methods

 Do we have to sort the resulting cosine scores? (No)

9

Introduction to Information Retrieval

Computing the K largest cosines:
selection vs. sorting

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Introduction to Information Retrieval

Use heap for selecting top K

 Binary tree in which each node’s value > the values
of children

 Takes 2J operations to construct, then each of K
“winners” read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of
sorting.

Introduction to Information Retrieval

WAND scoring

 An instance of DAAT scoring

 Basic idea reminiscent of branch and bound

 We maintain a running threshold score – e.g., the Kth
highest score computed so far

 We prune away all docs whose cosine scores are
guaranteed to be below the threshold

 We compute exact cosine scores for only the un-pruned
docs

12

3

Introduction to Information Retrieval

Index structure for WAND

 Postings ordered by docID

 Assume a special iterator on the postings of the form
“go to the first docID greater than X”

 Typical state: we have a “finger” at some docID in the
postings of each query term

 Each finger moves only to the right, to larger docIDs

 Invariant – all docIDs lower than any finger have
already been processed, meaning

 These docIDs are either pruned away or

 Their cosine scores have been computed

13

Introduction to Information Retrieval

Upper bounds

 At all times for each query term t, we maintain an
upper bound UBt on the score contribution of any
doc to the right of the finger

 Max (over docs remaining in t’s postings) of wt(doc)

14

t 3 7 11 17 29 38 57 79 UB
t
 = w

t
(38)

UB

Introduction to Information Retrieval

Pivoting

 Query: catcher in the rye

 Let’s say the current finger positions are as below

15

catcher

rye

in

the

273

304

589

762

UB
catcher

 =

2.3

UB
rye

 = 1.8

UB
in
 = 3.3

UB
the

 = 4.3

Introduction to Information Retrieval

Prune docs that have no hope

 Terms sorted in order of finger positions

 Move fingers to 589 or right

16

catcher

rye

in

the

273

304

589

762

UB
catcher

 =

2.3

UB
rye

 = 1.8

UB
in
 = 3.3

UB
the

 = 4.3

Hopeless docs

Hopeless docs

UB

Introduction to Information Retrieval

Compute 589’s score if need be

 If 589 is present in enough postings, compute its full
cosine score – else some fingers to right of 589

 Pivot again …

17

catcher

rye

in

the

589

762

589

589

Introduction to Information Retrieval

WAND summary

 In tests, WAND leads to a 90+% reduction in score
computation

 Better gains on longer queries

 Nothing we did was specific to cosine ranking

 We need scoring to be additive by term

 WAND and variants give us safe ranking

 Possible to devise “careless” variants that are a bit faster
but not safe (see summary in Ding+Suel 2011)

 Ideas combine some of the non-safe scoring we consider
next

18

4

Introduction to Information Retrieval

NON SAFE RANKING

19

Introduction to Information Retrieval

Non-safe (cosine) ranking

 Return K docs whose cosine similarities to the query
are high

 Relative to the safe top K

 Reminiscent of normalization in NDCG

 Can we prune more aggressively?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Introduction to Information Retrieval

Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by
cosine measure, should be ok

 All this is true for just about any scoring function

Introduction to Information Retrieval

Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has
many docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 Unlike WAND, pruning here can be lossy

 The same approach is also used for other (non-
cosine) scoring functions

 Will look at several schemes following this approach

 Often A may not be explicitly spelled out a priori

Introduction to Information Retrieval

Index elimination

 Basic cosine computation algorithm only considers
docs containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Introduction to Information Retrieval

High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores
and so don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs these (many)
docs get eliminated from set A of contenders

5

Introduction to Information Retrieval

Docs containing many query terms (DAAT)

 Any doc with at least one query term is a candidate
for the top K output list

 For multi-term queries, only compute scores for docs
containing several of the query terms

 Say, at least 3 out of 4

 Imposes a “soft conjunction” on queries seen on web
search engines (early Google)

 Easy to implement in postings traversal

Introduction to Information Retrieval

Champion lists

 Precompute for each dictionary term t, the r docs of
highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the
champion list of some query term

 Pick the K top-scoring docs from amongst these

Introduction to Information Retrieval

High and low lists

 For each term, we maintain two postings lists called
high and low

 Think of high as the champion list

 When traversing postings on a query, only traverse
high lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 A means for segmenting index into two tiers

Introduction to Information Retrieval

Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Inverted index thus broken up into tiers of decreasing
importance

 At query time use top tier unless it fails to yield K
docs

 If so drop to lower tiers

 Common practice in web search engines

Introduction to Information Retrieval

Example tiered index

Introduction to Information Retrieval

RECAP OF SOME FINAL SCORING
IDEAS

30

6

Introduction to Information Retrieval

Document dependent scoring

 Sometimes we’ll have scoring functions that don’t
add up term-wise scores

 We’ll look at two instances here, but industry
practice is rife with these

 Static document goodness measures

 Term proximity

31

Introduction to Information Retrieval

Quantitative

Static quality scores

 We want top-ranking documents to be both relevant
and authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property
of a document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 Many bitly’s, likes or social referrals marks

 (Pagerank)

Introduction to Information Retrieval

Modeling authority

 Assign to each document a query-independent
quality score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled
into [0,1]

Introduction to Information Retrieval

Net score

 Consider a simple total score combining cosine
relevance and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination

 Indeed, any function of the two “signals” of user
happiness – more later

 Now we seek the top K docs by net score

Introduction to Information Retrieval

Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’
postings for

 Postings intersection

 Cosine (or other) score computation

Introduction to Information Retrieval

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal

 In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows
us to stop postings traversal early

 Short of computing scores for all docs in postings

7

Introduction to Information Retrieval

Champion lists in g(d)-ordering

 Can combine champion lists with g(d)-ordering

 Maintain for each term a champion list of the r docs
with highest g(d) + tf-idftd

 Seek top-K results from only the docs in these
champion lists

 Combine with other heuristics we’ve seen …

Introduction to Information Retrieval

Different idea – Query term proximity

 Free text queries: just a set of terms typed into the
query box – common on the web

 Users prefer docs in which query terms occur within
close proximity of each other

 Let w be the smallest window in a doc containing all
query terms, e.g.,

 For the query strained mercy the smallest window in
the doc The quality of mercy is not strained is 4
(words)

 Would like scoring function to take this into account
– how?

Introduction to Information Retrieval

Scoring factors

 The ideas we’ve seen are far from exhaustive

 But they give some of the principal components in a
typical scoring function

 They reflect some intuition of how users phrase queries,
and what they expect in return

 Scoring goes beyond adding up numbers

 E.g., if we get too few hits – how should we increase recall
on the fly?

 If it’s an obvious “nav query” how do we cut recall?

39

Introduction to Information Retrieval

Non-additive scoring

 Free text query from user may in fact spawn one or
more queries to the indexes, e.g., query rising
interest rates

 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the
two phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising
interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query handler

