Today’s focus

- **Retrieval** – get docs matching query from inverted index
- **Scoring+ranking**
 - Assign a score to each doc
 - Pick K highest scoring docs
- Our emphasis today will be on doing each of these efficiently, rather than on the quality of the ranking
 - We’ll consider the impact of the scoring function – whether it’s simple, complicated etc.
 - In turn, some “efficiency tricks” will impact the ranking quality

Background

- Score computation is a large (10s of %) fraction of the CPU work on a query
 - Generally, we have a tight budget on latency (say, 250ms)
 - CPU provisioning doesn’t permit exhaustively scoring every document on every query
- Today we’ll look at ways of cutting CPU usage for scoring, without compromising the quality of results (much)
- Basic idea: avoid scoring docs that won’t make it into the top K

Recap: Queries as vectors

- We have a weight for each term in each doc
 - **Key idea 1:** Do the same for queries: represent them as vectors in the space
 - **Key idea 2:** Rank documents according to their cosine similarity to the query in this space
- Vector space scoring is
 - Entirely query dependent
 - Additive on term contributions – no conditionals etc.
 - Context insensitive (no interactions between query terms)
- We’ll later look at scoring that’s not as simple …

TAAT vs DAAT techniques

- **TAAT** = “Term At A Time”
 - Scores for all docs computed concurrently, one query term at a time
- **DAAT** = “Document At A Time”
 - Total score for each doc (incl all query terms) computed, before proceeding to the next
- Each has implications for how the retrieval index is structured and stored

Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query $\Rightarrow K$ largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the K largest cosine values efficiently.
 - Can we do this without computing all N cosines?
Safe vs non-safe ranking

- The terminology “safe ranking” is used for methods that guarantee that the \(K \) docs returned are the \(K \) absolute highest scoring documents
 - (Not necessarily just under cosine similarity)
 - Is it ok to be non-safe?
 - If it is – then how do we ensure we don’t get too far from the safe solution?
 - How do we measure if we are far?

SAFE RANKING

We first focus on safe ranking

- Thus when we output the top \(K \) docs, we have a proof that these are indeed the top \(K \)
 - Does this imply we always have to compute all \(N \) cosines?
 - We’ll look at pruning methods
 - Do we have to sort the resulting cosine scores? (No)

Computing the \(K \) largest cosines: selection vs. sorting

- Typically we want to retrieve the top \(K \) docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with \(K \) highest cosines?
- Let \(J \) = number of docs with nonzero cosines
 - We seek the \(K \) best of these \(J \)

Use heap for selecting top \(K \)

- Binary tree in which each node’s value > the values of children
 - Takes \(2J \) operations to construct, then each of \(K \) “winners” read off in \(2\log J \) steps.
- For \(J=1M, K=100 \), this is about 10% of the cost of sorting.

WAND scoring

- An instance of DAAT scoring
 - Basic idea reminiscent of branch and bound
 - We maintain a running threshold score – e.g., the \(K^{th} \) highest score computed so far
 - We prune away all docs whose cosine scores are guaranteed to be below the threshold
 - We compute exact cosine scores for only the un-pruned docs

Index structure for WAND
- Postings ordered by docID
- Assume a special iterator on the postings of the form “go to the first docID greater than X”
- Typical state: we have a “finger” at some docID in the postings of each query term
 - Each finger moves only to the right, to larger docIDs
- Invariant – all docIDs lower than any finger have already been processed, meaning
 - These docIDs are either pruned away or
 - Their cosine scores have been computed

Upper bounds
- At all times for each query term t, we maintain an upper bound UB_t on the score contribution of any doc to the right of the finger
 - Max (over docs remaining in t’s postings) of $w_t(doc)$

As finger moves right, UB drops

Pivoting
- Query: catcher in the rye
- Let’s say the current finger positions are as below

```
| Term | Finger Position | UB
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>catcher</td>
<td>273</td>
<td>2.3</td>
</tr>
<tr>
<td>rye</td>
<td>304</td>
<td>1.8</td>
</tr>
<tr>
<td>in</td>
<td>589</td>
<td>3.3</td>
</tr>
<tr>
<td>the</td>
<td>762</td>
<td>4.3</td>
</tr>
</tbody>
</table>
```

Threshold = 6.8

Prune docs that have no hope
- Terms sorted in order of finger positions
- Move fingers to 589 or right

```
| Term | Finger Position | UB
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>catcher</td>
<td>273</td>
<td>2</td>
</tr>
<tr>
<td>rye</td>
<td>304</td>
<td>1.8</td>
</tr>
<tr>
<td>in</td>
<td>589</td>
<td>3.3</td>
</tr>
<tr>
<td>the</td>
<td>762</td>
<td>4.3</td>
</tr>
</tbody>
</table>
```

Threshold = 6.8

Hopeless docs

Update UBs

Compute 589’s score if need be
- If 589 is present in enough postings, compute its full cosine score – else some fingers to right of 589
- Pivot again ...

```plaintext
| Term | Finger Position | UB
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>catcher</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>rye</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>the</td>
<td>762</td>
<td></td>
</tr>
</tbody>
</table>
```

WAND summary
- In tests, WAND leads to a 90+% reduction in score computation
- Better gains on longer queries
- Nothing we did was specific to cosine ranking
 - We need scoring to be additive by term
- WAND and variants give us safe ranking
 - Possible to devise “careless” variants that are a bit faster but not safe (see summary in Ding+Suel 2011)
 - Ideas combine some of the non-safe scoring we consider next
NON SAFE RANKING

We’ll speak of cosine scores, but most of these ideas are general and a recap of the Coursera video.

Non-safe (cosine) ranking

- Return K docs whose cosine similarities to the query are high
- Relative to the safe top K
- Reminiscent of normalization in NDCG
- Can we prune more aggressively?
 - Yes, but may sometimes get it wrong
 - a doc not in the top K may creep into the list of K output docs
 - Is this such a bad thing?

Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- Thus cosine is anyway a proxy for user happiness
- If we get a list of K docs “close” to the top K by cosine measure, should be ok
- All this is true for just about any scoring function

Generic approach

- Find a set A of contenders, with $K < |A| \ll N$
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as pruning non-contenders
 - Unlike WAND, pruning here can be lossy
 - The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach
- Often A may not be explicitly spelled out a priori

Index elimination

- Basic cosine computation algorithm only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

High-idf query terms only

- For a query such as catcher in the rye
 - Only accumulate scores from catcher and rye
 - Intuition: in and the contribute little to the scores and so don’t alter rank-ordering much
 - Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders
Docs containing many query terms (DAAT)

- Any doc with at least one query term is a candidate for the top K output list.
- For multi-term queries, only compute scores for docs containing several of the query terms.
 - Say, at least 3 out of 4.
 - Imposes a "soft conjunction" on queries seen on web search engines (early Google).
- Easy to implement in postings traversal.

Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t's postings.
 - Call this the champion list for t.
 - (aka fancy list or top docs for t).
- Note that r has to be chosen at index build time.
 - Thus, it's possible that $r < K$.
- At query time, only compute scores for docs in the champion list of some query term.
 - Pick the K top-scoring docs from amongst these.

High and low lists

- For each term, we maintain two postings lists called high and low.
 - Think of high as the champion list.
- When traversing postings on a query, only traverse high lists first.
 - If we get more than K docs, select the top K and stop.
 - Else proceed to get docs from the low lists.
- A means for segmenting index into two tiers.

Tiered indexes

- Break postings up into a hierarchy of lists.
 - Most important.
 - ... Least important.
- Inverted index thus broken up into tiers of decreasing importance.
- At query time use top tier unless it fails to yield K docs.
 - If so drop to lower tiers.
 - Common practice in web search engines.

Example tiered index

<table>
<thead>
<tr>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Tier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>auto</td>
<td>auto</td>
</tr>
<tr>
<td>best</td>
<td>best</td>
<td>best</td>
</tr>
<tr>
<td>car</td>
<td>car</td>
<td>car</td>
</tr>
<tr>
<td>insurance</td>
<td>insurance</td>
<td>insurance</td>
</tr>
<tr>
<td>Dec2</td>
<td>Dec1</td>
<td>Dec1</td>
</tr>
<tr>
<td>Dec3</td>
<td>Dec2</td>
<td>Dec2</td>
</tr>
<tr>
<td>Dec3</td>
<td>Dec2</td>
<td>Dec2</td>
</tr>
<tr>
<td>Dec1</td>
<td>Dec1</td>
<td>Dec1</td>
</tr>
<tr>
<td>Dec2</td>
<td>Dec2</td>
<td>Dec2</td>
</tr>
<tr>
<td>Dec3</td>
<td>Dec2</td>
<td>Dec2</td>
</tr>
</tbody>
</table>

RECAP OF SOME FINAL SCORING IDEAS
Document dependent scoring

- Sometimes we’ll have scoring functions that don’t add up term-wise scores
- We’ll look at two instances here, but industry practice is rife with these
 - Static document goodness measures
 - Term proximity

Static quality scores

- We want top-ranking documents to be both relevant and authoritative
- Relevance is being modeled by cosine scores
- Authority is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many bitly’s, likes or social referrals marks
- Examples of static quality scores

Modeling authority

- Assign to each document a query-independent quality score in $[0,1]$ to each document d
 - Denote this by $g(d)$
 - Thus, a quantity like the number of citations is scaled into $[0,1]$

Net score

- Consider a simple total score combining cosine relevance and authority
- $\text{net-score}(q,d) = g(d) + \text{cosine}(q,d)$
 - Can use some other linear combination
 - Indeed, any function of the two “signals” of user happiness – more later
 - Now we seek the top K docs by net score

Top K by net score – fast methods

- First idea: Order all postings by $g(d)$
- Key: this is a common ordering for all postings
 - Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine (or other) score computation

Why order postings by $g(d)$?

- Under $g(d)$-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings

Quantitative

- Relevance
- Authority
Champion lists in $g(d)$-ordering

- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_d$
- Seek top-K results from only the docs in these champion lists
- Combine with other heuristics we’ve seen ...

Different idea – Query term proximity

- Free text queries: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the smallest window in a doc containing all query terms, e.g.,
 - For the query strained mercy the smallest window in the doc The quality of mercy is not strained is 4 (words)
- Would like scoring function to take this into account – how?

Scoring factors

- The ideas we’ve seen are far from exhaustive
- But they give some of the principal components in a typical scoring function
 - They reflect some intuition of how users phrase queries, and what they expect in return
- Scoring goes beyond adding up numbers
 - E.g., if we get too few hits – how should we increase recall on the fly?
 - If it’s an obvious “nav query” how do we cut recall?

Non-additive scoring

- Free text query from user may in fact spawn one or more queries to the indexes, e.g., query rising interest rates
 - Run the query as a phrase query
 - If $<K$ docs contain the phrase rising interest rates, run the two phrase queries rising interest and interest rates
 - If we still have $<K$ docs, run the vector space query rising interest rates
 - Rank matching docs by vector space scoring
- This sequence is issued by a query handler