Introduction to **Information Retrieval**

Prep work

Introduction to Information Retrieval

- This lecture presumes that you've seen the 124 coursera lecture on Naïve Bayes, or equivalent
- Will refer to NB without describing it

Introduction to Information Retrieval

troduction to Information Retrieval

- Standing queries
- The path from IR to text classification:
 - · You have an information need to monitor, say: Unrest in the Niger delta region
 - You want to rerun an appropriate query periodically to find new news items on this topic
 - · You will be sent new documents that are found I.e., it's not ranking but classification (relevant vs. not relevant)
- Such queries are called standing queries
 - Long used by "information professionals"
 - · A modern mass instantiation is Google Alerts
- Standing queries are (hand-written) text classifiers

From: Google Alerts Fioni: Google Alert - Stanford -neuro-linguistic nlp OR "Natural Language Processing" OR Subject: Google Alert - Stanford -neuro-linguistic nlp OR "Natural Language Processing" OR parser OR tagger OR ner OR "named entity" OR segmenter OR classifier OR dependencies OR "core nlp" OR corenip OR phrasal Date: May 7, 2012 8:54:53 PM PDT

- To: Christopher Manning

Introduction to Information Retrieval

3 new results for stanford -neuro-linguistic ssing" OR parser OR tagger OR ner OR "na OR classifier OR dependencies OR "core n ity" OR

Twitter / Stanford NLP Group: @Robertoross If you only n ... @Robertoross If you only need tokenization, java -mx2m edu.stanford.nlp. process.PTBTokenizer file.txt runs in 2MB

va] LexicalizedParser lp = LexicalizedParser.loadModel("edu ... Model("odu/stanford/inlp/models/lexparser/englishPCFG.ser.gz"),: String[] sent = ("This", "is", "an", "easy" incore", ":); : : reo parse = [b_apply(Arrays.

More Problems with Statistical NLP || kuro5hin.org Tags: rip, al, coursers, stanford, nip-class, clxy, nik, reinventing the wheel, ... Programming Assignment 6 for Stanford's nip-class is to implement a CKY parer. International control (19)(56)(11)(19)(21)

Tip: Use quotes ("like this") around a set of words in your query to match them exactly. Learn more

Delete this alert. Create another alert. Manage your alerts.

Spam filtering Another text classification task

From: "" <takworlld@hotmail.com>

Subject: real estate is the only way ... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

_____ Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

Categorization/Classification

Given:

Introduction to Information Retrieval

- A representation of a document d
 - Issue: how to represent text documents.
 - Usually some type of high-dimensional space bag of words
- A fixed set of classes:
 - $C = \{C_1, C_2, ..., C_J\}$
- Determine:
 - The category of *d*: $\gamma(d) \square C$, where $\gamma(d)$ is a classification function
 - We want to build classification functions ("classifiers").

Document Classification Test Data: Classes: ML Planing Semantics Garb.Coll. Multimedia GUI

Training Data:	learning intelligence algorithm reinforcement network	reasoning	programming semantics <u>language</u> proof	garbage collection memory optimization region		
-------------------	---	-----------	--	---	--	--

Classification Methods (1)

Manual classification

Introduction to Information Retrie

Introduction to Information Retrie

- Used by the original Yahoo! Directory
- Looksmart, about.com, ODP, PubMed
- Accurate when job is done by experts
- Consistent when the problem size and team is small
- Difficult and expensive to scale
 - Means we need automatic classification methods for big problems

Introduction to Information Retrieva

Introduction to Information Retrieva

Classification Methods (2)

- Hand-coded rule-based classifiers
 - One technique used by new agencies, intelligence agencies, etc.
 - Widely deployed in government and enterprise
 - Vendors provide "IDE" for writing such rules

Classification Methods (2)

- Hand-coded rule-based classifiers
 - Commercial systems have complex query languages
 - Accuracy is can be high if a rule has been carefully refined over time by a subject expert
 - Building and maintaining these rules is expensive

A Verity topic A complex classification rule

Introduction to Information

	art ACCRUE
	/author = 'femith'
tanie de Bulle e modifiere	/date = "30-Dec-01"
	/assotation * "Topic created
	by funith"
automatic topics	* 0.70 performing-arts ACCRUE
autoritation:	. 0.50 WORD
topic-datables modifier	/wordtext = ballet
mittel ration	** 0.50 STEM
spin-datation modifier	/wordtext = dance
avidan cetagia	** 0.50 WORD
hain-Jetalian modifier	/wordtest = opera
anilaborations	·· 0 30 WORD
hait-fehiliks mulifier	/wordtest = symphony
abbox.	 0.70 visual-arts &CCRUE
	·· 0 50 WORD
	/wordtest = painting
	** 0.58 WORD
	/wordtest = sculpture
*****	· 0.70 fils ACCRUE
	** 0.50 STEN
	/wordtest = film
ALC: NO.	** 0.50 motion-picture PHRASE
	*** 1.00 ¥CRD
	/wordtext * notion
	-wordtext = notion
	*** 1.00 ¥ORD
	*** 1.00 908D /wordtext * picture
atepi	
Altip	<pre>*** 1.00 908D /wordtest * picture *** 0.50 STEM /wordtest * novim</pre>
	<pre>*** 1.00 908D</pre>
	<pre>*** 1.80 VORD /vecatest = picture * 0.50 TIEN /vecatest = novim * 0.50 video ACCRUE ** 0.50 video ACCRUE *** 0.50 TIEN</pre>
	 a.00 006D -vectest = picture 0.50 STEN -vecatest = novie 0.50 stehe ACCRE a.0.50 STEN -vecatest = video

- Note:
 - maintenance issues (author, etc.)
 Hand-weighting of
 - terms

[Verity was bought by Autonomy, which was bought by HP ...]

Classification Methods (3): Supervised learning

- Given:
 - A document d
 - A fixed set of classes:
 - $C = \{c_1, c_2, \ldots, c_J\}$
 - A training set D of documents each with a label in C
- Determine:
 - A learning method or algorithm which will enable us to learn a classifier γ
 - For a test document *d*, we assign it the class $\gamma(d) \in C$

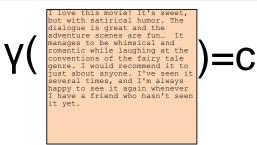
Classification Methods (3)

Supervised learning

Introduction to Information Retrieval

- Naive Bayes (simple, common) see video
- k-Nearest Neighbors (simple, powerful)
- Support-vector machines (new, generally more powerful)
- ... plus many other methods
- No free lunch: requires hand-classified training data
- But data can be built up (and refined) by amateurs
- Many commercial systems use a mixture of methods

The bag of words representation



Introduction to Information Retrieval

The bag of words representation

γ(great love recommend	2 2 1)=C
	laugh happy	1	/

Features

Introduction to Information Retrie

Introduction to Information Retrieval

Introduction to Information Retrieval

- Supervised learning classifiers can use any sort of feature
 - URL, email address, punctuation, capitalization, dictionaries, network features
- In the bag of words view of documents
 - We use only word features
 - we use all of the words in the text (not a subset)

Feature Selection: Why?

- Text collections have a large number of features
 10,000 1,000,000 unique words ... and more
- Selection may make a particular classifier feasible
- Some classifiers can't deal with 1,000,000 features
- Reduces training time

Introduction to Information Retrie

- Training time for some methods is quadratic or worse in the number of features
- Makes runtime models smaller and faster
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting

Feature Selection: Frequency

- The simplest feature selection method:
 - Just use the commonest terms
 - No particular foundation
 - But it make sense why this works
 - They're the words that can be well-estimated and are most often available as evidence
 - In practice, this is often 90% as good as better methods
 - Smarter feature selection future lecture

Evaluating Categorization

Introduction to Information Retrieval

- Evaluation must be done on test data that are independent of the training data
 - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- Easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set)

Evaluating Categorization

Introduction to Information Retrieval

- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: r/n where n is the total number of test docs and r is the number of test docs correctly classified

WebKB Experiment (1998)

- Classify webpages from CS departments into:
 student, faculty, course, project
- Train on ~5,000 hand-labeled web pages
 Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU) using Naïve Bayes
- Results

Introduction to Information Retrieval

	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79%	73%	89%	100%

Faculty			Students			Courses						
associate	0.00417		resume 0		0.00516		homework		0.004	13		
chair	0.0	0.00303		advisor 0		0.00456		syllabus		0.003	99	
member	0.0	0288			student	0.	.00387		assignments		0.003	88
ph	0.00	0287			working	0.	.00361		exam		0.003	85
director	0.00	0282			stuff	0.	00359		grading		0.00381	
fax.	0.0	0279			links	0.00355			midterm		0.003	74
journal	0.0	0271			homepage	0.	0.00345		pm		0.003	71
recent	0.0	0260			interests	0.	0.00332		instructor		0.003	70
received	0.00	.00258		personal	0.00332			due		0.003	64	
award	0.00	0.00250		favorite	0.00310		final		0.003	55		
Departments				Research Projects Others								
departmental 0.01246			investigator	18	0.00256		type	0.00164				
colloquia		0.01076		group		0.00250		jan	0.00148			
epartment	.	0.01045		members	0.00242		2	enter	0.0	00145		
seminars 0.00997			researchers		0.00241		random 0.		00142			
schedules 0.00879			laboratory		0.00238		program 0.0		00136			
webmaster 0.00879		develop		0.00201		net 0.0		00128				
events 0.00826			related		0.00200		time	0.0	00128			
facilities 0.00807			агра		0.00187		format	0.0	00124			
eople	eople 0.00772		affiliated	ĺ	0.0018	4	access	0.00117				
postgraduate 0.00764			project		0.00183		begin	0.0	00116			

SpamAssassin

Introduction to Information Retriev

- Naïve Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - Widely used in spam filters
 - But many features beyond words:
 black hole lists, etc.
 - particular hand-crafted text patterns

Introduction to Information Retrieval

SpamAssassin Features:

- Basic (Naïve) Bayes spam probability
- Mentions: Generic Viagra
- Regex: millions of (dollar) ((dollar) NN,NNN,NNN,NN)
- Phrase: impress ... girl
- Phrase: 'Prestigious Non-Accredited Universities'
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- Relay in RBL, http://www.mail-abuse.com/enduserinfo_rbl.html
- RCVD line looks faked
- http://spamassassin.apache.org/tests_3_3_x.html

Naive Bayes is Not So Naive

- Very fast learning and testing (basically just count words)
- Low storage requirements

Introduction to Information Retrieval

Introduction to Information Retrieval

- Very good in domains with many <u>equally</u> <u>important</u> features
- More robust to irrelevant features than many learning methods

Irrelevant features cancel each other without affecting results

Naive Bayes is Not So Naive

Introduction to Information Retrieval

- More robust to concept drift (changing class definition over time)
- Naive Bayes won 1st and 2nd place in KDD-CUP 97 competition out of 16 systems

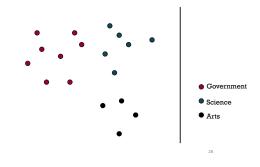
Goal: Financial services industry direct mail response prediction: Predict if the recipient of mail will actually respond to the advertisement – 750,000 records.

• A good dependable baseline for text classification (but not the best)!

Classification Using Vector Spaces

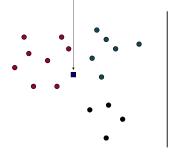
- In vector space classification, training set corresponds to a labeled set of points (equivalently, vectors)
- Premise 1: Documents in the same class form a contiguous region of space
- Premise 2: Documents from different classes don't overlap (much)
- Learning a classifier: build surfaces to delineate classes in the space

Documents in a Vector Space



Sec.14.

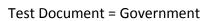
Test Document of what class?

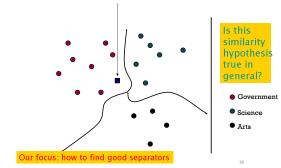


Government
 Science

Arts

29





Definition of centroid

$$\vec{m}(c) = \frac{1}{|D_c|} \mathop{a}\limits_{d \mid D_c} \vec{v}(d)$$

- Where *D_c* is the set of all documents that belong to class c and v(d) is the vector space representation of d.
- Note that centroid will in general not be a unit vector even when the inputs are unit vectors.

Rocchio classification

- Rocchio forms a simple representative for each class: the centroid/prototype
- Classification: nearest prototype/centroid
- It does not guarantee that classifications are consistent with the given training data

Rocchio classification

- Little used outside text classification
 - It has been used guite effectively for text classification
 - But in general worse than Naïve Bayes
- Again, cheap to train and test documents

k Nearest Neighbor Classification

- kNN = k Nearest Neighbor
- To classify a document d:
- Define k-neighborhood as the k nearest neighbors of d
- Pick the majority class label in the kneighborhood

Government

Science

Arts

- Learning: just store the labeled training examples D
- Testing instance x (under 1NN):
 - Compute similarity between x and all examples in D.
 - Assign *x* the category of the most similar example in *D*.
- Does not compute anything beyond storing the examples
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning
- Rationale of kNN: contiguity hypothesis

Example: k=6 (6NN)

6

k Nearest Neighbor

- Using only the closest example (1NN) subject to errors due to:
 - A single atypical example.
 - Noise (i.e., an error) in the category label of a single training example.
- More robust: find the k examples and return the majority category of these k
- k is typically odd to avoid ties; 3 and 5 are most common

kNN decision boundaries

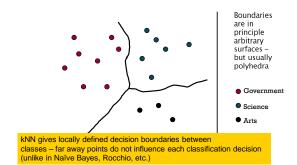
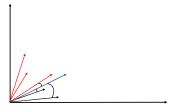
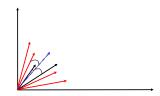


Illustration of 3 Nearest Neighbor for Text Vector Space



3 Nearest Neighbor vs. Rocchio

Nearest Neighbor tends to handle polymorphic categories better than Rocchio/NB.



kNN: Discussion

- No feature selection necessary
- No training necessary
- Scales well with large number of classes
 Don't need to train n classifiers for n classes
- Classes can influence each other
 - Small changes to one class can have ripple effect
- May be expensive at test time
- In most cases it's more accurate than NB or Rocchio

41

Let's test our intuition

- Can a bag of words always be viewed as a vector space?
- What about a bag of features?
- Can we always view a standing query as a region in a vector space?
- What about Boolean queries on terms?
- What do "rectangles" equate to?

Bias vs. capacity – notions and terminology

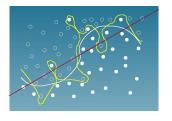
- Consider asking a botanist: Is an object a tree?
 - Too much capacity, low bias
 - Botanist who memorizes
 - Will always say "no" to new object (e.g., different # of leaves)
 - Not enough capacity, high bias
 - Lazy botanist
 - Says "yes" if the object is green
 - You want the middle ground

(Example due to C. Burges)

kNN vs. Naive Bayes

- Bias/Variance tradeoff
 - Variance ≈ Capacity
- kNN has high variance and low bias.
 Infinite memory
- NB has low variance and high bias.
 - Linear decision surface (hyperplane see later)

Bias vs. variance: Choosing the correct model capacity



Summary: Representation of Text Categorization Attributes

- Representations of text are usually very high dimensional
- High-bias algorithms that prevent overfitting should generally work best in high-dimensional space
- For most text categorization tasks, there are many relevant features and many irrelevant ones

Which classifier do I use for a given text classification problem?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the data?
 - How stable is the problem over time?
 - = For an unstable problem, its better to use a simple and robust classifier. 47