
1

Introduction to Information Retrieval

Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search

Chris Manning, Pandu Nayak and Prabhakar Raghavan

Crawling and Duplicates

Introduction to Information Retrieval

Today’s lecture

 Web Crawling

 (Near) duplicate detection

2

Introduction to Information Retrieval

Basic crawler operation

 Begin with known “seed” URLs

 Fetch and parse them

 Extract URLs they point to

 Place the extracted URLs on a queue

 Fetch each URL on the queue and
repeat

3

Introduction to Information Retrieval

Crawling picture

frontier

4

Introduction to Information Retrieval

Simple picture – complications

 Web crawling isn’t feasible with one machine
 All of the above steps distributed

 Malicious pages
 Spam pages

 Spider traps – incl dynamically generated

 Even non-malicious pages pose challenges
 Latency/bandwidth to remote servers vary

 Webmasters’ stipulations
 How “deep” should you crawl a site’s URL hierarchy?

 Site mirrors and duplicate pages

 Politeness – don’t hit a server too often

5

Introduction to Information Retrieval

What any crawler must do

 Be Polite: Respect implicit and explicit
politeness considerations

 Only crawl allowed pages

 Respect robots.txt (more on this shortly)

 Be Robust: Be immune to spider traps and
other malicious behavior from web servers

6

2

Introduction to Information Retrieval

What any crawler should do

 Be capable of distributed operation: designed to
run on multiple distributed machines

 Be scalable: designed to increase the crawl rate
by adding more machines

 Performance/efficiency: permit full use of
available processing and network resources

7

Introduction to Information Retrieval

What any crawler should do

 Fetch pages of “higher quality” first

 Continuous operation: Continue fetching
fresh copies of a previously fetched page

 Extensible: Adapt to new data formats,
protocols

8

Introduction to Information Retrieval

Updated crawling picture

9

Introduction to Information Retrieval

URL frontier

 Can include multiple pages from the same
host

 Must avoid trying to fetch them all at the
same time

 Must try to keep all crawling threads busy

10

Introduction to Information Retrieval

Explicit and implicit politeness

 Explicit politeness: specifications from
webmasters on what portions of site can be
crawled

 robots.txt

 Implicit politeness: even with no
specification, avoid hitting any site too
often

11

Introduction to Information Retrieval

Robots.txt

 Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994

 www.robotstxt.org/wc/norobots.html

 Website announces its request on what can(not)
be crawled

 For a server, create a file /robots.txt

 This file specifies access restrictions

12

http://www.robotstxt.org/wc/norobots.html

3

Introduction to Information Retrieval

Robots.txt example

 No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

13

Introduction to Information Retrieval

Processing steps in crawling

 Pick a URL from the frontier

 Fetch the document at the URL

 Parse the URL

 Extract links from it to other docs (URLs)

 Check if URL has content already seen

 If not, add to indexes

 For each extracted URL

 Ensure it passes certain URL filter tests

 Check if it is already in the frontier (duplicate URL
elimination)

14

Introduction to Information Retrieval

Basic crawl architecture

15

Introduction to Information Retrieval

DNS (Domain Name Server)

 A lookup service on the internet

 Given a URL, retrieve its IP address

 Service provided by a distributed set of servers – thus,
lookup latencies can be high (even seconds)

 Common OS implementations of DNS lookup are
blocking: only one outstanding request at a time

 Solutions

 DNS caching

 Batch DNS resolver – collects requests and sends them out
together

16

Introduction to Information Retrieval

Parsing: URL normalization

 When a fetched document is parsed, some of the
extracted links are relative URLs

 E.g., http://en.wikipedia.org/wiki/Main_Page has a
relative link to /wiki/Wikipedia:General_disclaimer
which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

 During parsing, must normalize (expand) such relative
URLs

17

Introduction to Information Retrieval

Content seen?

 Duplication is widespread on the web

 If the page just fetched is already in
the index, do not further process it

 This is verified using document
fingerprints or shingles

 Second part of this lecture

18

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

4

Introduction to Information Retrieval

Filters and robots.txt

 Filters – regular expressions for URLs to
be crawled/not

 Once a robots.txt file is fetched from a
site, need not fetch it repeatedly

 Doing so burns bandwidth, hits web
server

 Cache robots.txt files

19

Introduction to Information Retrieval

Duplicate URL elimination

 For a non-continuous (one-shot) crawl, test
to see if an extracted+filtered URL has
already been passed to the frontier

 For a continuous crawl – see details of
frontier implementation

20

Introduction to Information Retrieval

Distributing the crawler

 Run multiple crawl threads, under different
processes – potentially at different nodes

 Geographically distributed nodes

 Partition hosts being crawled into nodes

 Hash used for partition

 How do these nodes communicate and share
URLs?

21

Introduction to Information Retrieval

Communication between nodes

 Output of the URL filter at each node is sent to the
Dup URL Eliminator of the appropriate node

’

22

Introduction to Information Retrieval

URL frontier: two main considerations

 Politeness: do not hit a web server too frequently

 Freshness: crawl some pages more often than
others
 E.g., pages (such as News sites) whose content

changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many links out of
a page go to its own site, creating a burst of
accesses to that site.)

23

Introduction to Information Retrieval

Politeness – challenges

 Even if we restrict only one thread to fetch
from a host, can hit it repeatedly

 Common heuristic: insert time gap between
successive requests to a host that is >> time
for most recent fetch from that host

24

5

Introduction to Information Retrieval

B

URL frontier: Mercator scheme

K

25

Introduction to Information Retrieval

Mercator URL frontier

 URLs flow in from the top into the frontier

 Front queues manage prioritization

 Back queues enforce politeness

 Each queue is FIFO

26

Introduction to Information Retrieval

Front queues

K

27

Introduction to Information Retrieval

Front queues

 Prioritizer assigns to URL an integer priority
between 1 and K

 Appends URL to corresponding queue

 Heuristics for assigning priority

 Refresh rate sampled from previous crawls

 Application-specific (e.g., “crawl news sites more
often”)

28

Introduction to Information Retrieval

Biased front queue selector

 When a back queue requests a URL (in a
sequence to be described): picks a front queue
from which to pull a URL

 This choice can be round robin biased to queues
of higher priority, or some more sophisticated
variant

 Can be randomized

29

Introduction to Information Retrieval

Back queues

B

30

6

Introduction to Information Retrieval

Back queue invariants

 Each back queue is kept non-empty while the
crawl is in progress

 Each back queue only contains URLs from a
single host

 Maintain a table from hosts to back queues

B

31

Introduction to Information Retrieval

Back queue heap

 One entry for each back queue

 The entry is the earliest time te at which the host
corresponding to the back queue can be hit again

 This earliest time is determined from

 Last access to that host

 Any time buffer heuristic we choose

32

Introduction to Information Retrieval

Back queue processing

 A crawler thread seeking a URL to crawl:

 Extracts the root of the heap

 Fetches URL at head of corresponding back queue q
(look up from table)

 Checks if queue q is now empty – if so, pulls a URL v
from front queues

 If there’s already a back queue for v’s host, append v to q
and pull another URL from front queues, repeat

 Else add v to q

 When q is non-empty, create heap entry for it
33

Introduction to Information Retrieval

Number of back queues B

 Keep all threads busy while respecting politeness

 Mercator recommendation: three times as many
back queues as crawler threads

34

Introduction to Information Retrieval

Introduction to

Information Retrieval

Near duplicate
document detection

35

Introduction to Information Retrieval

Duplicate documents

 The web is full of duplicated content

 Strict duplicate detection = exact match

 Not as common

 But many, many cases of near duplicates

 E.g., Last modified date the only difference
between two copies of a page

7

Introduction to Information Retrieval

Duplicate/Near-Duplicate Detection

 Duplication: Exact match can be detected with
fingerprints

 Near-Duplication: Approximate match

 Overview

 Compute syntactic similarity with an edit-distance
measure

 Use similarity threshold to detect near-duplicates

 E.g., Similarity > 80% => Documents are “near duplicates”

 Not transitive though sometimes used transitively

Introduction to Information Retrieval

Computing Similarity

 Features:

 Segments of a document (natural or artificial breakpoints)

 Shingles (Word N-Grams)

 a rose is a rose is a rose → 4-grams are

 a_rose_is_a

 rose_is_a_rose

 is_a_rose_is

 a_rose_is_a

 Similarity Measure between two docs (= sets of shingles)

 Set intersection

 Specifically (Size_of_Intersection / Size_of_Union)

Introduction to Information Retrieval

Shingles + Set Intersection

 Computing exact set intersection of shingles
between all pairs of documents is
expensive/intractable

 Approximate using a cleverly chosen subset of shingles
from each (a sketch)

 Estimate (size_of_intersection / size_of_union)
based on a short sketch

Introduction to Information Retrieval

Sketch of a document

 Create a “sketch vector” (of size ~200) for
each document

 Documents that share ≥ t (say 80%)
corresponding vector elements are deemed
near duplicates

 For doc D, sketchD[i] is as follows:

 Let f map all shingles in the universe to 0..2m
(e.g., f = fingerprinting)

 Let pi be a random permutation on 0..2m

 Pick MIN {pi(f(s))} over all shingles s in D

Introduction to Information Retrieval

Computing Sketch[i] for Doc1

Document 1

264

264

264

264

Start with 64-bit f(shingles)

Permute on the number line

with pi

Pick the min value

Introduction to Information Retrieval

Test if Doc1.Sketch[i] = Doc2.Sketch[i]

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: p1, p2,… p200

8

Introduction to Information Retrieval

However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of
Doc1 and Doc2 is common to both (i.e., lies in the
intersection)

Claim: This happens with probability
 Size_of_intersection / Size_of_union

Introduction to Information Retrieval

Set Similarity of sets Ci , Cj

 View sets as columns of a matrix A; one row for each
element in the universe. aij = 1 indicates presence of
item i in set j

 Example

ji

ji

ji
CC

CC
)C,Jaccard(C






C1 C2

 0 1
 1 0
 1 1 Jaccard(C1,C2) = 2/5 = 0.4
 0 0
 1 1
 0 1

Introduction to Information Retrieval

Key Observation

 For columns Ci, Cj, four types of rows

 Ci Cj

 A 1 1

 B 1 0

 C 0 1

 D 0 0

 Overload notation: A = # of rows of type A

 Claim

CBA

A
)C,Jaccard(C ji




Introduction to Information Retrieval

“Min” Hashing

 Randomly permute rows

 Hash h(Ci) = index of first row with 1 in column
Ci

 Surprising Property

 Why?

 Both are A/(A+B+C)

 Look down columns Ci, Cj until first non-Type-D row

 h(Ci) = h(Cj)  type A row

   jiji C,CJaccard)h(C)h(C P 

Introduction to Information Retrieval

Final notes

 Shingling is a randomized algorithm

 Our analysis did not presume any probability model on the
inputs

 It will give us the right (wrong) answer with some
probability on any input

 We’ve described how to detect near duplication in a
pair of documents

 In “real life” we’ll have to concurrently look at many
pairs

 Use Locality Sensitive Hashing for this

47

