Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search Christopher Manning and Pandu Nayak

Lecture 13: Latent Semantic Indexing

Today's topic

Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)
 - Clothes, movies, politics, ...
- Can we represent the term-document space by a lower dimensional latent space?

Linear Algebra Background

Eigenvalues & Eigenvectors

• **Eigenvectors** (for a square $m \times m$ matrix S)

• How many eigenvalues are there at most? $\mathbf{S}\mathbf{v} = \lambda\mathbf{v} \iff (\mathbf{S} - \lambda\mathbf{I})\,\mathbf{v} = \mathbf{0}$ only has a non-zero solution if $|\mathbf{S} - \lambda\mathbf{I}| = 0$ This is a mth order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - can be complex even though \mathbf{S} is real.

Matrix-vector multiplication

$$S = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $S = \begin{vmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ has eigenvalues 30, 20, 1 with corresponding eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.

Any vector (say
$$x = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$
) can be viewed as a combination of the eigenvectors: $\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$

Matrix-vector multiplication

Thus a matrix-vector multiplication such as Sx (S, x as in the previous slide) can be rewritten in terms of the eigenvalues/vectors:

$$Sx = S(2v_1 + 4v_2 + 6v_3)$$

$$Sx = 2Sv_1 + 4Sv_2 + 6Sv_3 = 2\lambda_1v_1 + 4\lambda_2v_2 + 6\lambda_3v_3$$

$$Sx = 60v_1 + 80v_2 + 6v_3$$

Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

Matrix-vector multiplication

- Suggestion: the effect of "small" eigenvalues is small.
- If we ignored the smallest eigenvalue (1), then instead of

$$\begin{pmatrix} 60 \\ 80 \\ 6 \end{pmatrix}$$
 we would get $\begin{pmatrix} 60 \\ 80 \\ 0 \end{pmatrix}$

These vectors are similar (in cosine similarity, etc.)

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}} v_{\{1,2\}}, \text{ and } \lambda_1 \neq \lambda_2 \Rightarrow v_1 \cdot v_2 = 0$$

All eigenvalues of a real symmetric matrix are real.

for complex
$$\lambda$$
, if $|S - \lambda I| = 0$ and $S = S^T \Rightarrow \lambda \in \Re$

All eigenvalues of a positive semidefinite matrix are non-negative

$$\forall w \in \Re^n, w^T S w \ge 0$$
, then if $S v = \lambda v \Rightarrow \lambda \ge 0$

Example

Let

$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 Real, symmetric.

Then

$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow$$

$$|S - \lambda I| = (2 - \lambda)^2 - 1 = 0.$$

- The eigenvalues are 1 and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real):

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 Plug in these values and solve for eigenvectors.

eigenvectors.

Eigen/diagonal Decomposition

- Let $S \in \mathbb{R}^{m \times m}$ be a square matrix with m linearly independent eigenvectors (a "non-defective" matrix)
- Theorem: Exists an eigen decomposition diagonal

$$\mathbf{S} = \mathbf{U} \dot{\mathbf{\Lambda}} \mathbf{U}^{-1}$$

(cf. matrix diagonalization theorem)

- Columns of *U* are the eigenvectors of *S*
- Diagonal elements of Λ are eigenvalues of S

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \geq \lambda_{i+1}$$

Diagonal decomposition: why/how

Let *U* have the eigenvectors as columns:

$$U = \left[\begin{array}{ccc} v_1 & \dots & v_n \end{array} \right]$$

Then, **SU** can be written

$$SU = S \left[\begin{array}{cccc} v_1 & \dots & v_n \end{array} \right] = \left[\begin{array}{cccc} \lambda_1 v_1 & \dots & \lambda_n v_n \end{array} \right] = \left[\begin{array}{cccc} v_1 & \dots & v_n \end{array} \right] \left[\begin{array}{cccc} \lambda_1 & \dots & \lambda_n \end{array} \right]$$

Thus $SU=U\Lambda$, or $U^{-1}SU=\Lambda$

And $S=U\Lambda U^{-1}$.

Diagonal decomposition - example

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; \lambda_1 = 1, \lambda_2 = 3.$$

The eigenvectors
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ form $U = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

Inverting, we have
$$U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 Recall $UU^{-1} = 1$.

Then,
$$S=U\Lambda U^{-1}=\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}\begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Example continued

Let's divide \boldsymbol{U} (and multiply \boldsymbol{U}^{-1}) by $\sqrt{2}$ Then, $\boldsymbol{S} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ \boldsymbol{Q} $\boldsymbol{\Lambda}$ $\boldsymbol{Q}^{-1} = \boldsymbol{Q}^{T}$

Why? Stay tuned ...

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: There exists a (unique) eigen decomposition $S = Q\Lambda Q^T$
- where Q is orthogonal:
 - $Q^{-1} = Q^{T}$
 - Columns of Q are normalized eigenvectors
 - Columns are orthogonal.
 - (everything is real)

Exercise

 Examine the symmetric eigen decomposition, if any, for each of the following matrices:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \quad \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Time out!

- I came to this class to learn about text retrieval and mining, not to have my linear algebra past dredged up again ...
 - But if you want to dredge, Strang's Applied Mathematics is a good place to start.
- What do these matrices have to do with text?
- Recall M × N term-document matrices ...
- But everything so far needs square matrices so ...

Similarity -> Clustering

- We can compute the similarity between two document vector representations x_i and x_i by $x_i x_i^T$
- Let $X = [x_1 ... x_N]$
- Then XX^T is a matrix of similarities
- XX^T is symmetric
- So $XX^T = Q\Lambda Q^T$
- So we can decompose this similarity space into a set of orthonormal basis vectors (given in Q) scaled by the eigenvalues in Λ
 - If you scale and center the data, this leads to PCA (Principal Components Analysis)

Singular Value Decomposition

For an $M \times N$ matrix \mathbf{A} of rank r there exists a factorization (Singular Value Decomposition = \mathbf{SVD}) as follows:

 $A = U \sum V^{T}$ $M \times M \quad M \times N \quad V \text{ is } N \times N$

(Not proven here.)

Singular Value Decomposition

$$A = U \sum V^{T}$$

$$M \times M \quad M \times N \quad V \text{ is } N \times N$$

- $AA^T = Q\Lambda Q^T$
- $AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = (U\Sigma V^{T})(V\Sigma U^{T}) = U\Sigma^{2}U^{T}$

The columns of U are orthogonal eigenvectors of AA^{T} .

The columns of V are orthogonal eigenvectors of A^TA .

Eigenvalues $\lambda_1 \dots \lambda_r$ of AA^T are the eigenvalues of A^TA .

$$\sigma_{i} = \sqrt{\lambda_{i}}$$

$$\Sigma = diag(\sigma_{1}...\sigma_{r})$$
Singular values

Singular Value Decomposition

Illustration of SVD dimensions and sparseness

SVD example

Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus M=3, N=2. Its SVD is

$$\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem: Find A_k of rank k such that

$$A_k = \min_{X: rank(X) = k} \left\| A - X \right\|_F \leftarrow Frobenius \ norm \\ \left\| \mathbf{A} \right\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} \,.$$

 A_k and X are both $m \times n$ matrices. Typically, want k << r.

Low-rank Approximation

Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, ..., \sigma_k, 0, ..., 0) V^T$$

$$set smallest r-k$$

$$singular values to zero$$

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T - column notation: sum of rank 1 matrices$$

Reduced SVD

- If we retain only k singular values, and set the rest to 0, then we don't need the matrix parts in color
- Then Σ is $k \times k$, U is $M \times k$, V^T is $k \times N$, and A_k is $M \times N$
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and usual form for computational applications
- It's what Matlab gives you

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X:rank(X)=k} ||A - X||_F = ||A - A_k||_F = \sigma_{k+1}$$

where the σ_i are ordered such that $\sigma_i \ge \sigma_{i+1}$. Suggests why Frobenius error drops as k increases.

SVD Low-rank approximation

- Whereas the term-doc matrix A may have M=50000,
 N=10 million (and rank close to 50000)
- We can construct an approximation A_{100} with rank 100.
 - Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Indexing

C. Eckart, G. Young, *The approximation of a matrix by another of lower rank*. Psychometrika, 1, 211-218, 1936.

Latent Semantic Indexing via the SVD

What it is

- From term-doc matrix A, we compute the approximation A_k
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of k << r dimensions
 - These dimensions are not the original axes
- But why?

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
 - Document clustering
 - Relevance feedback (modifying query vector)
- Geometric foundation

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The vector space model is unable to discriminate between different meanings of the same word.

$$sim_{true}(d, q) < cos(\angle(\vec{d}, \vec{q}))$$

Problems with Lexical Semantics

- Synonymy: Different terms may have an identical or a similar meaning (weaker: words indicating the same topic).
- No associations between words are made in the vector space representation.

$$sim_{true}(d, q) > cos(\angle(\vec{d}, \vec{q}))$$

Polysemy and Context

Document similarity on single word level: polysemy

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of documentterm matrix (typical rank 100–300)
- General idea
 - Map documents (and terms) to a low-dimensional representation.
 - Design a mapping such that the low-dimensional space reflects semantic associations (latent semantic space).
 - Compute document similarity based on the inner product in this latent semantic space

Goals of LSI

- LSI takes documents that are semantically similar (= talk about the same topics), but are not similar in the vector space (because they use different words) and re-represents them in a reduced vector space in which they have higher similarity.
- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

Latent Semantic Analysis

Latent semantic space: illustrating example

courtesy of Susan Dumais

Performing the maps

- Each row and column of A gets mapped into the kdimensional LSI space, by the SVD.
- Claim this is not only the mapping with the best (Frobenius error) approximation to A, but in fact improves retrieval.
- A query q is also mapped into this space, by

$$q_k = q^T U_k \Sigma_k^{-1}$$

Query NOT a sparse vector.

A simple example term-document matrix (binary)

C	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

• Example of $C = U\Sigma V^T$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

• Example of C = $U\Sigma V^T$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00 1.59 0.00 0.00 0.00	0.00	0.00	0.39

• Example of $C = U\Sigma V^T$: The matrix V^T

V^T	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

LSA Example: Reducing the dimension

U		1	2	3	4	5	
ship	-0.4	14 –	-0.30	0.00	0.00	0.00	
boat	-0.1	l3 –	-0.33	0.00	0.00	0.00	
ocear	n -0.4	18 –	-0.51	0.00	0.00	0.00	
wood	l	70	0.35	0.00	0.00	0.00	
tree	-0.2	26	0.65	0.00	0.00	0.00	
Σ_2	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00	_	
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^T	d_1		d_2	d_3	d_4	d_5	d_6
1	-0.75	-0 .	28 –	0.20	-0.45	-0.33	-0.12
2	-0.29	-0.	53 –	-0.19	0.63	0.22	0.41
3	0.00	0.	00	0.00	0.00	0.00	0.00
4	0.00	0.	00	0.00	0.00	0.00	0.00
5	0.00	0.	00	0.00	0.00	0.00	0.00

Original matrix C vs. reduced $C_2 = U\Sigma_2V^T$

C	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

					d_5	
ship	0.85	0.52	0.28	0.13	0.21 -0.02	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16 0.62	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Why the reduced dimension matrix is better

- Similarity of d2 and d3 in the original space: 0.
- Similarity of d2 and d3 in the reduced space: 0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + -0.39 * -0.08 ≈ 0.52
- Typically, LSA increases recall and hurts precision

Empirical evidence

- Experiments on TREC 1/2/3 Dumais
- Lanczos SVD code (available on netlib) due to Berry used in these experiments
 - Running times of ~ one day on tens of thousands of docs [still an obstacle to use!]
- Dimensions various values 250-350 reported.
 Reducing k improves recall.
 - (Under 200 reported unsatisfactory)
- Generally expect recall to improve what about precision?

Empirical evidence

- Precision at or above median TREC precision
 - Top scorer on almost 20% of TREC topics
- Slightly better on average than straight vector spaces
- Effect of dimensionality:

Dimensions	Precision
250	0.367
300	0.371
346	0.374

Failure modes

- Negated phrases
 - TREC topics sometimes negate certain query/ terms phrases – precludes simple automatic conversion of topics to latent semantic space.
- Boolean queries
 - As usual, freetext/vector space syntax of LSI queries precludes (say) "Find any doc having to do with the following 5 companies"
- See Dumais for more.

But why is this clustering?

- We've talked about docs, queries, retrieval and precision here.
- What does this have to do with clustering?
- Intuition: Dimension reduction through LSI brings together "related" axes in the vector space.

N documents

= Homogeneous non-zero blocks.

N documents

Vocabulary partitioned into *k* topics (clusters); each doc discusses only one topic.

N documents

= non-zero entries.

Likely there's a good rank-*k* approximation to this matrix.

Simplistic picture

Some wild extrapolation

- The "dimensionality" of a corpus is the number of distinct topics represented in it.
- More mathematical wild extrapolation:
 - if A has a rank k approximation of low Frobenius error, then there are no more than k distinct topics in the corpus.

LSI has many other applications

- In many settings in pattern recognition and retrieval, we have a feature-object matrix.
 - For text, the terms are features and the docs are objects.
 - Could be opinions and users ...
 - This matrix may be redundant in dimensionality.
 - Can work with low-rank approximation.
 - If entries are missing (e.g., users' opinions), can recover if dimensionality is low.
- Powerful general analytical technique
 - Close, principled analog to clustering methods.

Resources

- IIR 18
- Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, Richard Harshman. 1990. Indexing by latent semantic analysis. JASIS 41(6):391—407.