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Introduction to Information Retrieval Ch. 18

Today’s topic

Latent Semantic Indexing

" Term-document matrices are very large
= But the number of topics that people talk
about is small (in some sense)
= Clothes, movies, politics, ...
= Can we represent the term-document

space by a lower dimensional latent
space?
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Linear Algebra
Background
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Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

Sv = Av Example
AN )
ot etsoriecnr et ¢ DO =020

veR"#0 AER

= How many eigenvalues are there at most?
Sv=Av < (S—A)v=0

only has a non-zero solution if |S — M| =0

This is a mth order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.
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Matrix-vector multiplication

30 0 O]

s—|o 20 ol haseigenvalues 30, 20, 1 with
corresponding eigenvectors

0 0 1
I 0 0
vy, =10 v, = |1 v, =10
0 0 I

On each eigenvector, S acts as a multiple of the identity

matrix: but as a different multiple on each.

2
4
6

) can be viewed as a combination of
X=2v,+4v,+ 6v;

Any vector (say x=
the eigenvectors:
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Matrix-vector multiplication

* Thus a matrix-vector multiplication such as Sx (S, x as

in the previous slide) can be rewritten in terms of the
eigenvalues/vectors:

Sx=82v, +4v, +6v,)
Sx=28v, +45v, +6Sv,=2Av, + 4A v, + 6A,V,
Sx =60v, + 80v, + 6v,

= Even though x is an arbitrary vector, the action of S
on x is determined by the eigenvalues/vectors.
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Matrix-vector multiplication

Sec. 18.1

= Suggestion: the effect of “small” eigenvalues is small.

= |f we ignored the smallest eigenvalue (1), then

instead of

(60)
80

\ 0

we would get

(60)
80

\ 0

= These vectors are similar (in cosine similarity, etc.)
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Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

SV{LZ} = Ago Vi and A, =A, =v *v, =0

All eigenvalues of a real symmetric matrix are real.

for complex A, if ‘S—)LI =0and S=S"'=1EN

All eigenvalues of acpositive semidefinitéymatrix
are non-negati

VweER" W Sw=0, thenif Sv=Av=A1=0
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Sec. 18.1

Example
" Let o _ 2 1 |~——Real, symmetric.
- 1 2 -
2-A 1
= Then S—-Al = =
1 2-A

The eigenvectors are orthog

|

1
-1

1S—Al|=(2=A)>=1=0.

The eigenvalues are 1 and 3 (nonnegative, real).

I

1
1

|

al (and real):

Plug in these values
and solve for
eigenvectors.
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Eigen/diagonal Decomposition

" LetS € R™*" be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

[ diagona for
distinct

S =UAU! .
elgen-

= (cf. matrix diagonalization theorem) values

= Theorem: Exists an eigen decomposmo ] Unique

= Columns of U are the eigenvectors of S

= Diagonal elements of A are eigenvalues of S
A =diag(A1, ..., Am), A = A
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Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U=| v, .. Vv

Then, SU can be written

SU

S| vi .. v, |=| Av, .. Av =] v, ..V

n

Thus SU=UA, or U 'SU=A
And S=UAU"'.




Introduction to Information Retrieval Sec. 18.1

Diagonal decomposition - example

Recall § = ? ; _§7\1=1’)Lz=3'
The eigenvectors 1 and| 1 |form U= bl
| 1 i -1 1 i
| Lol oc2 Recall
Inverting, we h U™ =
nverting, we have | 1/2 1/2 <,I: Uu-! =1.
o] tl1 ol1/2 =172
en, 3= =
-1 1][0 3| /2 1/2
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Example continued

Sec. 18.1

Let’s divide U (and multiply U-7) bY\/E

Then, $=

/42 142 [ 1
1/J2 1/42 || O
Q A

Why? Stay tuned ...

w O

W 1/v2 =1/42
| U2 12
(Q'=QT)
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Symmetric Eigen Decomposition

= [fS e R™*™is a symmetric matrix:
* Theorem: There exists a (unique) eigen
decomposition S =0AQ"
= where Q is orthogonal:
= Q'=QT
= Columns of Q are normalized eigenvectors

= Columns are orthogonal.

= (everything is real)
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Exercise

Sec. 18.1

= Examine the symmetric eigen decomposition, if any,
for each of the following matrices:

0 1
-1 0O

1 2]

-2 3
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Time out!

| came to this class to learn about text retrieval and
mining, not to have my linear algebra past dredged
up again ...
= But if you want to dredge, Strang’s Applied Mathematics is
a good place to start.

What do these matrices have to do with text?

Recall M x N term-document matrices ...

But everything so far needs square matrices — so ...



Introduction to Information Retrieval

Similarity = Clustering

We can compute the similarity between two
document vector representations x; and x; by xx;'

Let X = [x; ... X,]

Then XX"is a matrix of similarities
XX" is symmetric

So XX"=QAQ'

So we can decompose this similarity space into a set
of orthonormal basis vectors (given in Q) scaled by
the eigenvalues in A

= |If you scale and center the data, this leads to PCA
(Principal Components Analysis) 17
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Singular Value Decomposition

For an M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)

foll :
as follows A_USYT

A RN
MxM || MxN Vis NxN

(Not proven here.)



Introduction to Information Retrieval Sec. 18.2

Singular Value Decomposition

A=UXV"'
A BN
MxM || MxN | | Vis NxN
= AAT=QAQT

= AAT = (UZVT)(UZVT)T = (UZVT)(VZUT) = Uz2UT
The columns of U are orthogonal eigenvectors of AA'.

The columns of V are orthogonal eigenvectors of A’A.

Eigenvalues A, ... A, of AAT are the eigenvalues of A'A.

0. =7

2= diag(Gl...Or)<ﬁ Singular values
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Singular Value Decomposition

= [llustration of SVD dimensions and sparseness
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SVD example

1 -1
Let A= 0 1
1 O

Thus M=3, N=2. Its SVD is

0 2/J6 1/3 o 5 Us
1/2 =1/46  1/43 0 3 1/; l/j_
1/2 1746 =1/43 0 0 V2 -UN2

Typically, the singular values arranged in decreasing order.
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Low-rank Approximation

= SVD can be used to compute optimal low-rank
approximations.

= Approximation problem: Find A, of rank k such that

Ak = IIliIl HA - XHF <—— Frobenius norm

Xrank(X)=k
Al = J ZZ jasi|” -

=1 j=1

A, and X are both mxn matrices.
Typically, want k << r.
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Low-rank Approximation

= Solution via SVD
A, =U diag(o,,...,0,,0,..,0) V'

H—/

set smallest r-k
singular values to zero

(% * x  x x

* * * * * x W ® * x  x * *

¥ % * % x| =]%x % . I [ % * % %]

* * * * * x o - x ox * *
- : - ~ E? - ; - X - . ~ x J
Al z ~ ~ W,

VT
k T .
Ak = Ouv, . column notation: sum

i=1 bt of rank 1 matrices
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Reduced SVD

= |f we retain only k singular values, and set the rest to
0, then we don’t need the matrix parts in color

* Then X is kxk, U is Mixk, VT is kxN, and A, is MIxN
= This is referred to as the reduced SVD

" |tis the convenient (space-saving) and usual form for
computational applications

" |t’s what Matlab gives you

B - - - - - 7
* * * * - - - - - - - -
* ok ¥ k| = | * x . * ok Kk kx|
* * * * - - ~ = » » ~
N~ ~ . N /
. [~ » ® ~

*
*
%
R
A
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Approximation error

= How good (bad) is this approximation?

" |t's the best possible, measured by the Frobenius
norm of the error:

min [A-X], =[A-A], =0

Xrank(X)=k

where the o, are ordered such that o, = 0., ;.
Suggests why Frobenius error drops as k increases.
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SVD Low-rank approximation

= Whereas the term-doc matrix A may have M=50000,
N=10 million (and rank close to 50000)

= We can construct an approximation A,,, with rank
100.

= Of all rank 100 matrices, it would have the lowest
Frobenius error.

= Great ... but why would we??
= Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.
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Latent Semantic
Indexing via the SVD
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What it is

" From term-doc matrix A, we compute the
approximation A,

* There is a row for each term and a column
for each docin A,

" Thus docs live in a space of k<<r dimensions
" These dimensions are not the original axes

= But why?
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Vector Space Model: Pros

= Automatic selection of index terms

= Partial matching of queries and documents (dealing
with the case where no document contains all search terms)

= Ranking according to similarity score (dealing with large
result sets)

= Term weighting schemes (improves retrieval performance)

= Various extensions
= Document clustering
= Relevance feedback (modifying query vector)

= Geometric foundation



Introduction to Information Retrieval

Problems with Lexical Semantics

"
= Ambiguity and association in natural language

= Polysemy: Words often have a multitude of
meanings and different types of usage (more
severe in very heterogeneous collections).

= The vector space model is unable to discriminate
between different meanings of the same word.

Simtrue(d7 Q)< COS(L<d_; q))
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Problems with Lexical Semantics

= Synonymy: Different terms may have an
identical or a similar meaning (weaker:
words indicating the same topic).

= No associations between words are
made in the vector space representation.

—

Simtrue(d7 Q)> COS(Z(CL @)
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Polysemy and Context

" Document similarity on single word level: polysemy
and context ¢

ring
jupiter
"] space
meaning 1 voyager

saturn

meaning 2 car
company
contribution to similarity, if dodge
used in 15t meaning, but not ford

if in 2nd
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Latent Semantic Indexing (LSI)

=" Perform a low-rank approximation of document-
term matrix (typical rank 100-300)

= General idea
= Map documents (and terms) to a low-dimensional
representation.

= Design a mapping such that the low-dimensional space
reflects semantic associations (latent semantic space).

= Compute document similarity based on the inner product
in this latent semantic space



Introduction to Information Retrieval Sec. 18.4

Goals of LS|

= LSI takes documents that are semantically similar (=
talk about the same topics), but are not similar in the
vector space (because they use different words) and
re-represents them in a reduced vector space in
which they have higher similarity.

= Similar terms map to similar location in low
dimensional space

= Noise reduction by dimension reduction
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Latent Semantic Analysis

= Latent semantic space: illustrating example

O Doc1

Laptop D
Portable [] Computer []

O Doc3

-
Q
©
T
O
o

Display []

LSI Dimension 2

O Doc 2

LS| Dimension 1

courtesy of Susan Dumais
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Performing the maps

= Each row and column of A gets mapped into the k-
dimensional LS| space, by the SVD.

= Claim —this is not only the mapping with the best
(Frobenius error) approximation to A, but in fact

improves retrieval.
= A query g is also mapped into this space, by

qr = CITUkZ?

= Query NOT a sparse vector.
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LSA Example

= Asimple example term-document matrix (binary)

C di do d3 dy dy dg
ship 1 0 1 0 0 O
boat [0 1 0 0 O O
ocean |1 1 O O O O
wood |1 O O 1 1 O
tree o 0 0 1 O0 1
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LSA Example

= Example of C = UZV': The matrix U

U 1 2 3 4 5
ship —0.44 —-0.30 0.57 0.58 0.25
boat | —0.13 —-0.33 —-0.59 0.00 0.73
ocean | —0.48 —-0.51 —-0.37 0.00 -0.61
wood | —0.70 0.35 0.15 —-0.58 0.16
tree —0.26 0.6 —-041 0.58 —-0.09

38
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LSA Example

= Example of C = UZV': The matrix 2

)X

1

2

3

4

5

T A LW N =

2.16
0.00
0.00
0.00
0.00

0.00
1.59
0.00
0.00
0.00

0.00
0.00
1.28
0.00
0.00

0.00
0.00
0.00
1.00
0.00

0.00
0.00
0.00
0.00
0.39
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LSA Example

= Example of C = UZV': The matrix V'
VT d1 d2 d3 d4 d5 d6
1 —0.75 -0.28 —-0.20 —-0.45 -0.33 -0.12
2 —0.29 —-0.53 -0.19 0.63 0.22 0.41
3 0.28 —0.75 045 —-0.20 0.12 —-0.33
4 0.00 0.00 0.58 0.00 —-0.58 0.58
5 —0.53 0.29 0.63 0.19 041 —-0.22

40



LSA Example: Reducing the dimension

Introduction to Information Retrieval

U 1 2 3 4 5
ship —0.44 —-0.30 0.00 0.00 0.00
boat | —0.13 —-0.33 0.00 0.00 0.00
ocean | —0.48 —-0.51 0.00 0.00 0.00
wood | —0.70 0.35 0.00 0.00 0.00
tree —0.26 0.65 0.00 0.00 0.00

2o |1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00

2 0.00 159 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 o0.00

4 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00
vT d1 do ds ds ds de
1 —-0.7%% -0.28 —-0.20 -0.45 -0.33 -0.12
2 —0.29 -0.53 -0.19 0.63 0.22 0.41
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

41
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Original matrix C vs. reduced C, = UZ,V'

C d d» di3 ds ds dg

ship 1 0 1 0 0 O

boat | O 1 0 0 0 O

ocean | 1 1 0 O 0 O

wood |1 O O 1 1 O

tree O 0 O 1 O 1

Co dy do ds3 da ds dg

ship 0.85 0.52 0.28 0.13 0.21 —0.08
boat | 0.36 0.36 0.16 -0.20 -0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 -0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 —-0.39 —-0.08 0.90 0.41 0.49

42




Why the reduced dimension matrix is

better

= Similarity of d2 and d3 in the original space: O.

= Similarity of d2 and d3 in the reduced space: 0.52 *
0.28+0.36*%0.16 +0.72 % 0.36 + 0.12 * 0.20 + -0.39
* -0.08 = 0.52

= Typically, LSA increases recall and hurts precision

43
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Empirical evidence

= Experiments on TREC 1/2/3 — Dumais

= Lanczos SVD code (available on netlib) due to
Berry used in these experiments

= Running times of ~ one day on tens of thousands
of docs [still an obstacle to usel]

= Dimensions — various values 250-350 reported.
Reducing k improves recall.

" (Under 200 reported unsatisfactory)

= Generally expect recall to improve — what about
precision?
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Empirical evidence

" Precision at or above median TREC precision
= Top scorer on almost 20% of TREC topics

= Slightly better on average than straight vector
spaces

" Effect of dimensionality:

Dimensions | Precision

250 0.367

300 0.371

346 0.374
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Failure modes

= Negated phrases

= TREC topics sometimes negate certain query/
terms phrases — precludes simple automatic
conversion of topics to latent semantic space.

" Boolean queries

= As usual, freetext/vector space syntax of LSI
qgueries precludes (say) “Find any doc having to do
with the following 5 companies”

= See Dumais for more.
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But why is this clustering?

= We've talked about docs, queries, retrieval
and precision here.

= What does this have to do with clustering?

" |[ntuition: Dimension reduction through LSI
brings together “related” axes in the vector
space.



Introduction to Information Retrieval

Intuition from block matrices

N documents

Block 1 What’s the rank of this matrix?

Block 2 0°s

terms

Block k

= Homogeneous non-zero blocks.
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Intuition from block matrices

N documents

Block 1

Block 2

terms

0's

Block k

Vocabulary partitioned into k topics (clusters);
each doc discusses only one topic.
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Intuition from block matrices

N documents

What'’s the best rank-k
Block 1 . : : :
approximation to this matrix?
Block 2 0's
M
terms
O's
Block k

= Nnoh-zero entries.




Introduction to Information Retrieval

Intuition from block matrices

Likely there’s a good rank-k
approximation to this matrix.

wiper
tire Block 1
V6
Few nonzero entri
Block 2 e onzero entries
Few nonzero entries
Block k
car 110
automobile] 0 1
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Simplistic picture
Topic 1

Topic 2

Topic 3
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Some wild extrapolation

" The “dimensionality” of a corpus is the
number of distinct topics represented in it.

= More mathematical wild extrapolation:

" if A has a rank k approximation of low
Frobenius error, then there are no more
than k distinct topics in the corpus.



Introduction to Information Retrieval

LSI has many other applications

" |n many settings in pattern recognition and retrieval,
we have a feature-object matrix.

= For text, the terms are features and the docs are objects.
= Could be opinions and users ...

= This matrix may be redundant in dimensionality.

= Can work with low-rank approximation.

* |If entries are missing (e.g., users’ opinions), can recover if
dimensionality is low.

= Powerful general analytical technique

" Close, principled analog to clustering methods.
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Resources

" |IR 18

= Scott Deerwester, Susan Dumais, George
Furnas, Thomas Landauer, Richard Harshman.
1990. Indexing by latent semantic analysis.
JASIS 41(6):391—407.



