Introduction to Information Retrieval

CS276
Information Retrieval and Web Search
Pandu Nayak and Prabhakar Raghavan
Lecture 18: Link analysis

Today’s lecture – hypertext and links

- We look beyond the content of documents
 - We begin to look at the hyperlinks between them
- Address questions like
 - Do the links represent a conferral of authority to some pages? Is this useful for ranking?
 - How likely is it that a page pointed to by the CERN home page is about high energy physics
- Big application areas
 - The Web
 - Email
 - Social networks

Links are everywhere

- Powerful sources of authenticity and authority
 - Mail spam – which email accounts are spammers?
 - Host quality – which hosts are “bad”?
 - Phone call logs

- The Good, The Bad and The Unknown

Simple iterative logic

- The Good, The Bad and The Unknown
 - Good nodes won’t point to Bad nodes
 - If you point to a Bad node, you’re Bad
 - If a Good node points to you, you’re Good

Simple iterative logic

- Good nodes won’t point to Bad nodes
 - If you point to a Bad node, you’re Bad
 - If a Good node points to you, you’re Good
Simple iterative logic

- **Good** nodes won’t point to **Bad** nodes
 - If you point to a **Bad** node, you’re **Bad**
 - If a **Good** node points to you, you’re **Good**

Sometimes need probabilistic analogs – e.g., mail spam

Many other examples of link analysis

- Social networks are a rich source of grouping behavior
- E.g., Shoppers’ affinity – Goel+Goldstein 2010
 - Consumers whose friends spend a lot, spend a lot themselves

Our primary interest in this course

- Analogs of most IR functionality based purely on text
 - Scoring and ranking
 - Link-based clustering – topical structure from links
 - Links as features in classification – documents that link to one another are likely to be on the same subject
- Crawling
 - Based on the links seen, where do we crawl next?

The Web as a Directed Graph

Assumption 1: A hyperlink between pages denotes a conferment of authority (quality signal)

Assumption 2: The text in the anchor of the hyperlink describes the target page (textual context)
Anchor Text

WWW Worm - McBryan [Mcbr94]

- For *ibm* how to distinguish between:
 - IBM’s home page (mostly graphical)
 - IBM’s copyright page (high term freq. for ‘ibm’)
 - Rival’s spam page (arbitrarily high term freq.)

![Diagram of anchor text and page]

“A million pieces of anchor text with "ibm" send a strong signal

www.ibm.com

Indexing anchor text

- When indexing a document D, include (with some weight) anchor text from links pointing to D.

![Diagram of indexing anchor text]

Other applications

- Weighting/filtering links in the graph
- Generating page descriptions from anchor text

Citation Analysis

- Citation frequency
 - Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is this author cited by? (Garfield 1972)
 - Pagerank preview: Pinsker and Narin ’60s

The web isn’t scholarly citation

- Millions of participants, each with self interests
- Spamming is widespread
- Once search engines began to use links for ranking (roughly 1998), link spam grew
 - You can join a group of websites that heavily link to one another
In-links to pages – unusual patterns

Pagerank scoring
- Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
 - “In the steady state” each page has a long-term visit rate - use this as the page’s score.

Not quite enough
- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.

Teleporting
- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% - a parameter.

Result of teleporting
- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

Markov chains
- A Markov chain consists of n states, plus an $n \times n$ transition probability matrix P.
- At each step, we are in exactly one of the states.
- For $1 \leq i,j \leq n$, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.

Markov chains

- Clearly, for all i, $\sum_j P_{ij} = 1$.
- Markov chains are abstractions of random walks.
- Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:

![Diagram of Markov chain]

Ergodic Markov chains

- For any (ergodic) Markov chain, there is a unique long-term visit rate for each state.
 - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn’t matter where we start.

Probability vectors

- A probability (row) vector $x = (x_1, \ldots, x_n)$ tells us where the walk is at any point.
 - E.g., $(0, 0, 1, 0, 0)$ means we’re in state i.
 - $\sum_i x_i = 1$.

More generally, the vector $x = (x_1, \ldots, x_n)$ means the walk is in state i with probability x_i.

Change in probability vector

- If the probability vector is $x = (x_1, \ldots, x_n)$ at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- So from x, our next state is distributed as xP.
 - The one after that is xP^2, then xP^3, etc.
 - (Where) Does the converge?

How do we compute this vector?

- Let $a = (a_1, \ldots, a_n)$ denote the row vector of steady-state probabilities.
- If our current position is described by a, then the next step is distributed as aP.
- But a is the steady state, so $a = aP$.
- Solving this matrix equation gives us a.
 - So a is the (left) eigenvector for P.
 - (Corresponds to the “principal” eigenvector of P with the largest eigenvalue.)
 - Transition probability matrices always have largest eigenvalue 1.

Pagerank summary

- Preprocessing:
 - Given graph of links, build matrix P.
 - From it compute a – left eigenvector of P.
 - The entry a_i is a number between 0 and 1: the pagerank of page i.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - But this rank order is query-independent
The reality

- Pagerank is used in google and other engines, but is hardly the full story of ranking
 - Many sophisticated features are used
 - Some address specific query classes
 - Machine learned ranking (Lecture 19) heavily used
- Pagerank still very useful for things like crawl policy

Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 - Hub pages are good lists of links on a subject.
 - e.g., "Bob’s list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject.
- Best suited for “broad topic” queries rather than for page-finding queries.
- Gets at a broader slice of common opinion.

Hubs and Authorities

- Thus, a good hub page for a topic points to many authoritative pages for that topic.
- A good authority page for a topic is pointed to by many good hubs for that topic.
- Circular definition - will turn this into an iterative computation.

The hope

![Diagram of Hubs and Authorities]

Base set

- Extract from the web a base set of pages that could be good hubs or authorities.
- From these, identify a small set of top hub and authority pages;
 → iterative algorithm.

High-level scheme

- Given text query (say browser), use a text index to get all pages containing browser.
- Call this the root set of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the base set.
Introduction to Information Retrieval

Visualization

Get in-links (and out-links) from a *connectivity server*

Iterative update

- Repeat the following updates, for all x:

 $$h(x) \leftarrow \sum_{y \rightarrow x} a(y)$$

 $$a(x) \leftarrow \sum_{y \leftarrow x} h(y)$$

Distilling hubs and authorities

- Compute, for each page x in the base set, a *hub score* $h(x)$ and an *authority score* $a(x)$.
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all $h(x)$, $a(x)$;
- **Key**
- **After iterations**
 - output pages with highest $h()$ scores as top hubs
 - highest $a()$ scores as top authorities.

How many iterations?

- **Claim**: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, $h()$ and $a()$ scores settle into a steady state!
 - proof of this comes later.
- In practice, ~5 iterations get you close to stability.

Scaling

- To prevent the $h()$ and $a()$ values from getting too big, can scale down after each iteration.
- Scaling factor doesn’t really matter:
 - we only care about the *relative* values of the scores.

Japan Elementary Schools

Hubs
- Kids' Space
- The Link Page
- The American School in Japan
- KAMISHIBUN Elementary School...
- KAMISHIBUN Elementary School...

Authorities
- Kids' Space
- The Link Page
- The American School in Japan
- KAMISHIBUN Elementary School...
- KAMISHIBUN Elementary School...
Things to note

- Pulled together good pages regardless of language of page content.
- Use only link analysis after base set assembled
 - Iterative scoring is query-independent.
- Iterative computation after text index retrieval - significant overhead.

Proof of convergence

- \(n \times n \) adjacency matrix \(A \):
 - Each of the \(n \) pages in the base set has a row and column in the matrix.
 - Entry \(A_{ij} = 1 \) if page \(i \) links to page \(j \), else = 0.

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 3
\end{pmatrix}
\]

Rewrite in matrix form

- \(h = Aa \).
- \(a = A^t h \).

Substituting, \(h = AA^t h \) and \(a = A^t A a \).

Thus, \(h \) is an eigenvector of \(AA^t \) and \(a \) is an eigenvector of \(A^t A \).

Further, our algorithm is a particular, known algorithm for computing eigenvectors: the power iteration method. Guaranteed to converge.

Issues

- Topic Drift
 - Off-topic pages can cause off-topic “authorities” to be returned
 - E.g., the neighborhood graph can be about a “super topic”
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others’ scores
 - Linkage between affiliated pages is not a useful signal

Connectivity servers
Connectivity Server

- Support for fast queries on the web graph
 - Which URLs point to a given URL?
 - Which URLs does a given URL point to?
- Stores mappings in memory from
 - URL to outlinks, URL to inlinks
- Applications
 - Crawl control
 - Web graph analysis
 - Connectivity, crawl optimization
 - Link analysis

Boldi and Vigna 2004

- Webgraph – set of algorithms and a java implementation
- Fundamental goal – maintain node adjacency lists in memory
 - For this, compressing the adjacency lists is the critical component

Adjacency lists

- The set of neighbors of a node
- Assume each URL represented by an integer
- E.g., for a 4 billion page web, need 32 bits per node
- Naively, this demands 64 bits to represent each hyperlink

Adjacency list compression

- Properties exploited in compression:
 - Similarity (between lists)
 - Locality (many links from a page go to “nearby” pages)
 - Use gap encodings in sorted lists
 - Distribution of gap values

Storage

- Boldi/Vigna get down to an average of ~3 bits/link
 - Why is this remarkable?
- (URL to URL edge)
- How?

Main ideas of Boldi/Vigna

- Consider lexicographically ordered list of all URLs, e.g.,
 - www.stanford.edu/alchemy
 - www.stanford.edu/biology
 - www.stanford.edu/biology/plant
 - www.stanford.edu/biology/plant/copyright
 - www.stanford.edu/biology/plant/people
 - www.stanford.edu/chemistry
Boldi/Vigna

- Each of these URLs has an adjacency list
- Main idea: due to templates, the adjacency list of a node is similar to one of the Z preceding URLs in the lexicographic ordering
- Express adjacency list in terms of one of these
 - E.g., consider these adjacency lists
 - 1, 2, 4, 8, 16, 32, 64
 - 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
- Encode as (-2), remove 9, add 8

Main advantages of BV

- Depends only on locality in a canonical ordering
- Lexicographic ordering works well for the web
- Adjacency queries can be answered very efficiently
 - To fetch out-neighbors, trace back the chain of prototypes
 - This chain is typically short in practice (since similarity is mostly intra-host)
 - Can also explicitly limit the length of the chain during encoding
- Easy to implement one-pass algorithm

Gap encodings

- Given a sorted list of integers x, y, z, ..., represent by x, y-x, z-y, ...
- Compress each integer using a code
 - γ code - Number of bits = 1 + 2 \lfloor \log x \rfloor
 - δ code: ...
 - Information theoretic bound: 1 + \lfloor \log x \rfloor bits
 - ζ code: Works well for integers from a power law

Resources

- IIR Chap 21
- The WebGraph framework I: Compression techniques (Boldi et al. 2004)