Today’s lecture – hypertext and links

- We look beyond the content of documents
 - We begin to look at the hyperlinks between them

- Address questions like
 - Do the links represent a conferral of authority to some pages? Is this useful for ranking?
 - How likely is it that a page pointed to by the CERN home page is about high energy physics

- Big application areas
 - The Web
 - Email
 - Social networks

Links are everywhere

- Powerful sources of authenticity and authority
 - Mail spam – which email accounts are spammers?
 - Host quality – which hosts are “bad”?
 - Phone call logs

- The Good, The Bad and The Unknown

Example 1: Good/Bad/Unknown

- The Good, The Bad and The Unknown
 - Good nodes won’t point to Bad nodes
 - If you point to a Bad node, you’re Bad
 - If a Good node points to you, you’re Good

Simple iterative logic

- Good nodes won’t point to Bad nodes
 - If you point to a Bad node, you’re Bad
 - If a Good node points to you, you’re Good
Simple iterative logic

- **Good** nodes won’t point to **Bad** nodes
 - If you point to a **Bad** node, you’re **Bad**
 - If a **Good** node points to you, you’re **Good**

Sometimes need probabilistic analogs – e.g., mail spam

Many other examples of link analysis

- Social networks are a rich source of grouping behavior
- E.g., Shoppers’ affinity – Goel+Goldstein 2010
 - Consumers whose friends spend a lot, spend a lot themselves

Our primary interest in this course

- Link analysis for most IR functionality thus far based purely on text
 - Scoring and ranking
 - Link-based clustering – topical structure from links
 - Links as features in classification – documents that link to one another are likely to be on the same subject
- Crawling
 - Based on the links seen, where do we crawl next?

The Web as a Directed Graph

Hypothesis 1: A hyperlink between pages denotes a conferment of authority (quality signal)

Hypothesis 2: The text in the anchor of the hyperlink on page A describes the target page B

Assumption 1: reputed sites

[Introduction to Information Retrieval](http://www.cs.cornell.edu/home/kleinber/networks-book/)
Assumption 2: annotation of target

For *ibm* how to distinguish between:
- IBM’s home page (mostly graphical)
- IBM’s copyright page (high term freq. for ‘ibm’)
- Rival’s spam page (arbitrarily high term freq.)

A million pieces of anchor text with “ibm” send a strong signal

Indexing anchor text

- When indexing a document D, include (with some weight) anchor text from links pointing to D.

Indexing anchor text

- Can sometimes have unexpected effects, e.g., spam, *miserable failure*
- Can score anchor text with weight depending on the authority of the anchor page’s website
 - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust (more) the anchor text from them
 - Increase the weight of off-site anchors (non-nepotistic scoring)

Connectivity servers

- Support for fast queries on the web graph
 - Which URLs point to a given URL?
 - Which URLs does a given URL point to?

Stores mappings in memory from

- URL to outlinks, URL to inlinks

Applications
- Link analysis
- Web graph analysis
 - Connectivity, crawl optimization
- Crawl control
Introduction to Information Retrieval

Boldi and Vigna 2004
- Webgraph – set of algorithms and a java implementation
- Fundamental goal – maintain node adjacency lists in memory
- For this, compressing the adjacency lists is the critical component

Adjacency lists
- The set of neighbors of a node
- Assume each URL represented by an integer
- E.g., for a 4 billion page web, need 32 bits per node
- Naively, this demands 64 bits to represent each hyperlink
- Boldi/Vigna get down to an average of ~3 bits/link
- Further work achieves 2 bits/link

Adjacency list compression
- Properties exploited in compression:
 - Similarity (between lists)
 - Locality (many links from a page go to “nearby” pages)
 - Use gap encodings in sorted lists
 - Distribution of gap values

Main ideas of Boldi/Vigna
- Consider lexicographically ordered list of all URLs, e.g.,
 - www.stanford.edu/alchemy
 - www.stanford.edu/biology
 - www.stanford.edu/biology/plant
 - www.stanford.edu/biology/plant/copyright
 - www.stanford.edu/biology/plant/people
 - www.stanford.edu/chemistry

Gap encodings
- Given a sorted list of integers x, y, z, ..., represent by x, y-x, z-y, ...
- Compress each integer using a code
 - γ code: Number of bits = 1 + 2 \lceil \log x \rceil
 - δ code: ...
 - Information theoretic bound: 1 + \lceil \log x \rceil bits
 - ζ code: Works well for integers from a power law Boldi Vigna DCC 2004

Boldi/Vigna
- Each of these URLs has an adjacency list
- Main idea: due to templates, the adjacency list of a node is similar to one of the 7 preceding URLs in the lexicographic ordering
- Express adjacency list in terms of one of these
- E.g., consider these adjacency lists
 - 1, 2, 4, 8, 16, 32, 64
 - 1, 4, 16, 25, 36, 49, 64
 - 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
 - 1, 4, 16, 25, 36, 49, 64

Encode as (-2), remove 9, add 8
Main advantages of BV

- Depends only on locality in a canonical ordering
 - Lexicographic ordering works well for the web
- Adjacency queries can be answered very efficiently
 - To fetch out-neighbors, trace back the chain of prototypes
 - This chain is typically short in practice (since similarity is mostly intra-host)
 - Can also explicitly limit the length of the chain during encoding
- Easy to implement one-pass algorithm

Citation Analysis

- Citation frequency
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is this author cited by? (Garfield 1972)
 - Pagerank preview: Pinsker and Narin ’60s
 - Asked: which journals are authoritative?

Link analysis: Pagerank

The web isn’t scholarly citation

- Millions of participants, each with self interests
- Spamming is widespread
- Once search engines began to use links for ranking (roughly 1998), link spam grew
 - You can join a link farm – a group of websites that heavily link to one another

Pagerank scoring

- Imagine a user doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
 - “In the long run” each page has a long-term visit rate - use this as the page’s score.

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.
Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% - a parameter.

Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

Markov chains

- A Markov chain consists of n states, plus an $n \times n$ transition probability matrix P.
- At each step, we are in one of the states.
- For $1 \leq i, j \leq n$, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.

Clearly, for all $i, \sum_j P_{ij} = 1$.
- Markov chains are abstractions of random walks.
- Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:

Ergodic Markov chains

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn’t matter where we start.

Probability vectors

- A probability (row) vector $x = (x_1, \ldots, x_n)$ tells us where the walk is at any point.
 - E.g., $(000\ldots1\ldots000)$ means we’re in state i.
- More generally, the vector $x = (x_1, \ldots, x_n)$ means the walk is in state i with probability x_i.
 $$\sum_{i=1}^n x_i = 1.$$
Change in probability vector

- If the probability vector is \(x = (x_1, \ldots, x_n) \) at this step, what is it at the next step?
- Recall that row \(i \) of the transition prob. Matrix \(P \) tells us where we go next from state \(i \).
- So from \(x \), our next state is distributed as \(xP \)
 - The one after that is \(xP^2 \), then \(xP^3 \), etc.
 - (Where) Does this converge?

How do we compute this vector?

- Let \(a = (a_1, \ldots, a_n) \) denote the row vector of steady-state probabilities.
- If our current position is described by \(a \), then the next step is distributed as \(aP \).
- But \(a \) is the steady state, so \(a = aP \).
- Solving this matrix equation gives us \(a \).
 - So \(a \) is the (left) eigenvector for \(P \).
 - (Corresponds to the “principal” eigenvector of \(P \) with the largest eigenvalue.)
 - Transition probability matrices always have largest eigenvalue 1.

Link analysis: HITS

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of interrelated pages:
 - Hub pages are good lists of links on a subject.
 - e.g., "Bob’s list of cancer-related links.”
 - Authority pages occur recurrently on good hubs for the subject.
- Best suited for “broad topic” queries rather than for page-finding queries.
- Gets at a broader slice of common opinion.

Hubs and Authorities

- Thus, a good hub page for a topic points to many authoritative pages for that topic.
- A good authority page for a topic is pointed to by many good hubs for that topic.
- Circular definition - will turn this into an iterative computation.

The hope
High-level scheme

- Extract from the web a base set of pages that *could* be good hubs or authorities.
- From these, identify a small set of top hub and authority pages; → iterative algorithm.

Base set

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
- Call this the *root set* of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the *base set*.

Visualisation

Get in-links (and out-links) from a *connectivity server*

Distilling hubs and authorities

- Compute, for each page *x* in the base set, a *hub score* *h*(*) and an *authority score* *a*(*)
- Initialize: for all *x*, *h*(*) ← 1; *a*(*) ← 1;
- Iteratively update all *h*(*) and *a*(*)
- After iterations
 - output pages with highest *h*(*) scores as top hubs
 - highest *a*(*) scores as top authorities.

Iterative update

- Repeat the following updates, for all *x*:
 \[h(x) \leftarrow \sum \limits_{y \rightarrow x} a(y) \]
 \[a(x) \leftarrow \sum \limits_{y \leftarrow x} h(y) \]

Scaling

- To prevent the *h*(*) and *a*(*) values from getting too big, can scale down after each iteration.
- Scaling factor doesn’t really matter:
 - we only care about the *relative* values of the scores.
How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, $h(i)$ and $a(i)$ scores settle into a steady state!
 - proof of this comes later.
- In practice, ~5 iterations get you close to stability.

Proof of convergence

- $n \times n$ adjacency matrix A:
 - each of the n pages in the base set has a row and column in the matrix.
 - Entry $A_{ij} = 1$ if page i links to page j, else $= 0$.

![Adjacency matrix](image)

Hub/authority vectors

- View the hub scores $h()$ and the authority scores $a()$ as vectors with n components.
- Recall the iterative updates

\[
h(x) \leftarrow \sum_{y \sim x} a(y)
\]

\[
a(x) \leftarrow \sum_{y \sim x} h(y)
\]

Rewrite in matrix form

- $h = Aa$.
- $a = A^t h$.

Recall A^t is the transpose of A.

Substituting, $h = AA^t h$ and $a = A^t A a$.

Thus, h is an eigenvector of AA^t and a is an eigenvector of $A^t A$.

Further, our algorithm is a particular, known algorithm for computing eigenvectors: the *power iteration* method.

Guaranteed to converge.

Issues

- Topic Drift
 - Off-topic pages can cause off-topic “authorities” to be returned
 - E.g., the neighborhood graph can be about a “super topic”
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others’ scores
 - Linkage between affiliated pages is not a useful signal

Resources

- IIR Chap 21
- The WebGraph framework I: Compression techniques (Boldi et al. 2004)