Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search
Pandu Nayak and Prabhakar Raghavan

Lecture 6: Scoring, Term Weighting and the Vector Space Model
Recap of lecture 5

- Collection and vocabulary statistics: Heaps’ and Zipf’s laws
- Dictionary compression for Boolean indexes
 - Dictionary string, blocks, front coding
- Postings compression: Gap encoding, prefix-unique codes
 - Variable-Byte and Gamma codes

<table>
<thead>
<tr>
<th>Description</th>
<th>Size</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>collection (text, xml markup etc)</td>
<td>3,600.0</td>
<td></td>
</tr>
<tr>
<td>collection (text)</td>
<td>960.0</td>
<td></td>
</tr>
<tr>
<td>Term-doc incidence matrix</td>
<td>40,000.0</td>
<td></td>
</tr>
<tr>
<td>postings, uncompressed (32-bit words)</td>
<td>400.0</td>
<td></td>
</tr>
<tr>
<td>postings, uncompressed (20 bits)</td>
<td>250.0</td>
<td></td>
</tr>
<tr>
<td>postings, variable byte encoded</td>
<td>116.0</td>
<td></td>
</tr>
<tr>
<td>postings, γ-encoded</td>
<td>101.0</td>
<td></td>
</tr>
</tbody>
</table>
This lecture; IIR Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don’t.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it’s too much work).
 - Most users don’t want to wade through 1000s of results.
 - This is particularly true of web search.
Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: “standard user dlink 650” → 200,000 hits
- Query 2: “standard user dlink 650 no card found”: 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many
Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in **ranked retrieval**, the system returns an ordering over the (top) documents in the collection for a query.

- **Free text queries**: Rather than a query language of operators and expressions, the user’s query is just one or more words in a human language.

- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa.
Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top $k \approx 10$ results
 - We don’t overwhelm the user

- Premise: the ranking algorithm works
Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score – say in $[0, 1]$ – to each document
- This score measures how well document and query “match”.
Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let’s start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.
Take 1: Jaccard coefficient

- Recall from Lecture 3: A commonly used measure of overlap of two sets A and B
 - $\text{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$
 - $\text{jaccard}(A,A) = 1$
 - $\text{jaccard}(A,B) = 0$ if $A \cap B = 0$
- A and B don’t have to be the same size.
- Always assigns a number between 0 and 1.
Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
 - **Query**: *ides of march*
 - **Document 1**: *caesar died in march*
 - **Document 2**: *the long march*
Issues with Jaccard for scoring

- It doesn’t consider *term frequency* (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn’t consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we’ll use \(\frac{|A \cap B|}{\sqrt{|A \cup B|}} \)
- . . . instead of \(\frac{|A \cap B|}{|A \cup B|} \) (Jaccard) for length normalization.
Recall (Lecture 1): Binary term-document incidence matrix

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$
Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in \mathbb{N}^v: a column below

<table>
<thead>
<tr>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Bag of words model

- Vector representation doesn’t consider the ordering of words in a document

 John is quicker than Mary and Mary is quicker than John have the same vectors

- This is called the **bag of words** model.

- In a sense, this is a step back: The positional index was able to distinguish these two documents.

- We will look at “recovering” positional information later in this course.

- For now: bag of words model
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR
Log-frequency weighting

- The log frequency weight of term t in d is
 \[
 w_{t,d} = \begin{cases}
 1 + \log_{10} \text{tf}_{t,d}, & \text{if } \text{tf}_{t,d} > 0 \\
 0, & \text{otherwise}
 \end{cases}
 \]

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.

- Score for a document-query pair: sum over terms t in both q and d:

 \[
 \text{score} = \sum_{t \in q \cap d} \left(1 + \log \text{tf}_{t,d} \right)
 \]

- The score is 0 if none of the query terms is present in the document.
Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., *arachnocentric*)
- A document containing this term is very likely to be relevant to the query *arachnocentric*
- → We want a high weight for rare terms like *arachnocentric*.
Document frequency, continued

- Frequent terms are less informative than rare terms.
- Consider a query term that is frequent in the collection (e.g., high, increase, line).
- A document containing such a term is more likely to be relevant than a document that doesn’t.
- But it’s not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line.
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.
idf weight

- df_t is the **document** frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $\text{df}_t \leq N$
- We define the idf (inverse document frequency) of t by
 \[
 \text{idf}_t = \log_{10} \left(\frac{N}{\text{df}_t} \right)
 \]
- We use $\log \left(\frac{N}{\text{df}_t} \right)$ instead of $\frac{N}{\text{df}_t}$ to “dampen” the effect of idf.

Will turn out the base of the log is immaterial.
Introduc)on to Information Retrieval

idf example, suppose $N = 1$ million

<table>
<thead>
<tr>
<th>term</th>
<th>df_t</th>
<th>idf_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>sunday</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td></td>
</tr>
</tbody>
</table>

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

There is one idf value for each term t in a collection.
Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
- For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.
Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.

- Example:

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- Which word is a better search term (and should get a higher weight)?
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = \log(1 + tf_{t,d}) \times \log_{10}(N / df_t) \]

- Best known weighting scheme in information retrieval
 - Note: the “-” in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf

- Increases with the number of occurrences within a document

- Increases with the rarity of the term in the collection
Score for a document given a query

\[\text{Score}(q,d) = \sum_{t \in q \cap d} \text{tf}.\text{idf}_{t,d} \]

- There are many variants
 - How “tf” is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - ...

Sec. 6.2.2
Binary \rightarrow count \rightarrow weight matrix

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$
Documents as vectors

- So we have a $|V|$-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors - most entries are zero.
Queries as vectors

- **Key idea 1:** Do the same for queries: represent them as vectors in the space
- **Key idea 2:** Rank documents according to their proximity to the query in this space
- Proximity = similarity of vectors
- Proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you’re-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents
Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.
Why distance is a bad idea

The Euclidean distance between \vec{q} and $\vec{d_2}$ is large even though the distribution of terms in the query \vec{q} and the distribution of terms in the document $\vec{d_2}$ are very similar.
Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- “Semantically” d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.

- Key idea: Rank documents according to angle with query.
From angles to cosines

- The following two notions are equivalent.
 - Rank documents in decreasing order of the angle between query and document
 - Rank documents in increasing order of cosine (query, document)
- Cosine is a monotonically decreasing function for the interval $[0^\circ, 180^\circ]$
From angles to cosines

- But how – and why – should we be computing cosines?
Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L_2 norm:

$$\|\mathbf{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)

- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights
The Cosine Similarity Formula

\[
\cos(q,d) = \frac{q \cdot d}{\|q\| \|d\|} = \frac{\sum_{i=1}^{|V|} q_id_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
\]

- \(q_i\) is the tf-idf weight of term \(i\) in the query
- \(d_i\) is the tf-idf weight of term \(i\) in the document

\(\cos(q,d)\) is the cosine similarity of \(q\) and \(d\) … or, equivalently, the cosine of the angle between \(q\) and \(d\).
Cosine for length-normalized vectors

- For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

\[\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i \]

for q, d length-normalized.
Cosine similarity illustrated
Cosine similarity amongst 3 documents

How similar are the novels

SaS: Sense and Sensibility

PaP: Pride and Prejudice, and

WH: Wuthering Heights?

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.
3 documents example contd.

Log frequency weighting

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.00</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0.00</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0.00</td>
<td>0.00</td>
<td>2.58</td>
</tr>
</tbody>
</table>

After length normalization

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0.000</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0.000</td>
<td>0.000</td>
<td>0.588</td>
</tr>
</tbody>
</table>

\[
\cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \\
\approx 0.94
\]

\[
\cos(SaS,WH) \approx 0.79
\]

\[
\cos(PaP,WH) \approx 0.69
\]

Why do we have \(\cos(SaS,PaP) > \cos(SaS,WH)\)?
Computing cosine scores

CosineScore(q)

1. float $Scores[N] = 0$
2. float $Length[N]$
3. for each query term t
4. do calculate $w_{t,q}$ and fetch postings list for t
5. for each pair($d, tf_{t,d}$) in postings list
6. do $Scores[d] += w_{t,d} \times w_{t,q}$
7. Read the array $Length$
8. for each d
10. return Top K components of $Scores[]$
tf-idf weighting has many variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>t (idf)</td>
<td>c (cosine)</td>
</tr>
<tr>
<td>tf_{t,d}</td>
<td>\log \frac{N}{df_t}</td>
<td>\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}</td>
</tr>
<tr>
<td>(logarithm)</td>
<td></td>
<td>u (pivoted)</td>
</tr>
<tr>
<td>1 + \log(tf_{t,d})</td>
<td></td>
<td>unique)</td>
</tr>
<tr>
<td>(augmented)</td>
<td>p (prob idf)</td>
<td>b (byte size)</td>
</tr>
<tr>
<td>0.5 + \frac{0.5 \times tf_{t,d}}{\text{max}t(tf{t,d})}</td>
<td>\max{0, \log \frac{N}{df_t} }</td>
<td>1 / \text{CharLength}^\alpha, \alpha < 1</td>
</tr>
<tr>
<td>(boolean)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L (log ave)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\frac{1 + \log(tf_{t,d})}{1 + \log(\text{ave}{t \in d}(tf{t,d}))}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?
Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- **SMART Notation**: denotes the combination in use in an engine, with the notation *ddd.qqq*, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (*l as first character*), no idf and cosine normalization
- Query: logarithmic tf (*l in leftmost column*), idf (*t in second column*), no normalization ...

A bad idea?
tf-idf example: Inc.ltc

Document: *car insurance auto insurance*
Query: *best car insurance*

<table>
<thead>
<tr>
<th>Term</th>
<th>Query</th>
<th>Document</th>
<th>Prod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wt</td>
<td>df</td>
</tr>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
</tr>
</tbody>
</table>

Exercise: what is \(N \), the number of docs?

Doc length \(= \sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92 \)

Score \(= 0 + 0 + 0.27 + 0.53 = 0.8 \)
Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., $K = 10$) to the user
Resources for today’s lecture

- IIR 6.2 – 6.4.3

 - Term weighting and cosine similarity tutorial for SEO folk!