Recap: tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.
 \[w_{t,d} = (1 + \log_{10} t_f) \times \log_{10} \left(\frac{N}{d_f} \right) \]
- Best known weighting scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

In fact this was unnecessary, since the zero case is treated specially above; net the FIRST version above is right.

Recap: Queries as vectors

- **Key idea 1:** Do the same for queries: represent them as vectors in the space
- **Key idea 2:** Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors

Recap: cosine(query,document)

- Dot product
 \[\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{||\vec{q}|| \cdot ||\vec{d}||} = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \cdot \sqrt{\sum_{i=1}^{n} d_i^2}} \]
- Unit vectors

\[\cos(\vec{q}, \vec{d}) \] is the cosine similarity of \(\vec{q} \) and \(\vec{d} \) ... or, equivalently, the cosine of the angle between \(\vec{q} \) and \(\vec{d} \).

This lecture

- Speeding up vector space ranking
- Putting together a complete search system
 - Will require learning about a number of miscellaneous topics and heuristics
Computing cosine scores

```c
COSINE_SCORE(q)
1. float Scores[N] = 0
2. float Length[N]
3. for each query term t
4. do calculate wt,q and fetch postings list for t
5. for each pair(d, tf_d) in postings list
6. do Scores[d] += wt,d × wt,q
7. Read the array Length
8. for each d
10. return Top K components of Scores[]
```

Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query ⇒ K largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the K largest cosine values efficiently.
 - Can we do this without computing all N cosines?

Special case – unweighted queries

- No weighting on query terms
- Assume each query term occurs only once
- Then for ranking, don’t need to normalize query vector
- Slight simplification of algorithm from Lecture 6

Computing the K largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
- not to totally order all docs in the collection
- Can we pick off docs with K highest cosines?
- Let J = number of docs with nonzero cosines
- We seek the K best of these J

Use heap for selecting top K

- Binary tree in which each node’s value > the values of children
- Takes $2J$ operations to construct, then each of K “winners” read off in $2\log J$ steps.
- For $J=1M$, $K=100$, this is about 10% of the cost of sorting.
Bottlenecks

- Primary computational bottleneck in scoring: cosine computation
- Can we avoid all this computation?
 - Yes, but may sometimes get it wrong
 - a doc not in the top K may creep into the list of K output docs
 - Is this such a bad thing?

Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- Thus cosine is anyway a proxy for user happiness
- If we get a list of K docs “close” to the top K by cosine measure, should be ok

Generic approach

- Find a set A of contenders, with $K < |A| \ll N$
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as pruning non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach

Index elimination

- Basic algorithm cosine computation algorithm only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

High-idf query terms only

- For a query such as catcher in the rye
- Only accumulate scores from catcher and rye
- Intuition: in and the contribute little to the scores and so don’t alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders

Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a “soft conjunction” on queries seen on web search engines (early Google)
 - Easy to implement in postings traversal
3 of 4 query terms

- **Antony**: 3, 4, 8, 16, 32, 64, 128
- **Brutus**: 2, 4, 8, 16, 32, 64, 128
- **Caesar**: 1, 2, 3, 5, 8, 13, 21, 34
- **Calpurnia**: 13, 16, 32

Scores only computed for docs 8, 16 and 32.

Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t’s postings
 - Call this the champion list for t
 - *(aka fancy list or top docs for t)*
- Note that r has to be chosen at index build time
 - Thus, it’s possible that $r < K$
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the K top-scoring docs from amongst these

Exercises

- How do Champion Lists relate to Index Elimination? Can they be used together?
- How can Champion Lists be implemented in an inverted index?
 - Note that the champion list has nothing to do with small docIDs

Static quality scores

- We want top-ranking documents to be both *relevant* and *authoritative*.
- *Relevance* is being modeled by cosine scores.
- *Authority* is typically a query-independent property of a document.
- **Examples of authority signals**
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many bitly’s, diggs or del.icio.us marks
 - (PageRank)

Modeling authority

- Assign to each document a *query-independent quality score* in $[0,1]$ to each document d
 - Denote this by $g(d)$
 - Thus, a quantity like the number of citations is scaled into $[0,1]$
 - Exercise: suggest a formula for this.

Net score

- Consider a simple total score combining cosine relevance and authority
 - $\text{net-score}(q,d) = g(d) + \text{cosine}(q,d)$
 - Can use some other linear combination
 - Indeed, any function of the two “signals” of user happiness – more later
 - Now we seek the top K docs by net score
Top K by net score – fast methods
- First idea: Order all postings by $g(d)$
- Key: this is a common ordering for all postings
- Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine score computation
- Exercise: write pseudocode for cosine score computation if postings are ordered by $g(d)$

Why order postings by $g(d)$?
- Under $g(d)$-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings

Champion lists in $g(d)$-ordering
- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_{t,d}$
- Seek top-K results from only the docs in these champion lists

High and low lists
- For each term, we maintain two postings lists called high and low
 - Think of high as the champion list
- When traversing postings on a query, only traverse high lists first
 - If we get more than K docs, select the top K and stop
 - Else proceed to get docs from the low lists
- Can be used even for simple cosine scores, without global quality $g(d)$
- A means for segmenting index into two tiers

Impact-ordered postings
- We only want to compute scores for docs for which $w_{t,d}$ is high enough
- We sort each postings list by $w_{t,d}$
- Now, not all postings in a common order!
- How do we compute scores in order to pick off top K?
 - Two ideas follow

1. Early termination
- When traversing t’s postings, stop early after either
 - a fixed number of r docs
 - $w_{t,d}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union
2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores

Cluster pruning: preprocessing

- Pick \sqrt{N} docs at random: call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.

Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L's followers.

Visualization

Why use random sampling

- Fast
- Leaders reflect data distribution

General variants

- Have each follower attached to $b1=3$ (say) nearest leaders.
- From query, find $b2=4$ (say) nearest leaders and their followers.
- Can recurse on leader/follower construction.
Exercises

- To find the nearest leader in step 1, how many cosine computations do we do?
 - Why did we have √N in the first place?
 - What is the effect of the constants b1, b2 on the previous slide?
 - Devise an example where this is likely to fail — i.e., we miss one of the K nearest docs.
 - Likely under random sampling.

Parametric and zone indexes

- Thus far, a doc has been a sequence of terms
- In fact documents have multiple parts, some with special semantics:
 - Author
 - Title
 - Date of publication
 - Language
 - Format
 - etc.
- These constitute the metadata about a document

Fields

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year 1601, containing * alas poor Yorick *
 - * Year = 1601 is an example of a field *
 - Also, author last name = shakespeare, etc.
 - Field or parametric index: postings for each field value
 - Sometimes build range trees (e.g., for dates)
 - Field query typically treated as conjunction
 - *(doc must be authored by shakespeare)*

Zone

- A zone is a region of the doc that can contain an arbitrary amount of text, e.g.,
 - Title
 - Abstract
 - References ...
- Build inverted indexes on zones as well to permit querying
 - E.g., “find docs with merchant in the title zone and matching the query gentle rain”

Example zone indexes

- Encode zones in dictionary vs. postings.

Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - …
 - Least important
- Can be done by g(d) or another measure
- Inverted index thus broken up into tiers of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers
Query term proximity

- Free text queries: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let \(w \) be the smallest window in a doc containing all query terms, e.g.,
- For the query strained mercy the smallest window in the doc *The quality of mercy is not strained* is 4 words
- Would like scoring function to take this into account – how?

Aggregate scores

- We’ve seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications – expert-tuned
- Increasingly common: machine-learned
 - See May 19th lecture

Query parsers

- Free text query from user may in fact spawn one or more queries to the indexes, e.g., query rising interest rates
 - Run the query as a phrase query
 - If <\(K \) docs contain the phrase rising interest rates, run the two phrase queries rising interest and interest rates
 - If we still have <\(K \) docs, run the vector space query rising interest rates
 - Rank matching docs by vector space scoring
- This sequence is issued by a query parser

Putting it all together

Resources

- IIR 7, 6.1