Introduction to Information Retrieval

Situation

- Thanks to your stellar performance in CS276, you quickly rise to VP of Search at internet retail giant nozama.com. Your boss brings in her nephew Sergey, who claims to have built a better search engine for nozama. Do you
 - Laugh derisively and send him to rival Tramlaw Labs?
 - Counsel Sergey to go to Stanford and take CS276?
 - Try a few queries on his engine and say “Not bad”?
 - ... ?

Evaluation

What could you ask Sergey?

- How fast does it index?
 - Number of documents/hour
 - Incremental indexing – nozama adds 10K products/day
- How fast does it search?
 - Latency and CPU needs for nozama’s 5 million products
- Does it recommend related products?
- This is all good, but it says nothing about the quality of Sergey’s search
 - You want nozama’s users to be happy with the search experience

How do you tell if users are happy?

- Search returns products relevant to users
 - How do you assess this at scale?
- Search results get clicked a lot
 - Misleading titles/summaries can cause users to click
- Users buy after using the search engine
 - Or, users spend a lot of $ after using the search engine
- Repeat visitors/buyers
 - Do users leave soon after searching?
 - Do they come back within a week/month/... ?

Happiness: elusive to measure

- Most common proxy: relevance of search results
 - But how do you measure relevance?
- Three elements:
 1. A benchmark document collection
 2. A benchmark suite of queries
 3. An assessment of either Relevant or Nonrelevant for each query and each document

So you want to measure the quality of a new search algorithm

- Benchmark documents – nozama’s products
- Benchmark query suite – more on this
- Judgments of document relevance for each query
 - Do we really need every query-doc pair?
Relevance judgments

- Binary (relevant vs. non-relevant) in the simplest case, more nuanced (0, 1, 2, 3 ...) in others
- What are some issues already?
- 5 million times 50K takes us into the range of a quarter trillion judgments
 - If each judgment took a human 2.5 seconds, we’d still need 10^{11} seconds, or nearly $300 million if you pay people $10 per hour to assess
 - 10K new products per day

Crowd source relevance judgments?

- Present query-document pairs to low-cost labor on online crowd-sourcing platforms
 - Hope that this is cheaper than hiring qualified assessors
 - Lots of literature on using crowd-sourcing for such tasks
 - Main takeaway – you get some signal, but the variance in the resulting judgments is very high

What else?

- Still need test queries
 - Must be germane to docs available
 - Must be representative of actual user needs
 - Random query terms from the documents generally not a good idea
 - Sample from query logs if available
- Classically (non-Web)
 - Low query rates – not enough query logs
 - Experts hand-craft “user needs”

Now we have the basics of a benchmark

- Let’s review some evaluation measures
 - Precision
 - Recall
 - DCG
 - ...

Evaluating an IR system

- Note: user need is translated into a query
- Relevance is assessed relative to the user need, not the query
- E.g., Information need: My swimming pool bottom is becoming black and needs to be cleaned.
- Query: pool cleaner
- Assess whether the doc addresses the underlying need, not whether it has these words
Unranked retrieval evaluation:
Precision and Recall – recap from IIR 8/video

- **Binary assessments**
 - **Precision**: fraction of retrieved docs that are relevant = \(P(\text{relevant} | \text{retrieved}) \)
 - **Recall**: fraction of relevant docs that are retrieved = \(P(\text{retrieved} | \text{relevant}) \)

<table>
<thead>
<tr>
<th>Relevant</th>
<th>Nonrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>(tp)</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>(fn)</td>
</tr>
</tbody>
</table>

- Precision \(P = \frac{tp}{tp + fp} \)
- Recall \(R = \frac{tp}{tp + fn} \)

Rank-Based Measures

- **Binary relevance**
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)

- **Multiple levels of relevance**
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- Set a rank threshold \(K \)
- Compute % relevant in top \(K \)
- Ignores documents ranked lower than \(K \)

- **Ex:**
 - Prec@3 of 2/3
 - Prec@4 of 2/4
 - Prec@5 of 3/5

- In similar fashion we have Recall@K

Mean Average Precision

- Consider rank position of each **relevant** doc \(K_1, K_2, \ldots K_R \)
- Compute Precision@K for each \(K_1, K_2, \ldots K_R \)
- Average precision = average of P@K

- **Ex:** has AvgPrec of \(\frac{1}{3} \left(\frac{1}{1} + \frac{2}{2} + \frac{3}{3} \right) = 0.76 \)

Average Precision

- MAP is Average Precision across multiple queries/rankings

Ranking #1: \((1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78\)
Ranking #2: \((0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52\)
Mean average precision

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero.
- MAP is macro-averaging: each query counts equally.
- Now perhaps most commonly used measure in research papers.
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query.
- MAP requires many relevance judgments in text collection.

Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document.
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks.
- Typical discount is $1 / \log \text{(rank)}$.
- With base 2, the discount at rank 4 is $1/2$, and at rank 8 it is $1/3$.

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks.
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant documents.
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined.

BEYOND BINARY RELEVANCE
Summarize a Ranking: DCG

- What if relevance judgments are in a scale of [0, r]? r > 2
- Cumulative Gain (CG) at rank n
 - Let the ratings of the n documents be \(r_1, r_2, \ldots, r_n \) (in ranked order)
 - \(CG = r_1 + r_2 + \ldots + r_n \)
- Discounted Cumulative Gain (DCG) at rank n
 - \(DCG = \frac{r_1}{\log_2 2} + \frac{r_2}{\log_2 3} + \ldots + \frac{r_n}{\log_2 n} \)
 - We may use any base for the logarithm

Discounted Cumulative Gain

- \(DCG \) is the total gain accumulated at a particular rank \(p \):
 \[
 DCG_p = \text{rel}_1 + \sum_{i=2}^{p} \frac{\text{rel}_i}{\log_2 i}
 \]
- Alternative formulation:
 \[
 DCG_p = \sum_{i=1}^{p} \frac{\text{rel}_i}{\log(1+i)}
 \]
 - used by some web search companies
 - emphasis on retrieving highly relevant documents

DCG Example

- 10 ranked documents judged on 0-3 relevance scale:
 3, 2, 3, 0, 0, 1, 2, 3, 0
- discounted gain:
 3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
- DCG:
 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

Summarize a Ranking: NDCG

- Normalized Discounted Cumulative Gain (NDCG) at rank \(n \)
 - Normalize DCG at rank \(n \) by the DCG value at rank \(n \) of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
 - Normalization useful for contrasting queries with varying numbers of relevant results
 - NDCG is now quite popular in evaluating Web search

NDCG - Example

<table>
<thead>
<tr>
<th></th>
<th>Document Order</th>
<th>r_i</th>
<th>Document Order</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d1</td>
<td>1</td>
<td>d1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>d2</td>
<td>2</td>
<td>d2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>d3</td>
<td>3</td>
<td>d3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>d4</td>
<td>0</td>
<td>d4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Document Order</th>
<th>r_i</th>
<th>Document Order</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d1</td>
<td>1</td>
<td>d1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>d2</td>
<td>2</td>
<td>d2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>d3</td>
<td>3</td>
<td>d3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>d4</td>
<td>0</td>
<td>d4</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\text{NDCG}_1 = \frac{1}{2} \log_2 2 = 0.693 \]
\[
\text{NDCG}_2 = \frac{2}{3} \log_2 3 = 1.104 \]
\[
\text{NDCG}_3 = \frac{3}{4} \log_2 4 = 1.099 \]
\[
\text{NDCG}_4 = \frac{4}{5} \log_2 5 = 0.920 \]
\[
\text{MaxDCG} = 4.441 \]

\[
\text{NDCG}_1 = \frac{1}{2} \log_2 2 = 0.693 \]
\[
\text{NDCG}_2 = \frac{2}{3} \log_2 3 = 1.104 \]
\[
\text{NDCG}_3 = \frac{3}{4} \log_2 4 = 1.099 \]
\[
\text{NDCG}_4 = \frac{4}{5} \log_2 5 = 0.920 \]
\[
\text{MaxDCG} = 4.441 \]

What if the results are not in a list?

- Suppose there’s only one Relevant Document
 - Scenarios:
 - known-item search
 - navigational queries
 - looking for a fact
 - Search duration ~ Rank of the answer
 - measures a user’s effort
Mean Reciprocal Rank

- Consider rank position, K, of first relevant doc
 - Could be – only clicked doc
- Reciprocal Rank score $= \frac{1}{K}$
- MRR is the mean RR across multiple queries

Human judgments are

- Expensive
- Inconsistent
 - Between raters
 - Over time
- Decay in value as documents/query mix evolves
- Not always representative of “real users”
 - Rating vis-à-vis query, vs underlying need
- So – what alternatives do we have?

Using User Clicks

What do clicks tell us?

- Strong position bias, so absolute click rates unreliable

Relative vs absolute ratings

- User’s click sequence

Hard to conclude Result1 > Result3
Probably can conclude Result3 > Result2

Pairwise relative ratings

- Pairs of the form: DocA better than DocB for a query
 - Doesn’t mean that DocA relevant to query
- Now, rather than assess a rank-ordering wrt per-doc relevance assessments
- Assess in terms of conformance with historical pairwise preferences recorded from user clicks
- BUT!
- Don’t learn and test on the same ranking algorithm
 - I.e., if you learn historical clicks from nozama and compare Sergey vs nozama on this history ...
Interleaved docs (Joachims 2002)

- One approach is to obtain pairwise orderings from results that interleave two ranking engines A and B

<table>
<thead>
<tr>
<th>Top From A</th>
<th>Top From B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top From A</td>
<td>Top From B</td>
</tr>
<tr>
<td>2nd From A</td>
<td>2nd From B</td>
</tr>
<tr>
<td>2nd From B</td>
<td>2nd From A</td>
</tr>
<tr>
<td>3rd From A</td>
<td>3rd From B</td>
</tr>
<tr>
<td>3rd From B</td>
<td>3rd From A</td>
</tr>
</tbody>
</table>

Comparing two rankings to a baseline ranking

- Given a set of pairwise preferences P
- We want to measure two rankings A and B
- Define a proximity measure between A and P
 - And likewise, between B and P
- Want to declare the ranking with better proximity to be the winner
- Proximity measure should reward agreements with P and penalize disagreements

Kendall tau distance

- Let X be the number of agreements between a ranking (say A) and P
- Let Y be the number of disagreements
- Then the Kendall tau distance between A and P is $(X-Y)/(X+Y)$
- Say $P = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$ and $A = (1,3,2,4)$
- Then $X=5$, $Y=1$...
- (What are the minimum and maximum possible values of the Kendall tau distance?)

Critique of additive relevance

- Relevance vs Marginal Relevance
 - A document can be redundant even if it is highly relevant
 - Duplicates
 - The same information from different sources
 - Marginal relevance is a better measure of utility for the user
 - But harder to create evaluation set
 - See Carbonell and Goldstein (1998)
 - Pushes us to assess a slate of results, rather than to sum relevance over individually assessed results
 - Raters shown two lists, and asked to pick the better one
 - Reminiscent of interleaved doc idea we just saw

Beyond measuring lists

- Results for a query don’t have to be presented as a list of docs
- Using facts/entities as evaluation unit can more directly measure true recall
- Also related is seeking diversity in first page results
 - See Diversity in Document Retrieval workshops

Facts/entities (what happens to clicks?)
A/B testing at web search engines

- Purpose: Test a single innovation
- Prerequisite: You have a large search engine up and running.
- Have most users use old system
- Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation
- Evaluate with an "automatic" measure like clickthrough on first result
- Now we can directly see if the innovation does improve user happiness.
- Probably the evaluation methodology that large search engines trust most
- In principle less powerful than doing a multivariate regression analysis, but easier to understand

Recap

- Benchmarks consist of
 - Document collection
 - Query set
 - Assessment methodology
- Assessment methodology can use raters, user clicks, or a combination
 - These get quantized into a goodness measure – Precision/NDCG etc.
 - Different engines/algorithms compared on a benchmark together with a goodness measure