Thanks to your stellar performance in CS276, you quickly rise to VP of Search at internet retail giant nozama.com. Your boss brings in her nephew Sergey, who claims to have built a better search engine for nozama. Do you

- Laugh derisively and send him to rival Tramlaw Labs?
- Counsel Sergey to go to Stanford and take CS276?
- Try a few queries on his engine and say “Not bad”?
- ... ?

What could you ask Sergey?

- How fast does it index?
 - Number of documents/hour
 - Incremental indexing – nozama adds 10K products/day
- How fast does it search?
 - Latency and CPU needs for nozama’s 5 million products
- Does it recommend related products?
- This is all good, but it says nothing about the quality of Sergey’s search
 - You want nozama’s users to be happy with the search experience

How do you tell if users are happy?

- Search returns products relevant to users
 - How do you assess this at scale?
- Search results get clicked a lot
 - Misleading titles/summaries can cause users to click
- Users buy after using the search engine
 - Or, users spend a lot of $ after using the search engine
- Repeat visitors/buyers
 - Do users leave soon after searching?
 - Do they come back within a week/month/... ?

Happiness: elusive to measure

- Most common proxy: relevance of search results
 - But how do you measure relevance?
- Pioneered by Cyril Cleverdon in the Cranfield Experiments

Measuring relevance

- Three elements:
 1. A benchmark document collection
 2. A benchmark suite of queries
 3. An assessment of either Relevant or Nonrelevant for each query and each document
So you want to measure the quality of a new search algorithm

- Benchmark documents – nozama’s products
- Benchmark query suite – more on this
- Judgments of document relevance for each query

5 million nozama.com products
50,000 sample queries

Relevance judgments

- Binary (relevant vs. non-relevant) in the simplest case, more nuanced (0, 1, 2, 3 …) in others
- What are some issues already?
- 5 million times 50 takes us into the range of a quarter trillion judgments
 - If each judgment took a human 2.5 seconds, we’d still need 10^{11} seconds, or nearly 300 million if you pay people 10 per hour to assess
 - 10K new products per day

Crowd source relevance judgments?

- Present query-document pairs to low-cost labor on online crowd-sourcing platforms
 - Hope that this is cheaper than hiring qualified assessors
- Lots of literature on using crowd-sourcing for such tasks
- Main takeaway – you get some signal, but the variance in the resulting judgments is very high

Evaluating an IR system

- Note: user need is translated into a query
- Relevance is assessed relative to the user need, not the query
- E.g., Information need: My swimming pool bottom is becoming black and needs to be cleaned.
- Query: pool cleaner
- Assess whether the doc addresses the underlying need, not whether it has these words

What else?

- Still need test queries
 - Must be germane to docs available
 - Must be representative of actual user needs
 - Random query terms from the documents generally not a good idea
 - Sample from query logs if available
- Classically (non-Web)
 - Low query rates – not enough query logs
 - Experts hand-craft “user needs”

Some public test Collections

<table>
<thead>
<tr>
<th>Collection</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC</td>
<td>34,500</td>
<td>150,000</td>
<td>250,000</td>
<td>300,000</td>
<td>350,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Typical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sec. 8.1

Sec. 8.3
Now we have the basics of a benchmark

- Let’s review some evaluation measures
 - Precision
 - Recall
 - NDCG
 - …

Unranked retrieval evaluation: Precision and Recall – recap from IIR 8/video

- **Binary assessments**
 - **Precision**: fraction of retrieved docs that are relevant = $P(\text{relevant} | \text{retrieved})$
 - **Recall**: fraction of relevant docs that are retrieved = $P(\text{retrieved} | \text{relevant})$

<table>
<thead>
<tr>
<th>Relevant</th>
<th>Nonrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>tp</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>fn</td>
</tr>
</tbody>
</table>

- Precision $P = \frac{tp}{tp + fp}$
- Recall $R = \frac{tp}{tp + fn}$

Rank-Based Measures

- **Binary relevance**
 - Precision@K ($P@K$)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)

- **Multiple levels of relevance**
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K
- **Ex:**
 - $P_{@3}$ of 2/3
 - $P_{@4}$ of 2/4
 - $P_{@5}$ of 3/5

In similar fashion we have Recall@K

Mean Average Precision

- Consider rank position of each relevant doc
 - K_1, K_2, \ldots, K_R
- Compute Precision@K for each K_1, K_2, \ldots, K_R
- Average precision = average of $P@K$
- **Ex:**
 - has AvgPrec of $\frac{1}{3} \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5} \right) = 0.76$
- MAP is Average Precision across multiple queries/rankings
Average Precision

| Ranking #1 | 0.17 | 0.17 | 0.37 | 0.67 | 0.69 | 0.66 |
| Result | 1.0 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |

| Ranking #2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Result | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |

Ranking #1: \((1.0 + 0.67 + 0.37 + 0.67 + 0.69 + 0.66)/6 = 0.78\)

Ranking #2: \((0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5)/6 = 0.52\)

Mean average precision

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

MAP

Average precision query 1 = \((1.0 + 0.67 + 0.37 + 0.67 + 0.69 + 0.66)/6 = 0.78\)

Average precision query 2 = \((0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5)/6 = 0.52\)

Mean average precision = \((0.78 + 0.52)/2 = 0.65\)

BEYOND BINARY RELEVANCE

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant documents
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined
Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is $1/\log (\text{rank})$
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

DCG Example

10 ranked documents judged on 0-3 relevance scale:

- 3, 2, 3, 0, 0, 1, 2, 3, 0
- discounted gain:
 - 3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
- DCG:
 - 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

Summarize a Ranking: DCG

- What if relevance judgments are in a scale of $[0,r]$?
- Cumulative Gain (CG) at rank n
 - Let the ratings of the n documents be r_1, r_2, \ldots, r_n (in ranked order)
 - $CG = r_1 + r_2 + \ldots + r_n$
- Discounted Cumulative Gain (DCG) at rank n
 - $DCG = r_1 + \frac{r_2}{\log 2} + \frac{r_3}{\log 3} + \ldots + \frac{r_n}{\log n}$
 - We may use any base for the logarithm

NDCG - Example

Normalized Discounted Cumulative Gain (NDCG) at rank n

- Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
- The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
- Normalization useful for contrasting queries with varying numbers of relevant results
- NDCG is now quite popular in evaluating Web search

<table>
<thead>
<tr>
<th>Document Order</th>
<th>Document Order</th>
<th>Document Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>d2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>d3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>d4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Document Order</th>
<th>Ranking Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>3</td>
</tr>
<tr>
<td>d2</td>
<td>2</td>
</tr>
<tr>
<td>d3</td>
<td>1</td>
</tr>
<tr>
<td>d4</td>
<td>0</td>
</tr>
</tbody>
</table>

NDCG:

$$NDCG = \frac{DCG_{actual}}{DCG_{ideal}}$$

DCG Example

4 documents: d_1, d_2, d_3, d_4

<table>
<thead>
<tr>
<th>Document Order</th>
<th>Ranking Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>3</td>
</tr>
<tr>
<td>d2</td>
<td>2</td>
</tr>
<tr>
<td>d3</td>
<td>1</td>
</tr>
<tr>
<td>d4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Document Order</th>
<th>Ranking Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>3</td>
</tr>
<tr>
<td>d2</td>
<td>2</td>
</tr>
<tr>
<td>d3</td>
<td>1</td>
</tr>
<tr>
<td>d4</td>
<td>0</td>
</tr>
</tbody>
</table>

$NDCG_{d1} = \frac{3}{\log 2} = 1.585$
$NDCG_{d2} = \frac{2}{\log 3} = 0.808$
$NDCG_{d3} = \frac{1}{\log 4} = 0.405$
$NDCG_{d4} = \frac{0}{\log 5} = 0.000$

$NDCG_{total} = \frac{1.585 + 0.808 + 0.405 + 0.000}{4} = 0.646$
What if the results are not in a list?

- Suppose there’s only one Relevant Document
- Scenarios:
 - known-item search
 - navigational queries
 - looking for a fact
- Search duration ~ Rank of the answer
 - measures a user's effort

Mean Reciprocal Rank

- Consider rank position, K, of first relevant doc
 - Could be – only clicked doc
- Reciprocal Rank score = \(\frac{1}{K} \)
- MRR is the mean RR across multiple queries

Human judgments are

- Expensive
- Inconsistent
 - Between raters
 - Over time
- Decay in value as documents/query mix evolves
- Not always representative of “real users”
 - Rating vis-à-vis query, vs underlying need
- So – what alternatives do we have?

What do clicks tell us?

Strong position bias, so absolute click rates unreliable

Relative vs absolute ratings

Hard to conclude Result1 > Result3
Probably can conclude Result3 > Result2
Pairwise relative ratings

- Pairs of the form: DocA better than DocB for a query
 - Doesn’t mean that DocA relevant to query
- Now, rather than assess a rank-ordering wrt per-doc relevance assessments
- Assess in terms of conformance with historical pairwise preferences recorded from user clicks

A/B testing at web search engines

- **Purpose:** Test a single innovation
- **Prerequisite:** You have a large search engine up and running.
- Have most users use old system
- Divert a small proportion of traffic (e.g., 1%) to an experiment to evaluate an innovation
 - Full page experiment
 - Interleaved experiment

Comparing two rankings via clicks (Joachims 2002)

Query: [support vector machines]

<table>
<thead>
<tr>
<th>Ranking A</th>
<th>Ranking B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel machines</td>
<td>Kernel machines</td>
</tr>
<tr>
<td>SVM-light</td>
<td>SVM-light</td>
</tr>
<tr>
<td>Lucent SVM demo</td>
<td>Intro to SVMs</td>
</tr>
<tr>
<td>Royal Holl. SVM</td>
<td>Archives of SVM</td>
</tr>
<tr>
<td>SVM software</td>
<td>SVM-light</td>
</tr>
<tr>
<td>SVM tutorial</td>
<td>SVM software</td>
</tr>
</tbody>
</table>

Interleave the two rankings

This interleaving starts with B

Remove duplicate results

Kernel machines	Kernel machines
SVMs	SVMs
SVM-light	SVM-light
Intro to SVMs	Intro to SVMs
Lucent SVM demo	Lucent SVM demo
Archives of SVM	Archives of SVM
Royal Holl. SVM	Royal Holl. SVM
SVM-light	SVM-light

Count user clicks

Ranking A: 3
Ranking B: 1

Clicks: A, B

A
Interleaved ranking

- Present interleaved ranking to users
 - Start randomly with ranking A or ranking B to even out presentation bias
- Count clicks on results from A versus results from B
- Better ranking will (on average) get more clicks

Comparing two rankings to a baseline ranking

- Given a set of pairwise preferences \(P \)
- We want to measure two rankings \(A \) and \(B \)
- Define a proximity measure between \(A \) and \(P \)
 - And likewise, between \(B \) and \(P \)
- Want to declare the ranking with better proximity to be the winner
- Proximity measure should reward agreements with \(P \) and penalize disagreements

Kendall tau distance

- Let \(X \) be the number of agreements between a ranking (say \(A \)) and \(P \)
- Let \(Y \) be the number of disagreements
- Then the Kendall tau distance between \(A \) and \(P \) is \(\frac{(X-Y)}{(X+Y)} \)
- Say \(P = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\} \) and \(A=(1,3,2,4) \)
- Then \(X=5, Y=1 \) ...
- (What are the minimum and maximum possible values of the Kendall tau distance?)

Recap

- Benchmarks consist of
 - Document collection
 - Query set
 - Assessment methodology
- Assessment methodology can use raters, user clicks, or a combination
 - These get quantized into a goodness measure – Precision/NDCG etc.
 - Different engines/algorithms compared on a benchmark together with a goodness measure