Introduction to Information Retrieval

CS276 Information Retrieval and Web Search
Chris Manning and Pandu Nayak

Personalization

- Ambiguity means that a single ranking is unlikely to be optimal for all users
- Personalized ranking is the only way to bridge the gap
- Personalization can use
 - Long term behavior to identify user interests, e.g., a long term interest in user interface research
 - Short term session to identify current task, e.g., checking on a series of stock tickers
 - User location, e.g., MTA in New York vs Baltimore
 - Social network
 - ...

Potential for Personalization

[Teevan, Dumais, Horvitz 2010]

- How much can personalization improve ranking? How can we measure this?
 - Ask raters to explicitly rate a set of queries
 - But rather than asking them to guess what a user's information need might be ...
 - ... ask which results they would personally consider relevant
 - Use self-generated and pre-generated queries

Computing potential for personalization

- For each query q
 - Compute average rating for each result
 - Let R_q be the optimal ranking according to the average rating
 - Compute the NDCG value of ranking R_q for the ratings of each rater i
 - Let Avg_i be the average of the NDCG values for each rater
 - Let Avg be the average Avg_i over all queries
 - Potential for personalization is $(1 - \text{Avg})$

Example: NDCG values for a query

<table>
<thead>
<tr>
<th>Result</th>
<th>Rater A</th>
<th>Rater B</th>
<th>Average rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D6</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>D7</td>
<td>1</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>D8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDCG</td>
<td>0.88</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

Average NDCG for raters: 0.77
Example: NDCG values for optimal ranking for average ratings

<table>
<thead>
<tr>
<th>Result</th>
<th>Rater A</th>
<th>Rater B</th>
<th>Average rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>1</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D1</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>D6</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDCG</td>
<td>0.98</td>
<td>0.96</td>
<td></td>
</tr>
</tbody>
</table>

Average NDCG for raters: 0.97

Example: Potential for personalization

<table>
<thead>
<tr>
<th>Result</th>
<th>Rater A</th>
<th>Rater B</th>
<th>Average rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>1</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>D6</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDCG</td>
<td>0.98</td>
<td>0.96</td>
<td></td>
</tr>
</tbody>
</table>

Potential for personalization: 0.03

Potential for personalization graph

PERSONALIZING SEARCH

Personalizing search

[Pitkow et al. 2002]

- Two general ways of personalizing search
 - Query expansion
 - Modify or augment user query
 - E.g., query term "IR" can be augmented with either "information retrieval" or "ingersoll-Rand" depending on user interest
 - Ensures that there are enough personalized results
 - Reranking
 - Issue the same query and fetch the same results ...
 - ... but rerank the results based on a user profile
 - Allows both personalized and globally relevant results

User interests

- Explicitly provided by the user
 - Sometimes useful, particularly for new users
 - ... but generally doesn’t work well
- Inferred from user behavior and content
 - Previously issued search queries
 - Previously visited Web pages
 - Personal documents
 - Emails
- Ensuring privacy and user control is very important
Relevance feedback perspective

[Teven, Dumais, Horvitz 2005]

User model
(source of relevant documents)

Query

Search
Engine

Personalized
reranking

Results

Personalized
Results

Binary Independence Model

• Estimating RSV coefficients in theory
 \[c_i = \log \frac{p_i(1-p_i)}{p_i(1-p_i)} \]

• For each term / look at this table of document counts:

<table>
<thead>
<tr>
<th>Documents</th>
<th>Relevant</th>
<th>Non-Relevant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 1</td>
<td>s_i</td>
<td>n_i - s_i</td>
<td>r_i</td>
</tr>
<tr>
<td>x = 0</td>
<td>S - s_i</td>
<td>N - s_i - N</td>
<td>N - r_i</td>
</tr>
<tr>
<td>Total</td>
<td>S</td>
<td>N - S</td>
<td>N</td>
</tr>
</tbody>
</table>

• Estimates:
 \[p_i = \frac{s_i}{S} \]
 \[r_i = \frac{(n_i - s_i)}{(N - S)} \]
 \[c_i = K(N, n_i, S, s_i) = \log \frac{s_i}{(S - s_i) / (n_i - s_i)} \]
 \[= \log \left(\frac{n_i}{N} \right) \]

For now, assume no zero terms. See later lecture.

Personalization as relevance feedback

BM25 scoring

\[\sum c_i \times tf_i \]

Use updated weight c_i in BM25

\[c_i = \log \left(\frac{s_i + 0.5}{S - s_i + 0.5} \right) \frac{(N - n_i + 0.5)}{(n_i + 0.5)} = \log \left(\frac{s_i + 0.5}{N - s_i + 0.5} + IDF_i \right) \]

where we have used

\[N' = N + S \]
\[n'_i = n_i + s_i \]

Corpus representation

• Estimating N and n_i

 Many possibilities
 \[N: \text{All documents, query relevant documents, result set} \]
 \[n_i: \text{Full text, only titles and snippets} \]

 Practical strategy
 \[\text{Approximate corpus statistics from result set} \]
 \[\text{... and just the title and snippets} \]
 \[\text{Empirically seems to work the best!} \]

User representation

• Estimating S and s_i

 Estimated from a local search index containing
 \[\text{Web pages the user has viewed} \]
 \[\text{Email messages that were viewed or sent} \]
 \[\text{Calendar items} \]
 \[\text{Documents stored on the client machine} \]

 Best performance when
 \[S \text{ is the number of local documents matching the query} \]
 \[s_i \text{ is the number that also contains term } i \]
Document and query representation

- Document represented by the title and snippets
- Query is expanded to contain words near query terms (in titles and snippets)
 - For the query [cancer] add underlined terms

 The American Cancer Society is dedicated to eliminating cancer as a major health problem by preventing cancer, saving lives, and diminishing suffering through ...

- This combination of corpus, user, document, and query representations seem to work well

User location

- User location is one of the most important features for personalization
 - Country
 - Query [football] in the US vs the UK
 - State/Metro/City
 - Queries like [zoo], [craigslist], [giants]
 - Fine-grained location
 - Queries like [pizza], [restaurants], [coffee shops]

Challenges

- Not all queries are location sensitive
 - [facebook] is not asking for the closest Facebook office
 - [seaworld] is not necessarily asking for the closest SeaWorld
- Different parts of a site may be more or less location sensitive
 - NYTimes home page vs NYTimes Local section
- Addresses on a page don’t always tell us how location sensitive the page is
 - Stanford home page has address, but not location sensitive

Key idea

[Bennett et al. 2011]

- Usage statistics, rather than locations mentioned in a document, best represent where it is relevant
 - I.e., if users in a location tend to click on that document, then it is relevant in that location
- User location data is acquired from anonymized logs (with user consent, e.g., from a widely distributed browser extension)
- User IP addresses are resolved into geographic location information

Location interest model

- Use the logs data to estimate the probability of the location of the user given they viewed this URL

\[P(location = x | URL) \]

(c) Los Angeles Times: Reviews and Recommendations
http://findlocal.latimes.com/
Introduction to Information Retrieval

Location interest model

- Use the logs data to estimate the probability of the location of the user given they viewed this URL

\[P(\text{location} = x | \text{URL}) \]

Learning the location interest model

- For compactness, represent location interest model as a mixture of 5-25 2-d Gaussians (x is [lat, long])

\[P(\text{location} = x | \text{URL}) = \sum_{i=1}^{k} w_i \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)} \]

- Learn Gaussian mixture model using EM
 - Expectation step: Estimate probability that each point belongs to each Gaussian
 - Maximization step: Estimate most likely mean, covariance, weight

More location interest models

- Learn a location-interest model for queries
 - Using location of users who issued the query
- Learn a background model showing the overall density of users

Location sensitive features

- Non-contextual features (user-independent)
 - Is the query location sensitive? What about the URLs?
 - Feature: Entropy of the location distribution
 - Low entropy means distribution is peaked and location is important
 - Feature: KL-divergence between location model and background model
 - High KL-divergence suggests that it is location sensitive
 - Feature: KL-divergence between query and URL models
 - Low KL-divergence suggests URL is more likely to be relevant to users issuing the query

More location sensitive features

- Contextual features (user-dependent)
 - Feature: User’s location (naturally!)
 - Feature: Probability of the user’s location given the URL
 - Computed by evaluating URL’s location model at user location
 - Feature is high when user is at a location where URL is popular
 - Downside: large population centers tend to higher probabilities for all URLs
 - Feature: Use Bayes rule to compute \(P(\text{URL} | \text{user location}) \)
 - Feature: Also create a normalized version of the above feature by normalizing with the background model
 - Features: Versions of the above with query instead of URL
Learning to rank

- Add location features (in addition to standard features) for machine learned ranking
- Training data derived from logs
- \(P(\text{URL} \mid \text{user location}) \) turns out to be an important feature
- KL divergence of the URL model from the background model also plays an important role

Query model for [rta bus schedule]

User in New Orleans

URL model for top original result

User in New Orleans

(a) http://www.ridetu.com/maps-schedules.asp

URL model for promoted URL

User in New Orleans

(b) http://www.norta.com/

Pagerank review

- Let \(A \) be the stochastic matrix corresponding to the Web graph \(G \) over \(n \) nodes
 - No teleportation links (but assume no deadends in \(G \))
 - If node \(i \) has \(o_i \) outlinks, and there is an edge from node \(i \) to node \(j \), then \(A_{ij} = 1/o_i \)
- Let \(p \) be the teleportation probabilities
 - \((n \times 1)\) column vector with each entry being \(1/n \)
- Pagerank vector \(r \) is defined by the following
 \[
 r = (1 - \alpha)Ar + \alpha p
 \]
Introduction to Information Retrieval

Personalized pagerank

[Haveliwala 2003] [Jeh and Widom 2003]
- In the basic pagerank computation, teleportation probability vector p is uniform over all pages
- But if the user has preferences on which pages to teleport to, that preference can be represented in p
 - p could be uniform over user’s bookmarks
 - Or it could be non-zero on just pages on topics of interest to the user
- Pagerank would be personalized to user’s interests
- But computing personalized pagerank is expensive

Linearity theorem
- For any preference vectors u_1 and u_2, if v_1 and v_2 are the corresponding personalized pagerank vectors, then for any non-negative constants a_1 and a_2 such that $a_1 + a_2 = 1$, we have
 $$a_1 v_1 + a_2 v_2 = (1 - \alpha) A(a_1 v_1 + a_2 v_2) + \alpha (a_1 u_1 + a_2 u_2)$$

Proof
- $$a_1 v_1 + a_2 v_2 = a_1 ((1 - \alpha) A v_1 + \alpha u_1) + a_2 ((1 - \alpha) A v_2 + \alpha u_2)$$
- $$= a_1 (1 - \alpha) A v_1 + a_1 \alpha u_1 + a_2 (1 - \alpha) A v_2 + a_2 \alpha u_2$$
- $$= (1 - \alpha) A(a_1 v_1 + a_2 v_2) + \alpha (a_1 u_1 + a_2 u_2)$$

Topic-sensitive pagerank
- Compute personalized pagerank vector per topic
 - 16 top-level topics from the Open Directory Project
 - Each ODP topic has a set of pages (hand-)classified into that topic
 - Preference vector for the topic is uniform over pages in that topic, and 0 elsewhere
- Note: [Jeh and Widom 2003] provide a more general treatment

Query-time processing
- Construct a distribution over topics for the query
 - User profile can provide a distribution over topics
 - Query can be classified into the different topics
 - Any other context information can be used to inform topic distributions
- Use the topic preferences to compute a weighted linear combination of topic pagerank vectors to use in place of pagerank

Unicorn
[Curtiss et al 2013]
- Primary backend for Facebook Graph Search
- Facebook social graph
 - Nodes represent people and things (entities)
 - Each entity has a unique 64-bit id
 - Edges represent relationships between nodes
 - There are many thousands of edge-types
 - Examples: friend, likes, likers, ...
Data model
- Billions of nodes, but graph is sparse
- Represent graph using adjacency list
- Postings sorted by sort-key (importance) and then id
- Index sharded by result-id

Basic set operations
- Query language includes basic set operations
 - and, or, difference
- Friends of either Jon Jones (id 5) and Lea Lin (id 6)
 \(\text{or}(\text{friend}:5 \text{ friend}:6) \)
- Female friends of Jon Jones who are not friend of Lea Lin
 \(\text{difference}(\text{and}\text{ friend}:5 \text{ gender}:1) \text{ friend}:6 \)

Typeahead
- Find users by typing first few characters of their name
- Index servers contain postings lists for every name prefix up to a predefined character limit
 - Simple typeahead implementation would simply return ids in the corresponding postings lists
- Simple solution doesn’t ensure social relevance
- Alternate solution: Use a conjunctive query
 \(\text{and mel* \text{ friend}:3} \)
 - Misses people who are not friends
 - Issuing two queries is expensive

WeakAnd operator
- Provides a mechanism for some fraction of results to possess a trait without requiring trait for all results
- WeakAnd allows missing terms from some results
 - These optional terms can have an optional count or weight
 - Once the optional count is met, the term is required
 \(\text{weak-and}(\text{term friend}:3 \text{ :optional-hits 2}) \text{ term melanie} \text{ term mars*}) \)

Graph Search
- Graph Search results are often more than one edge away from source nodes
 - Example: Pages liked by friends of Melanie who like Emacs
- Unicorn provides additional operators to support Graph Search
 - Apply
 \(\text{apply likes: (and friend:7 likers:42)} \)
 - Extract
 * Extract and return [denormalized] ids stored in HitData

References
- J. Pitkow et al. Personalized search. 2002
- J. Teevan, S. Dumais, E. Horvitz. Personalizing search via automated analysis of interests and activities. 2005
- P. Bennett et al. Inferring and using location metadata to personalize Web search. 2011
- T. Haveliwala. Topic-sensitive pagerank. 2002
- M. Curtiss et al. Unicorn: A system for searching the social graph. 2013