Restaurant recommendations

- We have a list of all Palo Alto restaurants
 - with ↑ and ↓ ratings for some
 - as provided by some Stanford students
- Which restaurant(s) should I recommend to you?

Input

<table>
<thead>
<tr>
<th></th>
<th>Il Fornai</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Ming's</td>
<td>No</td>
</tr>
<tr>
<td>Cindy</td>
<td>Steak Cafe</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Ming's</td>
<td>Yes</td>
</tr>
<tr>
<td>Alice</td>
<td>Steak Cafe</td>
<td>No</td>
</tr>
<tr>
<td>Etta</td>
<td>Zoo</td>
<td>Yes</td>
</tr>
<tr>
<td>Cindy</td>
<td>Zoo</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Brahma Bull</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Zoo</td>
<td>Yes</td>
</tr>
<tr>
<td>Etta</td>
<td>Ming's</td>
<td>Yes</td>
</tr>
<tr>
<td>Fred</td>
<td>Brahma Bull</td>
<td>No</td>
</tr>
<tr>
<td>Alice</td>
<td>Mango Cafe</td>
<td>No</td>
</tr>
<tr>
<td>Fred</td>
<td>Ramona's</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Homma's</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>Higashi West</td>
<td>Yes</td>
</tr>
<tr>
<td>Etta</td>
<td>Steak Cafe</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Algorithm 0

- Recommend to you the most popular restaurants
 - say # positive votes minus # negative votes
- Ignores your culinary preferences
 - And judgements of those with similar preferences
- How can we exploit the wisdom of “like-minded” people?

Another look at the input - a matrix

<table>
<thead>
<tr>
<th>Brahma Bull</th>
<th>Higashi West</th>
<th>Mango Cafe</th>
<th>Il Fornai</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cindy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>No</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brahma Bull</th>
<th>Higashi West</th>
<th>Mango Cafe</th>
<th>Il Fornai</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Cindy</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

Now that we have a matrix

View all other entries as zeros for now.
Similiarity_between_two_people

- Similiarity_between_their_preference_vectors.
- Inner_products_are_a_good_start.
- Dave has similarity 3 with Estie
 - but 2 with Cindy.
- Perhaps recommend Straits Cafe to Dave
 and Il Fornaio to Bob, etc.

Algorithm_1.1

- You give me your preferences and I need to
give you a recommendation.
- I find the person “most similar” to you in
my database and recommend something he
likes.
- Aspects to consider:
 - No attempt to discern cuisines, etc.
 - What if you’ve been to all the restaurants he
 has?
 - Do you want to rely on one person’s
 opinions?

Algorithm_1.k

- You give me your preferences and I need to
give you a recommendation.
- I find the k people “most similar” to you in
my database and recommend what’s most
popular amongst them.
- Issues:
 - A priori unclear what k should be
 - Risks being influenced by “unlike minds”

Slightly more sophisticated
attempt

- Group similar users together into clusters
- You give your preferences and seek a
recommendation, then
 - Find the “nearest cluster” (what’s this?)
 - Recommend the restaurants most popular in
 this cluster
- Features:
 - avoids data sparsity issues
 - still no attempt to discern why you’re
 recommended what you’re recommended
 - how do you cluster?

How do you cluster?

- Must keep similar people together in a
cluster
- Separate dissimilar people
- Factors:
 - Need a notion of similarity/distance
 - Vector space? Normalization?
 - How many clusters?
 - Fixed a priori?
 - Completly data driven?
 - Avoid “trivial” clusters - too large or small

Looking beyond

- Clustering people for restaurant recommendations
- Clustering other things
documents, web pages
- Other approaches
recommendation
- General unsupervised machine learning
Why cluster documents?
- For improving recall in search applications
- For speeding up vector space retrieval
- Corpus analysis/navigation
 - Sense disambiguation in search results

Improving search recall
- **Cluster hypothesis** - Documents with similar text are related
- Ergo, to improve search recall:
 - Cluster docs in corpus a priori
 - When a query matches a doc D, also return other docs in the cluster containing D
- Hope: docs containing *automobile* returned on a query for *car* because
 - clustering grouped together docs containing *car* with those containing *automobile.*

Why might this happen?

Speeding up vector space retrieval
- In vector space retrieval, must find nearest doc vectors to query vector
- This would entail finding the similarity of the query to every doc - slow!
- By clustering docs in corpus a priori
 - find nearest docs in cluster(s) close to query
 - inexact but avoids exhaustive similarity computation.

Exercise: Make up a simple example with points on a line in 2 clusters where this inexactness shows up.

Corpus analysis/navigation
- Given a corpus, partition it into groups of related docs
 - Recursively, can induce a tree of topics
 - Allows user to browse through corpus to home in on information
 - Crucial need: meaningful labels for topic nodes.
- **Screenshot.**

Navigating search results
- Given the results of a search (say *jaguar*), partition into groups of related docs
 - sense disambiguation
- See for instance vivisimo.com

Results list clustering example
- **Cluster 1:**
 - Jaguar Menu
 - Quick reference guide
 - Jaguar Maintenance manual
- **Cluster 2:**
 - Jaguar Accessories
 - Jaguar Special Offers
- **Cluster 3:**
 - Jaguar Sports Cars
 - Jaguar History
 - Jaguar Car Park
 - Jaguar Autosport
 - Jaguar Sport Cars
What makes docs “related”?

- Ideal: semantic similarity.
- Practical: statistical similarity
 - We will use cosine similarity.
 - Docs as vectors.
 - For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
 - We will describe algorithms in terms of cosine similarity.

Recall doc as vector

- Each doc is a vector of tf*idf values, one component for each term.
- Can normalize to unit length.
- So we have a vector space
 - terms are axes - aka features
 - n docs live in this space
 - even with stemming, may have 10000+ dimensions
 - do we really want to use all terms?

Intuition

Cosine similarity

Cosine similarity of \(D_j, D_k \):

\[
\text{sim}(D_j, D_k) = \sum_{i=1}^{m} w_j \times w_{ik}
\]

Aka normalized inner product.

Two flavors of clustering

- Given \(n \) docs and a positive integer \(k \), partition docs into \(k \) (disjoint) subsets.
- Given docs, partition into an “appropriate” number of subsets.
 - E.g., for query results - ideal value of \(k \) not known up front - though UI may impose limits.
 - Can usually take an algorithm for one flavor and convert to the other.

Thought experiment

- Consider clustering a large set of computer science documents
 - what do you expect to see in the vector space
Thought experiment

- Consider clustering a large set of computer science documents
- what do you expect to see in the vector space?

Decision boundaries

- Could we use these blobs to infer the subject of a new document?

Deciding what a new doc is about

- Check which region the new doc falls into
- can output “softer” decisions as well.

Setup

- Given “training” docs for each category
 - Theory, AI, NLP, etc.
 - Cast them into a decision space
 - generally a vector space with each doc viewed as a bag of words
 - Build a classifier that will classify new docs
 - Essentially, partition the decision space
 - Given a new doc, figure out which partition it falls into

Supervised vs. unsupervised learning

- This setup is called supervised learning in the terminology of Machine Learning
- In the domain of text, various names
 - Text classification, text categorization
 - Document classification/categorization
 - “Automatic” categorization
 - Routing, filtering ...
- In contrast, the earlier setting of clustering is called unsupervised learning
 - Presumes no availability of training samples
 - Clusters output may not be thematically unified.

“Which is better?”

- Depends
 - on your setting
 - on your application
- Can use in combination
 - Analyze a corpus using clustering
 - Hand-tweak the clusters and label them
 - Use clusters as training input for classification
 - Subsequent docs get classified
- Computationally, methods quite different
What more can these methods do?

- Assigning a category label to a document is one way of adding structure to it.
- Can add others, e.g., extract from the doc
 - people
 - places
 - dates
 - organizations ...
- This process is known as information extraction
 - can also be addressed using supervised learning.

Information extraction - methods

- Simple dictionary matching
- Supervised learning
 - e.g., train using URL’s of universities
 - classifier learns that the portion before .edu is likely to be the University name.
- Regular expressions
 - Dates, prices
- Grammars
 - Addresses
- Domain knowledge
 - Resume/invoice field extraction

Information extraction - why

- Adding structure to unstructured/semi-structured documents
- Enable more structured queries without imposing strict semantics on document creation - why?
 - distributed authorship
 - legacy
 - Enable “mining”

Course preview

- Document Clustering:
- Next time:
 - algorithms for clustering
 - term vs. document space
 - hierarchical clustering
 - labeling
 - Jan 16: finish up document clustering
 - some implementation aspects for text
 - link-based clustering on the web

Course preview

- Text classification
 - Features for text classification
 - Algorithms for decision surfaces
- Information extraction
- More text classification methods
 - incl link analysis
- Recommendation systems
 - Voting algorithms
 - Matrix reconstruction
 - Applications to expert location

Course preview

- Text mining
 - Ontologies for information extraction
 - Topic detection/tracking
 - Document summarization
 - Question answering
- Bio-informatics
 - IR with textual and non-textual data
 - Gene functions; gene-drug interactions
Course administrivia

- Course URL: http://www.stanford.edu/class/cs276b/
- Grading:
 - 20% from midterm
 - 40% from final
 - 40% from project.

Course staff

- **Professor: Christopher Manning**
 Office: Gates 418
 manning@cs.stanford.edu
- **Professor: Prabhakar Raichavan**
 prahi@db.stanford.edu
- **Professor: Hinrich Schütze**
 schuette@csli.stanford.edu
- **Office Hours:** F 10-12
- **TA:** Teg Grenager
 Office: Office Hours: grenager@cs.stanford.edu

Course Project

- This quarter we’re doing a structured project
 - The whole class will work on a system to search/cluster/classify/extract/mine research papers
 - Citeseer on uppers [http://citeseer.com/]
 - This domain provides opportunities for exploring almost all the topics of the course:
 - text classification, clustering, information extraction, linkage algorithms, collaborative filtering, textbase visualization, text mining
 - ... as well as opportunities to learn about building a large real working system

Course Project

- Two halves:
 - In first half (divided into two phases), people will build basic components, infrastructure, and data sets/databases for project
 - Second half: student-designed project related to goals of this project
 - In general, work in groups of 2 on projects
 - Reuse existing code where available
 - Lucene IR, ps/pdf to text converters, ...
 - 40% of the grade (distributed over phases)
 - Watch for more details in Tue 14 Jan lecture

Resources

- **Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections (1992)**
 - Cutting/Karger/Pederesen/Tukey
 - http://citeseer.nj.nec.com/cutting92scattergather.html
- **Data Clustering: A Review (1999)**
 - Jain/Murty/Flynn
 - http://citeseer.nj.nec.com/jain99data.html