CS276B
Text Information Retrieval, Mining, and Exploitation

Lecture 1
Jan 7 2003
Restaurant recommendations

- We have a list of all Palo Alto restaurants with \(\uparrow \) and \(\downarrow \) ratings for some
 - as provided by some Stanford students
- Which restaurant(s) should I recommend to you?
<table>
<thead>
<tr>
<th>Name</th>
<th>Restaurant</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Il Fornaio</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>Ming's</td>
<td>No</td>
</tr>
<tr>
<td>Cindy</td>
<td>Straits Café</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Ming's</td>
<td>Yes</td>
</tr>
<tr>
<td>Alice</td>
<td>Straits Café</td>
<td>No</td>
</tr>
<tr>
<td>Estie</td>
<td>Zao</td>
<td>Yes</td>
</tr>
<tr>
<td>Cindy</td>
<td>Zao</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Brahma Bull</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Zao</td>
<td>Yes</td>
</tr>
<tr>
<td>Estie</td>
<td>Ming's</td>
<td>Yes</td>
</tr>
<tr>
<td>Fred</td>
<td>Brahma Bull</td>
<td>No</td>
</tr>
<tr>
<td>Alice</td>
<td>Mango Café</td>
<td>No</td>
</tr>
<tr>
<td>Fred</td>
<td>Ramona's</td>
<td>No</td>
</tr>
<tr>
<td>Dave</td>
<td>Homma's</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>Higashi West</td>
<td>Yes</td>
</tr>
<tr>
<td>Estie</td>
<td>Straits Café</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Algorithm 0

- Recommend to you the most popular restaurants
 - say # positive votes minus # negative votes
- Ignores your culinary preferences
 - *And* judgements of those with similar preferences
- How can we exploit the wisdom of “like-minded” people?
Another look at the input - a matrix

<table>
<thead>
<tr>
<th></th>
<th>Brahma Bull</th>
<th>Higashi West</th>
<th>Mango</th>
<th>Il Fornaio</th>
<th>Zao</th>
<th>Ming's</th>
<th>Ramona's</th>
<th>Straits</th>
<th>Homma's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cindy</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Estie</td>
<td></td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Fred</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
Now that we have a matrix

<table>
<thead>
<tr>
<th></th>
<th>Brahma Bull</th>
<th>Higashi West</th>
<th>Mango</th>
<th>Il Fornaio</th>
<th>Zao</th>
<th>Ming's</th>
<th>Ramona's</th>
<th>Straits</th>
<th>Homma's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Cindy</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>Dave</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Estie</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fred</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

View all other entries as zeros for now.
Similarity between two people

- Similarity between their preference vectors.
- Inner products are a good start.
- Dave has similarity 3 with Estie
 - but -2 with Cindy.
- Perhaps recommend Straits Cafe to Dave
 - and Il Fornaio to Bob, etc.
Algorithm 1.1

- You give me your preferences and I need to give you a recommendation.
- I find the person “most similar” to you in my database and recommend something he likes.
- Aspects to consider:
 - No attempt to discern cuisines, etc.
 - What if you’ve been to all the restaurants he has?
 - Do you want to rely on one person’s opinions?
Algorithm 1. k

- You give me your preferences and I need to give you a recommendation.
- I find the k people “most similar” to you in my database and recommend what’s most popular amongst them.
- Issues:
 - A priori unclear what k should be
 - Risks being influenced by “unlike minds”
Slightly more sophisticated attempt

- Group similar users together into *clusters*
- You give your preferences and seek a recommendation, then
 - Find the “nearest cluster” (what’s this?)
 - Recommend the restaurants most popular in this cluster
- Features:
 - avoids data sparsity issues
 - still no attempt to discern why you’re recommended what you’re recommended
 - how do you cluster?
How do you cluster?

- Must keep similar people together in a cluster
- Separate dissimilar people
- Factors:
 - Need a notion of similarity/distance
 - Vector space? Normalization?
 - How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid “trivial” clusters - too large or small
Looking beyond

Clustering people for restaurant recommendations

Amazon.com

Clustering other things (documents, web pages)

Other approaches to recommendation

General unsupervised machine learning.
Why cluster documents?

- For improving recall in search applications
- For speeding up vector space retrieval
- Corpus analysis/navigation
 - Sense disambiguation in search results
Improving search recall

- *Cluster hypothesis* - Documents with similar text are related
- Ergo, to improve search recall:
 - Cluster docs in corpus a priori
 - When a query matches a doc D, also return other docs in the cluster containing D
- Hope: docs containing *automobile* returned on a query for *car* because
 - clustering grouped together docs containing *car* with those containing *automobile.*

Why might this happen?
Speeding up vector space retrieval

- In vector space retrieval, must find nearest doc vectors to query vector
- This would entail finding the similarity of the query to every doc - slow!
- By clustering docs in corpus a priori
 - find nearest docs in cluster(s) close to query
 - inexact but avoids exhaustive similarity computation

Exercise: Make up a simple example with points on a line in 2 clusters where this inexactness shows up.
Corpus analysis/navigation

- Given a corpus, partition it into groups of related docs
 - Recursively, can induce a tree of topics
 - Allows user to browse through corpus to home in on information
 - Crucial need: meaningful labels for topic nodes.

- Screenshot.
Navigating search results

- Given the results of a search (say *jaguar*), partition into groups of related docs
 - sense disambiguation
- See for instance vivisimo.com
Results list clustering example

- **Cluster 1:**
 - Jaguar Motor Cars’ home page
 - Mike’s XJS resource page
 - Vermont Jaguar owners’ club

- **Cluster 2:**
 - Big cats
 - My summer safari trip
 - Pictures of jaguars, leopards and lions

- **Cluster 3:**
 - Jacksonville Jaguars’ Home Page
 - AFC East Football Teams
What makes docs “related”?

- Ideal: semantic similarity.
- Practical: statistical similarity
 - We will use cosine similarity.
 - Docs as vectors.
 - For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
- We will describe algorithms in terms of cosine similarity.
Recall doc as vector

- Each doc j is a vector of $tf \times idf$ values, one component for each term.
- Can normalize to unit length.
- So we have a vector space
 - terms are axes - aka features
 - n docs live in this space
 - even with stemming, may have 10000+ dimensions
 - do we really want to use all terms?
Intuition

Postulate: Documents that are “close together” in vector space talk about the same things.
Cosine similarity

Cosine similarity of D_j, D_k:

$$sim(D_j, D_k) = \sum_{i=1}^{m} w_{ij} \times w_{ik}$$

Aka normalized inner product.
Two flavors of clustering

- Given \(n \) docs and a positive integer \(k \), partition docs into \(k \) (disjoint) subsets.
- Given docs, partition into an “appropriate” number of subsets.
 - E.g., for query results - ideal value of \(k \) not known up front - though UI may impose limits.
- Can usually take an algorithm for one flavor and convert to the other.
Thought experiment

- Consider clustering a large set of computer science documents
 - what do you expect to see in the vector space?
Thought experiment

- Consider clustering a large set of computer science documents
- What do you expect to see in the vector space?
Decision boundaries

- Could we use these blobs to infer the subject of a new document?
Deciding what a new doc is about

- Check which region the new doc falls into
 - can output “softer” decisions as well.
Setup

- Given “training” docs for each category
 - Theory, AI, NLP, etc.
- Cast them into a decision space
 - generally a vector space with each doc viewed as a bag of words
- Build a classifier that will classify new docs
 - Essentially, partition the decision space
- Given a new doc, figure out which partition it falls into
Supervised vs. unsupervised learning

- This setup is called *supervised learning* in the terminology of Machine Learning.
- In the domain of text, various names:
 - Text classification, text categorization
 - Document classification/categorization
 - "Automatic" categorization
 - Routing, filtering ...
- In contrast, the earlier setting of clustering is called *unsupervised learning*:
 - Presumes no availability of training samples
 - Clusters output may not be thematically unified.
“Which is better?”

- Depends
 - on your setting
 - on your application
- Can use in combination
 - Analyze a corpus using clustering
 - Hand-tweak the clusters and label them
 - Use clusters as training input for classification
 - Subsequent docs get classified
- Computationally, methods quite different
What more can these methods do?

- Assigning a category label to a document is one way of adding structure to it.
- Can add others, e.g., extract from the document:
 - people
 - places
 - dates
 - organizations ...
- This process is known as information extraction
 - can also be addressed using supervised learning.
Information extraction - methods

- Simple dictionary matching
- Supervised learning
 - e.g., train using URL’s of universities
 - classifier learns that the portion before `.edu` is likely to be the University name.
- Regular expressions
 - Dates, prices
- Grammars
 - Addresses
- Domain knowledge
 - Resume/invoice field extraction
Information extraction - why

- Adding structure to unstructured/semi-structured documents
- Enable more structured queries without imposing strict semantics on document creation - why?
 - distributed authorship
 - legacy
- Enable “mining”
Course preview

- **Document Clustering:**
- **Next time:**
 - algorithms for clustering
 - term vs. document space
 - hierarchical clustering
 - labeling
- **Jan 16:** finish up document clustering
 - some implementation aspects for text
 - link-based clustering on the web
Course preview

- **Text classification**
 - Features for text classification
 - Algorithms for decision surfaces
- **Information extraction**
- **More text classification methods**
 - incl link analysis
- **Recommendation systems**
 - Voting algorithms
 - Matrix reconstruction
 - Applications to expert location
Course preview

- **Text mining**
 - Ontologies for information extraction
 - Topic detection/tracking
 - Document summarization
 - Question answering

- **Bio-informatics**
 - IR with textual and non-textual data
 - Gene functions; gene-drug interactions
Course administrivia

- Course URL: http://www.stanford.edu/class/cs276b/
- Grading:
 - 20% from midterm
 - 40% from final
 - 40% from project.
Course staff

- **Professor:** Christopher Manning
 Office: Gates 418
 manning@cs.stanford.edu

- **Professor:** Prabhakar Raghavan
 pragh@db.stanford.edu

- **Professor:** Hinrich Schütze
 schuetze@csli.stanford.edu

- **Office Hours:** F 10-12

- **TA:** Teg Grenager
 Office:
 Office Hours:
 grenager@cs.stanford.edu
Course Project

- This quarter we’re doing a structured project
 - The whole class will work on a system to search/cluster/classify/extract/mine research papers
 - Citeseer on uppers [http://citeseer.com/]
 - This domain provides opportunities for exploring almost all the topics of the course:
 - text classification, clustering, information extraction, linkage algorithms, collaborative filtering, textbase visualization, text mining
- ... as well as opportunities to learn about building a large real working system
Course Project

- Two halves:
 - In first half (divided into two phases), people will build basic components, infrastructure, and data sets/databases for project
 - Second half: student-designed project related to goals of this project
- In general, work in groups of 2 on projects
- Reuse existing code where available
 - Lucene IR, ps/pdf to text converters, ...
- 40% of the grade (distributed over phases)
- Watch for more details in Tue 14 Jan lecture
Resources

- **Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections (1992)**
 - Cutting/Karger/Pedresen/Tukey
 - http://citeseer.nj.nec.com/cutting92scattergather.html

- **Data Clustering: A Review (1999)**
 - Jain/Murty/Flynn
 - http://citeseer.nj.nec.com/jain99data.html