CS276B
Text Information Retrieval, Mining, and Exploitation

Lecture 11
Feb 20, 2003
From the last lecture

- Recommendation systems
- What they are and what they do
- A couple of algorithms
- Going beyond simple behavior: context
- How do you measure them?
- Begin: how do you design them “optimally”?
 - Introduced utility formulation
Today’s topics

- “Clean-up” details from last time
 - Implementation
 - Extensions
 - Privacy
 - Network formulations
- Recap utility formulation
- Matrix reconstruction for low-rank matrices
- Compensation for recommendation
Implementation details

- Don’t really want to maintain this gigantic (and sparse) vector space
- Dimension reduction
- Fast near neighbors
- Incremental versions
 - update as new transactions arrive
 - typically done in batch mode
 - incremental dimension reduction etc.
Extensions

- Amazon - “why was I recommended this”
 - see where the “evidence” came from
- Clickstreams - do sequences matter?
- HMM’s to infer user type from browse sequence
 - e.g., how likely is the user to make a purchase?
 - Meager improvement in using sequence
Privacy

- What info does a recommendation leak?
 - E.g., you’re looking for illicit content and it shows me as an expert
- What about compositions of recommendations?
- “These films are popular among your colleagues”
- “People who bought this book in your dept also bought … ”
 - “Aggregates” are not good enough
- Poorly understood
Network formulations

- Social network theory
 - Graph of acquaintanceship between people
 - Six degrees of separation, etc.
- Consider broader social network of people, documents, terms, etc.
 - Links between docs a special case
Network formulations

- Instead of viewing users/items in a vector space
- Use a graph for capturing their interactions
- Users with similar ratings on many products are joined by a “strong” edge
 - Similarly for items, etc.
Recommendation from networks

- Look for docs near a user in the graph
 - “horting”
- What good does this do us?
- (In fact, we’ve already invoked such ideas in the previous lecture, connecting it to Hubs/Auths)
Network formulations

■ Advantages
 ■ Can use graph-theoretic ideas
 ■ E.g., similarity of two users based on proximity in graph
 ■ Even if they’ve rated no items in common
 ■ Good for intuition

■ Disadvantages
 ■ With many rating transactions, edges build up
 ■ Graph becomes unwieldy representation
 ■ E.g., triangle inequality doesn’t hold
 ■ No implicit connections between entities
 ■ Should two items become “closer” simply because one user rates them both similarly?
Vector vs. network formulations

- Some advantages – e.g., proximity between users with no common ratings – can be engineered in a vector space
 - Use SVD’s, vector space clustering
- Network formulations are good for intuition
 - Questionable for implementation
 - Good starting point then implement with linear algebra – as we did in link analysis
Measuring recommendations: Recall utility formulation

- $m \times n$ matrix U of utilities for each of m users for each of n items: U_{ij}
 - not all utilities known in advance
 - (which ones do we know?)
- Predict which (unseen) utilities are highest for each user i
User types

- If users are arbitrary, all bets are off
 - Assume matrix U is of low rank
 - a constant k independent of m, n
- I.e., users belong to k well-separated types
 - (almost)
 - Most users’ utility vectors are close to one of k well-separated vectors
Intuitive picture (exaggerated)
Matrix reconstruction

- Given some utilities from the matrix
- Reconstruct missing entries
 - Suffices to predict biggest missing entries for each user
 - Suffices to predict (close to) the biggest
- For most users
 - Not the atypical ones
Intuitive picture

Samples → Type 1

Users

Type 2

Items

... Type k

Atypical users
Matrix reconstruction: Achlioptas/McSherry

- Let \hat{U} be obtained from U by the following sampling: for each i,j
 - $\hat{U}_{ij} = U_{ij}$, with probability $1/s$,
 - $\hat{U}_{ij} = 0$ with probability $1-1/s$.

- The sampling parameter s has some technical conditions, but think of it as a constant like 100.

- Interpretation: \hat{U} is the sample of user utilities that we’ve managed to get our hands on
 - From past transactions
 - (that’s a lot of samples)
How do we reconstruct U from \hat{U}?

- First the “succinct” way
 - then the (equivalent) intuition
- Find the best rank k approximation to $s\hat{U}$
 - Use SVD (best by what measure?)
 - Call this \hat{U}_k
- Output \hat{U}_k as the reconstruction of U
 - Pick off top elements of each row as recommendations, etc
Achlioptas/McSherry theorem

- With high probability, reconstruction error is small
 - see paper for detailed statement
- What’s high probability?
 - Over the samples
 - not the matrix entries
- What’s error – how do you measure it?
Norms of matrices

- Frobenius norm of a matrix M:
 - $|M|_F^2 = \text{sum of the square of the entries of } M$
- Let M_k be the rank k approximation computed by the SVD
- Then for any other rank k matrix X, we know
 - $|M - M_k|_F \leq |M - X|_F$
- Thus, the SVD gives the best rank k approximation for each k
Norms of matrices

- The L_2 norm is defined as
 - $|M|_2 = \max |Mx|$, taken over all unit vectors x
- Then for any other rank k matrix X, we know
 - $|M - M_k|_2 \leq |M - X|_2$
- Thus, the SVD also gives the best rank k approximation by the L_2 norm
- What is it doing in the process?
 - Will avoid using the language of eigenvectors and eigenvalues
What is the SVD doing?

- Consider the vector ν defining the L_2 norm of U:
 - $|U|_2 = |U\nu|$
- Then ν measures the “dominant vector direction” amongst the rows of U (i.e., users)
 - ith coordinate of $U\nu$ is the projection of the ith user onto ν
 - $|U|_2 = |U\nu|$ captures the tendency to align with ν
What is the SVD doing, contd.

- U_1 (the rank 1 approximation to U) is given by Uvv^T
- If all rows of U are collinear, i.e., rank(U)=1, then $U=U_1$;
 - the error of approximating U by U_1 is zero
- In general of course there are still user types not captured by v leftover in the residual matrix $U-U_1$.

![Diagram](image-url)
Iterating to get other user types

- Now repeat the above process with the residual matrix $U-U_1$
- Find the dominant user type in $U-U_1$ etc.
 - Gives us a second user type etc.
- Iterating, get successive approximations U_2, U_3, \ldots, U_k
Achlioptas/McSherry again

- SVD of \hat{U}: the uniformly sampled version of U
- Find the rank k SVD of \hat{U}
- The result \hat{U}_k is close to the best rank k approximation to U
- Is it reasonable to sample uniformly?
 - Probably not
 - E.g., unlikely to know much about your fragrance preferences if you’re a sports fan
Variants – Drineas et al.

- Good Frobenius norm approximations give nearly-highest utility recommendations
 - Net utility to user base close to optimal
- Provided most users near k well-separated prototypes, simple sampling algorithm
- Sample an element of U in proportion to its value
 - i.e., system more likely to know my opinions about my high-utility items
Drineas et al.

- Pick $O(k)$ items and get all m users’ opinions
 → marketing survey
- Get opinions of $\sim k \ln k$ random users on all n items
 → guinea pigs
- Give a recommendation to each user that w.h.p. is
 - close to the best utility
 - for almost

```
+---+---+---+---+
|   |   |   |   |
|   |   |   |   |
+---+---+---+---+
```

```
+---+---+---+---+
|   |   |   |   |
|   |   |   |   |
+---+---+---+---+
```

Items

Users
Compensation

- How do we motivate individuals to participate in a recommendation system?
- Who benefits, anyway?
- E.g., eCommerce: should the system work for the benefit of
 - (a) the end-user, or
 - (b) the website?
End-user vs. website

- End-user measures recommendation system by utility of recommendations
 - Our formulation for this lecture so far
 - Applicable even in non-commerce settings
- But for a commerce website, different motivations
 - Utility measured by purchases that result
 - What fraction of recommendations lead to purchases?
 - What is the average “upsell” amount?
End-user vs. website

- Why should an end-user offer opinions to help a commerce site?
- Is there a way to compensate the end-user for the net contribution from their opinions?
- How much?
Coalitional games

Game with players in \([n]\).

\(\nu(S) = \) the maximum total payoff of all players in \(S, \) under worst case play by \([n]\) – \(S\).

How do we split \(\nu([n])\)?
For example ...

- How should A, B, C split the loot (=20)?
- We are given what each subset can achieve by itself as a function v from the powerset of \{A,B,C\} to the reals.
- $v(\emptyset) = 0$.

<table>
<thead>
<tr>
<th>Values of v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 10</td>
</tr>
<tr>
<td>B: 0</td>
</tr>
<tr>
<td>C: 6</td>
</tr>
<tr>
<td>AB: 14</td>
</tr>
<tr>
<td>BC: 9</td>
</tr>
<tr>
<td>AC: 16</td>
</tr>
<tr>
<td>ABC: 20</td>
</tr>
</tbody>
</table>
First notion of “fairness”: Core

A vector \((x_1, x_2, \ldots, x_n)\) with \(\sum_i x_i = \nu([n])\) (\(= 20\)) is in the core if for all \(S\), we have \(x[S] \geq \nu(S)\).

In our example: A gets 11, B gets 3, C gets 6.

Problem: Core is often empty (e.g., if \(\nu[AB]=15\)).
Second idea: Shapley value

\[x_i = E_\pi(\nu[\{j: \pi(j) \leq \pi(i)\}] - \nu[\{j: \pi(j) < \pi(i)\}]) \]

(Meaning: Assume that the players arrive at random. Pay each one his/her incremental contribution at the moment of arrival. Average over all possible orders of arrival.)

Theorem [Shapley]: The Shapley value is the only allocation that satisfies Shapley’s axioms.
In our example...

- **A gets:**
 \[\frac{10}{3} + \frac{14}{6} + \frac{10}{6} + \frac{11}{3} = 11\]

- **B gets:**
 \[\frac{0}{3} + \frac{4}{6} + \frac{3}{6} + \frac{4}{3} = 2.5\]

- **C gets the rest = 6.5**

Values of v

- **A:** 10
- **B:** 0
- **C:** 6
- **AB:** 14
- **BC:** 9
- **AC:** 16
- **ABC:** 20
e.g., the UN security council

- 5 permanent, 10 non-permanent members
- A resolution passes if voted by a majority of the 15, including all 5 P
- \(v(S) = 1 \) if \(|S| > 7 \) and \(S \) contains 1,2,3,4,5; otherwise 0
- What is the Shapley value (~power) of each P member? Of each NP member?
e.g., the UN security council

- What is the probability, when you are the 8th arrival, that all of 1,...,5 have arrived?
- Calculation:
 Non-Permanent members $\sim .7$
 Permanent members: $\sim 18.5\%$
Notions of fairness

third idea: bargaining set

fourth idea: nucleolus

seventeenth idea: the von Neumann-Morgenstern solution
Privacy and recommendation systems

- View privacy as an economic commodity.
 - Surrendering private information is measurably good or bad for you
 - Private information is intellectual property controlled by others, often bearing negative royalty

- Proposal: evaluate/compensate the individual’s contribution when using personal data for decision-making.
Compensating recommendations

- Each user likes/dislikes a set of items (user is a vector of 0, ±1)
- The “similarity” of two users is the inner product of their vectors
- We have k “well separated types”: ±1 vectors
 - each user is a random perturbation of a particular type
- Past purchases a random sample for each user
Compensating recommendations

- A user gets advice on an item from the k nearest neighbors
- Value of this advice is ± 1
 - $+1$ if the advice agrees with actual preference, else -1
- How should agents be compensated (or charged) for their participation?
Compensating recommendations

Theorem: A user’s compensation (= value to the community) is *an increasing function of how typical* (close to his/her type) *the user is.*

In other words, the closer we are to our (stereo)type, the more valuable we are and the more we get compensated.
Resources

- Achlioptas McSherry
 - http://citeseer.nj.nec.com/462560.html
- Azar et al
 - http://citeseer.nj.nec.com/azar00spectral.html
- Aggarwal et al - Horting
- Drineas et al
 - http://portal.acm.org/citation.cfm?doid=509907.509922
- Coalitional games