CS276B
Text Information Retrieval, Mining, and Exploitation

Lecture 14
Text Mining III: QA systems
March 4, 2003

(includes slides borrowed from ISI, Nicholas Kushmerick)
Question Answering from text

- An idea originating from the IR community
- With massive collections of full-text documents, simply finding *relevant documents* is of limited use: we want *answers* from textbases
- QA: give the user a (short) answer to their question, perhaps supported by evidence.
- The common person’s view? [From a novel]
 - “I like the Internet. Really, I do. Any time I need a piece of shareware or I want to find out the weather in Bogota ... I’m the first guy to get the modem humming. But as a source of information, it sucks. You got a billion pieces of data, struggling to be heard and seen and downloaded, and anything I want to know seems to get trampled underfoot in the crowd.”
People want to ask questions...

Examples from AltaVista query log
who invented surf music?
how to make stink bombs
where are the snowdens of yesteryear?
which english translation of the bible is used in official catholic liturgies?
how to do clayart
how to copy psx
how tall is the sears tower?

Examples from Excite query log (12/1999)
how can i find someone in texas
where can i find information on puritan religion?
what are the 7 wonders of the world
how can i eliminate stress
What vacuum cleaner does Consumers Guide recommend

Around 12–15% of query logs
The Google answer #1

- Include question words etc. in your stop-list
- Do standard IR

- Sometimes this (sort of) works:

- Question: *Who was the prime minister of Australia during the Great Depression?*
- Answer: *James Scullin (Labor) 1929–31.*
But often it doesn’t…

- Question: *How much money did IBM spend on advertising in 2002?*
- Answer: *I dunno, but I’d like to … 😞*
The Google answer #2

- Take the question and try to find it as a string on the web
- Return the next sentence on that web page as the answer
- Works brilliantly if this exact question appears as a FAQ question, etc.
- Works lously most of the time
- Reminiscent of the line about monkeys and typewriters producing Shakespeare
- But a slightly more sophisticated version of this approach has been revived in recent years with considerable success...
A Brief (Academic) History

- In some sense question answering is not a new research area
- Question answering systems can be found in many areas of NLP research, including:
 - Natural language database systems
 - A lot of early NLP work on these
 - Spoken dialog systems
 - Currently very active and commercially relevant

- The focus on open-domain QA is new
 - MURAX (Kupiec 1993): Encyclopedia answers
 - Hirschman: Reading comprehension tests
 - TREC QA competition: 1999–
AskJeeves

- **AskJeeves** is probably most hyped example of “Question answering”
- It largely does pattern matching to match your question to their own knowledge base of questions
- If that works, you get the human-curated answers to that known question
- If that fails, it falls back to regular web search
- A potentially interested middle ground, but a fairly weak shadow of real QA
Online QA Examples

- Examples
 - **AnswerBus** is an open-domain question answering system: www.answerbus.com
 - **Ionaut**: http://www.ionaut.com:8400/
 - **LCC**: http://www.languagecomputer.com/
 - **EasyAsk, AnswerLogic, AnswerFriend, Start, Quasm, Mulder, Webclopedia, etc.**
Question Answering at TREC

- Question answering competition at TREC consists of answering a set of 500 fact-based questions, e.g., “When was Mozart born?”.
- For the first three years systems were allowed to return 5 ranked answer snippets (50/250 bytes) to each question.
 - IR think
 - Mean Reciprocal Rank (MRR) scoring:
 - 1, 0.5, 0.33, 0.25, 0.2, 0 for 1, 2, 3, 4, 5, 6+ doc
 - Mainly Named Entity answers (person, place, date, ...)
- From 2002 the systems are only allowed to return a single *exact* answer and the notion of confidence has been introduced.
The TREC Document Collection

- The current collection uses news articles from the following sources:
 - AP newswire, 1998-2000
 - Xinhua News Agency newswire, 1996-2000
- In total there are 1,033,461 documents in the collection. 3GB of text
- Clearly this is too much text to process entirely using advanced NLP techniques so the systems usually consist of an initial information retrieval phase followed by more advanced processing.
- Many supplement this text with use of the web, and other knowledge bases
Sample TREC questions

1. Who is the author of the book, "The Iron Lady: A Biography of Margaret Thatcher"?
2. What was the monetary value of the Nobel Peace Prize in 1989?
3. What does the Peugeot company manufacture?
4. How much did Mercury spend on advertising in 1993?
5. What is the name of the managing director of Apricot Computer?
6. Why did David Koresh ask the FBI for a word processor?
7. What debts did Qintex group leave?
8. What is the name of the rare neurological disease with symptoms such as: involuntary movements (tics), swearing, and incoherent vocalizations (grunts, shouts, etc.)?
Top Performing Systems

- Currently the best performing systems at TREC can answer approximately 70% of the questions.
- Approaches and successes have varied a fair deal.
 - Notably Harabagiu, Moldovan et al. – SMU/UTD/LCC
 - AskMSR system stressed how much could be achieved by very simple methods with enough text (and now various copycats)
 - Middle ground is to use large collection of surface matching patterns (ISI)
Web Question Answering: Is More Always Better?
Dumais, Banko, Brill, Lin, Ng (Microsoft, MIT, Berkeley)

Q: “Where is the Louvre located?”
Want “Paris” or “France” or “75058 Paris Cedex 01” or a map
Don’t just want URLs
AskMSR: Shallow approach

- In what year did Abraham Lincoln die?
- Ignore hard documents and find easy ones

Abraham Lincoln, 1809-1865

Abraham Lincoln, 1809-1865

LINCOLN, ABRAHAM was born near Hodgenville, Kentucky, on February 12, 1809. In 1816, the Lincoln family moved to New Salem, Illinois. Abraham Lincoln was born in 1809 and lived there until 1830 when he went to Nauvoo, Illinois, where he obtained a job as a store clerk and the local postmaster. He served without distinction in the Black Hawk War. Lincoln attended a rural school for only a few months but acquired knowledge through the reading of books. He lost his attempt at the state legislature, but two years later he tried again, was successful, and served his first year term in the U.S. House in 1846, at which time he opposed the war with Mexico. By 1850, Lincoln had achieved national attention for his series of debates with Stephen A. Douglas. Lincoln lost the election he became a significant figure in his party. His major goal, the preservation of the Union, was achieved on his inauguration on March 4, seven southern states had seceded, for a total of 11. Lincoln immediately took action. The leadership would eventually be the central difference in military strategy. Lincoln's leadership was essential to the Emancipation Proclamation which expanded the purposes of the war. On the dedication of a national cemetery in Gettysburg, Lincoln explained, "with malice toward none..." War earned him the rank of General in 1863.

*Sixteenth President
1861-1865
Married to Mary Todd Lincoln

ABRAHAM LINCOLN

Sixteenth President of the United States

Born in 1809 - Died in 1865

Abraham Lincoln

16th President of the United States (March 4, 1861 to April 15, 1865)
Born: February 12, 1809, in Hardin County, Kentucky
Died: April 15, 1865, at Petersen's Boarding House in Washington, D.C.

"I was born February 12, 1809, in Hardin County, Kentucky. My parents were both born in Virginia, of undistinguished families, perhaps I should say. My mother, who died in my tenth year, was of a family of the name of booth..."
AskMSR: Details

1. Rewrite Query
2. <Search Engine>
3. Collect Summaries, Mine N-grams
4. Filter N-Grams
5. Tile N-Grams

Question:
Where is the Louvre Museum located?

N-Best Answers:
in Paris France 59%
museums 12%
hostels 10%
Step 1: Rewrite queries

- Intuition: The user’s question is often syntactically quite close to sentences that contain the answer
 - Where is the Louvre Museum located?
 - The Louvre Museum is located in Paris
 - Who created the character of Scrooge?
 - Charles Dickens created the character of Scrooge.
Query rewriting

- Classify question into seven categories
 - **Who** is/was/are/were...?
 - **When** is/did/will/are/were ...?
 - **Where** is/are/were ...?

a. Category-specific transformation rules
 eg “For Where questions, move ‘is’ to all possible locations”
 - “Where is the Louvre Museum located”
 → “is the Louvre Museum located”
 → “the is Louvre Museum located”
 → “the Louvre is Museum located”
 → “the Louvre Museum is located”
 → “the Louvre Museum located is”

b. Expected answer “Datatype” (eg, Date, Person, Location, ...)
 - **When** was the French Revolution? ➔ **DATE**

- Hand-crafted classification/rewrite/datatype rules
 (Could they be automatically learned?)
Query Rewriting - weights

- One wrinkle: Some query rewrites are more reliable than others

Where is the Louvre Museum located?

Weight 1
Lots of non-answers could come back too

Weight 5
if we get a match, it’s probably right

+“the Louvre Museum is located”

+Louvre +Museum +located
Step 2: Query search engine

- Send all rewrites to a Web search engine
- Retrieve top N answers (100?)
- For speed, rely just on search engine’s “snippets”, not the full text of the actual document
Step 3: Mining N-Grams

- Unigram, bigram, trigram, ... N-gram: list of N adjacent terms in a sequence
- Eg, “Web Question Answering: Is More Always Better”
 - Unigrams: Web, Question, Answering, Is, More, Always, Better
 - Bigrams: Web Question, Question Answering, Answering Is, Is More, More Always, Always Better
Mining N-Grams

- Simple: Enumerate all N-grams (N=1,2,3 say) in all retrieved snippets
 - Use hash table and other fancy footwork to make this efficient
- Weight of an n-gram: occurrence count, each weighted by “reliability” (weight) of rewrite that fetched the document
- Example: “Who created the character of Scrooge?”
 - Dickens - 117
 - Christmas Carol - 78
 - Charles Dickens - 75
 - Disney - 72
 - Carl Banks - 54
 - A Christmas - 41
 - Christmas Carol - 45
 - Uncle - 31
Step 4: Filtering N-Grams

- Each question type is associated with one or more “data-type filters” = regular expression
- When… → Date
- Where… → Location
- What …
- Who … → Person

- Boost score of n-grams that do match regexp
- Lower score of n-grams that don’t match regexp
- Details omitted from paper….
Step 5: Tiling the Answers

Scores

20 Charles Dickens
15 Dickens
10 Mr Charles

Score 45 Mr Charles Dickens

N-Grams

tile highest-scoring n-gram

N-Grams

Repeat, until no more overlap

merged, discard old n-grams
Results

- Standard TREC contest test-bed: ~1M documents; 900 questions
- Technique doesn’t do too well (though would have placed in top 9 of ~30 participants!)
 - MRR = 0.262 (ie, right answered ranked about #4-#5)
 - Why? Because it relies on the enormity of the Web!
- Using the Web as a whole, not just TREC’s 1M documents… MRR = 0.42 (ie, on average, right answer is ranked about #2-#3)
Issues

- In many scenarios (e.g., monitoring an individuals email...) we only have a small set of documents
- Works best/only for “Trivial Pursuit”-style fact-based questions
- Limited/brittle repertoire of
 - question categories
 - answer data types/filters
 - query rewriting rules
ISI: Surface patterns approach

- Use of Characteristic Phrases
- "When was <person> born"
 - Typical answers
 - "Mozart was born in 1756."
 - "Gandhi (1869-1948)"
- Suggests phrases like
 - "<NAME> was born in <BIRTHDATE>"
 - "<NAME> (<BIRTHDATE>"
- as Regular Expressions can help locate correct answer
Use Pattern Learning

- Example:
 - “The great composer Mozart (1756-1791) achieved fame at a young age”
 - “Mozart (1756-1791) was a genius”
 - “The whole world would always be indebted to the great music of Mozart (1756-1791)”
- Longest matching substring for all 3 sentences is "Mozart (1756-1791)"
- Suffix tree would extract "Mozart (1756-1791)" as an output, with score of 3
- Reminiscent of IE pattern learning
Pattern Learning (cont.)

- Repeat with different examples of same question type
 - “Gandhi 1869”, “Newton 1642”, etc.
- Some patterns learned for BIRTHDATE
 - a. born in <ANSWER>, <NAME>
 - b. <NAME> was born on <ANSWER>
 - c. <NAME> (<ANSWER> -
 - d. <NAME> (<ANSWER> -)
Experiments

- 6 different Q types
 - from Webclopedia QA Typology (Hovy et al., 2002a)
 - BIRTHDATE
 - LOCATION
 - INVENTOR
 - DISCOVERER
 - DEFINITION
 - WHY-FAMOUS
Experiments: pattern precision

- **BIRTHDATE table:**
 - 1.0 <NAME>(<ANSWER>-)
 - 0.85 <NAME> was born on <ANSWER>,
 - 0.6 <NAME> was born in <ANSWER>
 - 0.59 <NAME> was born <ANSWER>
 - 0.53 <ANSWER> <NAME> was born
 - 0.50 - <NAME>(<ANSWER>)
 - 0.36 <NAME>(<ANSWER>-)

- **INVENTOR**
 - 1.0 <ANSWER> invents <NAME>
 - 1.0 the <NAME> was invented by <ANSWER>
 - 1.0 <ANSWER> invented the <NAME> in
Experiments (cont.)

- DISCOVERER
 - 1.0 when <ANSWER> discovered <NAME>
 - 1.0 <ANSWER>'s discovery of <NAME>
 - 0.9 <NAME> was discovered by <ANSWER> in

- DEFINITION
 - 1.0 <NAME> and related <ANSWER>
 - 1.0 form of <ANSWER>, <NAME>
 - 0.94 as <NAME>, <ANSWER> and
Experiments (cont.)

- WHY-FAMOUS
 - 1.0 <ANSWER> <NAME> called
 - 1.0 laureate <ANSWER> <NAME>
 - 0.71 <NAME> is the <ANSWER> of

- LOCATION
 - 1.0 <ANSWER>'s <NAME>
 - 1.0 regional : <ANSWER> : <NAME>
 - 0.92 near <NAME> in <ANSWER>

- Depending on question type, get high MRR (0.6–0.9), with higher results from use of Web than TREC QA collection
Shortcomings & Extensions

- Need for POS &/or semantic types
 - "Where are the Rocky Mountains?"
 - "Denver's new airport, topped with white fiberglass cones in imitation of the Rocky Mountains in the background, continues to lie empty"
 - <NAME> in <ANSWER>

- NE tagger &/or ontology could enable system to determine "background" is not a location
Shortcomings... (cont.)

- Long distance dependencies
 - "Where is London?"
 - "London, which has one of the most busiest airports in the world, lies on the banks of the river Thames"
 - would require pattern like:
 <QUESTION>, (any_word)*, lies on <ANSWER>

- Abundance & variety of Web data helps system to find an instance of patterns w/o losing answers to long distance dependencies
Shortcomings... (cont.)

- System currently has only one anchor word
 - Doesn't work for Q types requiring multiple words from question to be in answer
 - "In which county does the city of Long Beach lie?"
 - "Long Beach is situated in Los Angeles County"
 - required pattern:
 <Q_TERM_1> is situated in <ANSWER> <Q_TERM_2>

- Does not use case
 - "What is a micron?"
 - "...a spokesman for Micron, a maker of semiconductors, said SIMMs are..."

- If Micron had been capitalized in question, would be a perfect answer
Value from sophisticated NLP – Pasca and Harabagiu 2001)

- Good IR is needed: SMART paragraph retrieval
- Large taxonomy of question types and expected answer types is crucial
- Statistical parser used to parse questions and relevant text for answers, and to build KB
- Query expansion loops (morphological, lexical synonyms, and semantic relations) important
- Answer ranking by simple ML method
QA Typology from ISI (USC)

- Typology of typical Q forms—94 nodes (47 leaf nodes)
- Analyzed 17,384 questions (from answers.com)
Syntax to Logical Forms

- Syntactic analysis plus semantic \Rightarrow logical form
- Mapping of question and potential answer LFVs to find the best match
Abductive inference

- System attempts inference to justify an answer (often following lexical chains)
- Their inference is a kind of funny middle ground between logic and pattern matching
- But quite effective: 30% improvement
- Q: When was the internal combustion engine invented?
- A: The first internal-combustion engine was built in 1867.

invent -> create_mentally -> create -> build
Question Answering Example

- How hot does the inside of an active volcano get?
- `get(TEMPERATURE, inside(volcano(active)))`
- “lava fragments belched out of the mountain were as hot as 300 degrees Fahrenheit”
- `fragments(lava, TEMPERATURE(degrees(300)), belched(out, mountain))`
 - volcano ISA mountain
 - lava ISPARTOF volcano
 - lava inside volcano
 - fragments of lava HAVEPROPERTIESOF lava

- The needed semantic information is in WordNet definitions, and was successfully translated into a form that was used for rough ‘proofs’
References

- **AskMSR: Question Answering Using the Worldwide Web**
 - Michele Banko, Eric Brill, Susan Dumais, Jimmy Lin

- **Web Question Answering: Is More Always Better?**
 - Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, Andrew Ng

- D. Ravichandran and E.H. Hovy. 2002. **Learning Surface Patterns for a Question Answering System.**
References

