CS276B
Text Information Retrieval, Mining, and Exploitation

Lecture 3
Recap: Agglomerative clustering

- Given target number of clusters k.
- Initially, each doc viewed as a cluster
 - start with n clusters;
- Repeat:
 - while there are $> k$ clusters, find the “closest pair” of clusters and merge them.
Recap: Hierarchical clustering

- As clusters *agglomerate*, docs likely to fall into a hierarchy of “topics” or concepts.
Recap: k-means basic iteration

- At the start of the iteration, we have k centroids.
- Each doc assigned to the nearest centroid.
- All docs assigned to the same centroid are averaged to compute a new centroid;
 - thus have k new centroids.
Recap: issues/applications

- Term vs. document space clustering
- Multi-lingual docs
- Feature selection
- Speeding up scoring
- Building navigation structures
 - “Automatic taxonomy induction”
- Labeling
Today’s Topics

Clustering as dimensionality reduction
Evaluation of text clustering
Link-based clustering
Enumerative clustering/trawling
Clustering as dimensionality reduction

- Clustering can be viewed as a form of data compression
 - the given data is recast as consisting of a “small” number of clusters
 - each cluster typified by its representative “centroid”
- Recall LSI from CS276a
 - extracts “principal components” of data
 - attributes that best explain segmentation
 - ignores features of either
 - low statistical presence, or
 - low discriminating power
Simplistic example

- Clustering may suggest that a corpus consists of two clusters
 - one dominated by terms like *quark* and *energy*
 - the other by *disk* and stem-variants of *process*
- Dimensionality reduction likely to find linear combinations of these as principal axes
- See work by Azar et al.
 - (resources end of lecture)
Dimensionality reduction

- Clustering is not intrinsically linear algebraic
- Dimensionality reduction doesn’t have to be, either
 - which factors explain the data at hand?
 - probabilistic versions studied extensively
- Ongoing research area
Evaluation of clustering

- Perhaps the most substantive issue in data mining in general:
 - how do you measure goodness?
- Most measures focus on computational efficiency
 - ok when this is the goal - cosine scoring in search
 - presumption that search results close to those without clustering
 - in practice of course there are tradeoffs
Approaches to evaluating

- Anecdotal
- User inspection
- Ground “truth” comparison
 - Cluster retrieval
- Purely quantitative measures
 - Probability of generating clusters found
 - Average distance between cluster members
- Microeconomic
Anecdotal evaluation

- Probably the commonest (and surely the easiest)
 - “I wrote this clustering algorithm and look what it found!”
- No benchmarks of the form “Corpus plus the useful things that clustering should find”
- Almost always will pick up the easy stuff like partition by languages
- Generally, unclear scientific value.
User inspection

- Induce a set of clusters or a navigation tree
- Have subject matter experts evaluate the results and score them
 - some degree of subjectivity
- Often combined with search results clustering
- Not clear how reproducible across tests.
Ground “truth” comparison

- Take a union of docs from a taxonomy
 - Yahoo!, ODP, newspaper sections ...
- Compare clustering results to prior
 - e.g., 80% of the clusters found map “cleanly” to taxonomy nodes
- But is it the “right” answer?
- For the docs given, the static prior taxonomy may be wrong in places
 - the clustering algorithm may have gotten right things not in the static taxonomy
Ground truth comparison

- Divergent goals
- Static taxonomy designed to be the “right” navigation structure
 - somewhat independent of corpus at hand
- Clusters found have to do with vagaries of corpus
- Also, docs put in a taxonomy node may not be the most representative ones for that topic
 - cf Yahoo!
Microeconomic viewpoint

- Anything - including clustering - is only as good as the economic utility it provides
- For clustering: net economic gain produced by an approach (vs. another approach)
- Strive for a concrete optimization problem
 - will see later how this makes clean sense for clustering in recommendation systems
Microeconomic view

- This purist view can in some settings be simplified into concrete measurements, e.g.,
- Wall-clock time for users to satisfy specific information needs
 - people-intensive to perform significant studies
 - if every clustering paper were to do these ...
Cluster retrieval

- Cluster docs in a corpus first
- For retrieval, find cluster nearest to query
 - retrieve only docs from it
- How do various clustering methods affect the quality of what’s retrieved?
- Concrete measure of quality:
 - Precision as measured by user judgements for these queries
- Done with TREC queries
 - (see Shütze and Silverstein reference)
Topic segmentation

- P2P networks
 - content distributed amongst nodes
 - searches broadcast through neighbors
 - wasteful if you want high recall
- Cluster nodes with similar content
 - send queries only to germane “regions”
 - measure recall at a given level of traffic
Link-based clustering

- Given docs in hypertext, cluster into k groups.
- Back to vector spaces!
- Set up as a vector space, with axes for terms \textit{and} for in- and out-neighbors.
Example

<table>
<thead>
<tr>
<th>Vector of terms in d</th>
<th>1 0 1 1 0 0 . .</th>
<th>0 0 0 1 1 . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-links</td>
<td></td>
<td>Out-links</td>
</tr>
</tbody>
</table>

Diagram:

1 → d → 2
1 → d → 3
2 → d → 4
3 → d → 5
4 → d → 5

1 2 3 4 5 . . 1 2 3 4 5 . .
Clustering

- Given vector space representation, run any of the previous clustering algorithms from.
- Studies done on web search results, patents, citation structures - some basic cues on which features help.
Back up

- In clustering, we partition input docs into clusters.
- In *trawling*, we’ll enumerate subsets of the corpus that “look related”
 - each subset a topically-focused community
 - will discard lots of docs
- Twist: will use purely link-based cues to decide whether docs are related.
Trawling/enumerative clustering

- In hyperlinked corpora - here, the web
- Look for all occurrences of a linkage pattern
- Recall from hubs/authorities search algorithm in CS276a:

```
+----------------+      +----------------+
|                |      |                |
|       Alice    |      |     AT&T       |
|                |      |                |
|                +------> Sprint
|                +      +----------------+
|                |      |                |
|                |      |    MCI         |
|                +------>               |
|                +---------------------|
|                +---------------------|
|                +---------------------|
|                +---------------------|
|                +---------------------|
|                +---------------------|
+----------------+      +----------------+
|                |      |                |
+----------------+      +----------------+
```

Alice connects to AT&T and Sprint, which connect to MCI.
Insights from hubs

Hub ⇔ Authority

Link-based hypothesis:
Dense bipartite subgraph ⇔ Web community.
Communities from links

- Issues:
- Size of the web is huge - not the stuff clustering algorithms are made for
- What is a “dense subgraph”?
 - Define \((i,j)\)-core: complete bipartite subgraph with \(i\) nodes all of which point to each of \(j\) others.
Random graphs inspiration

- Why cores rather than dense subgraphs?
 - hard to get your hands on dense subgraphs
- Every large enough dense bipartite graph almost surely has “non-trivial” core, e.g.,:
 - large: $i=3$ and $j=10$
 - dense: 50% edges
 - almost surely: 90% chance
 - non-trivial: $i=3$ and $j=3$.
Approach

- Find all \((i,j)\)-cores
 - currently feasible ranges like \(3 \leq i,j \leq 20\).
- Expand each core into its full community.
- Main memory conservation
- Few disk passes over data
Finding cores

- "SQL" solution: find all triples of pages such that intersection of their outlinks is at least 3?
 - Too expensive.
- Iterative pruning techniques work in practice.
Initial data & preprocessing

- Eliminate mirrors
- Represent URLs by $2 \times 32 = 64$-bit hash
- Can sort URL’s by either source or destination using disk-run sorting
Pruning overview

- Simple iterative pruning
 - eliminates obvious non-participants
 - no cores output
- Elimination-generation pruning
 - eliminates some pages
 - generates some cores
- Finish off with “standard data mining” algorithms
Simple iterative pruning

- Discard all pages of
 - in-degree < i or
 - out-degree < j.
- Repeat
- Reduces to a sequence of sorting operations on the edge list
Elimination/generation pruning

- pick a node a of degree 3
- for each a output neighbors x, y, z
- use an index on centers to output in-links of x, y, z
- intersect to decide if a is a fan
- at each step, either **eliminate** a page (a) or **generate** a core

a is part of a $(3, 3)$ core if and only if the intersection of inlinks of x, y, and z is at least 3
Exercise

- Work through the details of maintaining the index on centers to speed up elimination-generation pruning.
Results after pruning

- Typical numbers from late 1990’s web:
- Elimination/generation pruning yields >100K non-overlapping cores for i,j between 3 and 20.
- Left with a few (5-10) million unpruned edges
 - small enough for postprocessing by a priori algorithm
 - build $(i+1, j)$ cores from (i, j) cores.
Exercise

- Adapt the \textit{a priori} algorithm to enumerating bipartite cores.
Results for cores

Number of cores found by Elimination/Generation

Number of cores found during postprocessing

Thousands

Thousands
Sample cores

- hotels in Costa Rica
- clipart
- Turkish student associations
- oil spills off the coast of Japan
- Australian fire brigades
- aviation/aircraft vendors
- guitar manufacturers
From cores to communities

- Want to go from bipartite core to “dense bipartite graph” surrounding it
- Use hubs/authorities algorithm (CS276a) without text query - use fans/centers as samples
- Augment core with
 - all pages pointed to by any fan
 - all pages pointing into these
 - all pages pointing into any center
 - all pages pointed to by any of these
- Use induced graph as the base set in the hubs/authorities algorithm.
Using sample hubs/authorities
Costa Rican hotels and travel

- The Costa Rica Inte...ion on arts, busi...
- Informatica Interna...rvices in Costa Rica
- Cocos Island Research Center
- Aero Costa Rica
- Hotel Tilawa - Home Page
- COSTA RICA BY INTER@MERICA
- tamarindo.com
- Costa Rica
- New Page 5
- The Costa Rica Internet Directory.
- Costa Rica, Zarpe Travel and Casa Maria
- Si Como No Resort Hotels & Villas
- Apartotel El Sest... de San José, Cos...
- Spanish Abroad, Inc. Home Page
- Costa Rica’s Pura V...ry - Reservation ...
- YELLOW\RESPALDO\HOTELES\Orquide1
- Costa Rica - Summary Profile
- COST RICA, MANUEL A...EPOS: VILLA
- Hotels and Travel in Costa Rica
- Nosara Hotels & Res...els &
- Restaurants...
- Costa Rica Travel, Tourism &
- Resorts
- Association Civica de Nosara
- Untitled: http://www...ca/hotels/mimos.html
- Costa Rica, Healthy...t Pura Vida
- Domestic & International Airline
- HOTELES / HOTELS - COSTA RICA
- tourgems
- Hotel Tilawa - Links
- Costa Rica Hotels T...On line
- Reservations
- Yellow pages Costa ...Rica Export
- INFOHUB Costa Rica Travel Guide
- Hotel Parador, Manuel Antonio, Costa Rica
- Destinations
Open research in clustering

- “Classic” open problems:
 - Feature selection
 - Efficiency
 - tradeoffs of efficiency for quality
 - Labeling clusters/hierarchies

- Newer open problems:
 - How do you measure clustering goodness?
 - How do you organize clusters into a navigation paradigm? Visualize?
 - What other ways are there of exploiting links?
 - How do you track temporal drift of cluster topics?
Resources

- A priori algorithm:
 - Mining Association Rules between Sets of Items in Large Databases: Agrawal, Imielinski, Swami.
 http://citeseer.nj.nec.com/agrawal93mining.html
 http://citeseer.nj.nec.com/agrawal94fast.html
 http://citeseer.nj.nec.com/272770.html
 http://citeseer.nj.nec.com/context/843212/0