Today's topics

- Feature selection for text classification
- Measuring classification performance
- Nearest neighbor categorization

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 – 1,000,000 unique words – and more
- Make using a particular classifier feasible
 - Some classifiers can't deal with 100,000s of feat’s
- Reduce training time
 - Training time for some methods is quadratic or worse in the number of features (e.g., logistic regression)
- Improve generalization
 - Eliminate noise features

Recap: Feature Reduction

- Standard ways of reducing feature space for text
 - Stemming
 - Laugh, laughs, laughing, laughed -> laugh
 - Stop word removal
 - E.g., eliminate all prepositions
 - Conversion to lower case
 - Tokenization
 - Break on all special characters: fire-fighter -> fire, fighter

Feature Selection

- Yang and Pedersen 1997
- Comparison of different selection criteria
 - DF – document frequency
 - IG – information gain
 - MI – mutual information
 - CHI – chi square
- Common strategy
 - Compute statistic for each term
 - Keep n terms with highest value of this statistic
Information Gain

\[G(t) = -\sum_{i=1}^{m} P_r(c_i) \log P_r(c_i) + P_r(t) \sum_{i=1}^{m} P_r(c_i|t) \log P_r(c_i|t) + P_r(\overline{t}) \sum_{i=1}^{m} P_r(c_i|\overline{t}) \log P_r(c_i|\overline{t}) \]

(Pointwise) Mutual Information

\[I(t, c) = \log \frac{P_r(t \land c)}{P_r(t) \times P_r(c)} \]
\[I_{avg}(t) = \sum_{i=1}^{m} P_r(c_i) I(t, c_i) \]
\[I_{max}(t) = \max_{i=1}^{m} I(t, c_i) \]

Chi-Square

<table>
<thead>
<tr>
<th>Term</th>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>belongs to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>does not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>belong to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>category</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[X^2 = \frac{(A \times D - B \times C)^2}{(A+B)(A+C)(B+D)(C+D)} \]

Use either maximum or average \(X^2 \)

Value for complete independence?

Document Frequency

- Number of documents a term occurs in
- Is sometimes used for eliminating both very frequent and very infrequent terms
- How is document frequency measure different from the other 3 measures?

Yang&Pedersen: Experiments

- Two classification methods
 - kNN (k nearest neighbors; more later)
 - Linear Least Squares Fit
 - Regression method
- Collections
 - Reuters-22173
 - 92 categories
 - 16,000 unique terms
 - Ohsumed: subset of medline
 - 14,000 categories
 - 72,000 unique terms
 - Ltc term weighting

Yang&Pedersen: Experiments

- Choose feature set size
- Preprocess collection, discarding non-selected features / words
- Apply term weighting -> feature vector for each document
- Train classifier on training set
- Evaluate classifier on test set
Discussion

- You can eliminate 90% of features for IG, DF, and CHI without decreasing performance.
- In fact, performance increases with fewer features for IG, DF, and CHI.
- Mutual information is very sensitive to small counts.
- IG does best with smallest number of features.
- Document frequency is close to optimal. By far the simplest feature selection method.
- Similar results for LLSF (regression).

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>DF</th>
<th>IG</th>
<th>CHI</th>
<th>MI</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>favoring common terms</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>using categorize</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>using term absent</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>performance in KNN/LLSF</td>
<td>excellent</td>
<td>excellent</td>
<td>excellent</td>
<td>poor</td>
<td>ok</td>
</tr>
</tbody>
</table>

Why is selecting common terms a good strategy?

Information Gain vs Mutual Information

- Information gain is similar to MI for random variables.
- Independence?
- In contrast, pointwise MI ignores non-occurrence of terms
 - E.g., for complete dependence, you get: $P(AB)/P(A|B) = 1/P(A)$ - larger for rare terms than for frequent terms
- Yang&Pedersen: Pointwise MI favors rare terms

\[G(t) = \sum_{X \in \{t,f\}} \sum_{Y \in \{c_i\}} P(X,Y) \log \frac{P_r(X,Y)}{P_r(X)P_r(Y)} \]

IG, DF, CHI Are Correlated.

Feature Selection: Other Considerations

- Generic vs Class-Specific
 - Completely generic (class-independent)
 - Separate feature set for each class
 - Mixed (a la Yang&Pedersen)
- Maintainability over time
 - Is aggressive features selection good or bad for robustness over time?
- Ideal: Optimal features selected as part of training
Yang & Pedersen: Limitations
- Don't look at class specific feature selection
- Don't look at methods that can't handle high-dimensional spaces
- Evaluate category ranking (as opposed to classification accuracy)

Feature Selection: Other Methods
- Stepwise term selection
 - Forward
 - Backward
- Expensive: need to do n^2 iterations of training
- Term clustering
- Dimension reduction: PCA / SVD

Word Rep. vs. Dimension Reduction
- Word representations: one dimension for each word (binary, count, or weight)
- Dimension reduction: each dimension is a unique linear combination of all words (linear case)
- Dimension reduction is good for generic topics ("politics"), bad for specific classes ("ruana"). Why?
- SVD/PCA computationally expensive
- Higher complexity in implementation
- No clear examples of higher performance through dimension reduction

Measures of Accuracy
- Error rate
 - Not a good measure for small classes. Why?
- Precision/recall for classification decisions
- \(F_1 \) measure: \(1/F_1 = \frac{1}{(1/P + 1/R)} \)
- Breakeven point
- Correct estimate of size of category
 - Why is this different?
- Precision/recall for ranking classes
- Stability over time / concept drift
- Utility

Measuring Classification Figures of Merit
- Accuracy of classification
 - Main evaluation criterion in academia
 - More in a momen
- Speed of training statistical classifier
- Speed of classification (docs/hour)
 - No big differences for most algorithms
 - Exceptions: kNN, complex preprocessing requirements
- Effort in creating training set (human hours/topic)
 - More on this in Lecture 9 (Active Learning)
Precision/Recall for Ranking Classes

- Example: “Bad wheat harvest in Turkey”
- True categories
 - Wheat
 - Turkey
- Ranked category list
 - 0.9: turkey
 - 0.7: poultry
 - 0.5: armenia
 - 0.4: barley
 - 0.3: georgia
- Precision at 5: 0.1, Recall at 5: 0.5

Precision/Recall for Ranking Classes

- Consider problems with many categories (>10)
- Use method returning scores comparable across categories (not: Naive Bayes)
- Rank categories and compute average precision recall (or other measure characterizing precision/recall curve)
- Good measure for interactive support of human categorization
- Useless for an “autonomous” system (e.g. a filter on a stream of newswire stories)

Concept Drift

- Categories change over time
- Example: “president of the united states”
 - 1999: clinton is great feature
 - 2002: clinton is bad feature
- One measure of a text classification system is how well it protects against concept drift.
- Feature selection: good or bad to protect against concept drift?

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Micro.Av. Table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Classifiers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Classier</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Classifier</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Why this difference?

Reuters 1

- Newswire text
- Statistics (vary according to version used)
 - Training set: 9,610
 - Test set: 3,662
 - 50% of documents have no category assigned
 - Average document length: 90.6
 - Number of classes: 92
 - Example classes: currency exchange, wheat, gold
 - Max classes assigned: 14
 - Average number of classes assigned
 - 1.34 for docs with at least one category
Reuter 1

- Only about 10 out of 92 categories are large
- Microaveraging measures performance on large categories.

Factors Affecting Measures

- Variability of data
 - Document size/length
 - Quality/style of authorship
 - Uniformity of vocabulary
- Variability of "truth" / gold standard
 - Need definitive judgement on which topic(s) a doc belongs to
 - Usually human
 - Ideally: consistent judgements

Accuracy measurement

- Confusion matrix

```
Actual Topic
\[\begin{array}{c|c|c|c|c}
 & 1 & 2 & 3 & 4 \\
\hline
1 & (1,1) & (1,2) & (1,3) & (1,4) \\
2 & (2,1) & (2,2) & (2,3) & (2,4) \\
3 & (3,1) & (3,2) & (3,3) & (3,4) \\
4 & (4,1) & (4,2) & (4,3) & (4,4) \\
\end{array}\]
```

This \((i, j)\) entry means 53 of the docs actually in topic \(i\) were put in topic \(j\) by the classifier.

Confusion matrix

- Function of classifier, topics and test docs.
 - For a perfect classifier, all off-diagonal entries should be zero.
 - For a perfect classifier, if there are \(n\) docs in category \(j\) than entry \((i, j)\) should be \(n\).
 - Straightforward when there is 1 category per document.
 - Can be extended to \(n\) categories per document.

Confusion measures (1 class/doc)

- Recall: Fraction of docs in topic \(i\) classified correctly:
 \[
 \frac{c_i}{\sum c_i}
 \]

- Precision: Fraction of docs assigned topic \(i\) that are actually about topic \(i\):
 \[
 \frac{c_i}{\sum c_i}
 \]

- "Correct rate": \(1 - \text{error rate}\)
 Fraction of docs classified correctly:
 \[
 \frac{\sum c_i}{\sum \sum c_i}
 \]

Integrated Evaluation/Optimization

\[
E(h(\vec{s}, \vec{z})) = \sum_{\vec{z} \in \mathcal{C}} P(\vec{z} = \vec{z}) h(\vec{s}, \vec{z})
\]

- Principled approach to training
 - Optimize the measure that performance is measured with
 - \(s\): vector of classifier decision, \(z\): vector of true classes
 - \(h(s, z) = \text{cost of making decisions } s \text{ for true}\)
Utility / Cost

- One cost function h is based on contingency table.
- Assume identical cost for all false positives etc.
- Cost $C = 111\ ^* A + 112\ ^* B + 121\ ^* C + 122\ ^* D$
- For this cost c, we get the following optimality
 \[
 p_i > \frac{(\lambda_0 - \lambda_1)}{(\lambda_0 - \lambda_1) + (\lambda_0 - \lambda_2)}.
 \]

<table>
<thead>
<tr>
<th>Classifer: yes</th>
<th>Cost: A11</th>
<th>Cost: A12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifer: no</td>
<td>Cost: A21</td>
<td>Cost: A22</td>
</tr>
</tbody>
</table>

Most common:
- cost: 1 for error, 0 for correct. $p > \frac{(\lambda_0 - \lambda_1)}{(\lambda_0 - \lambda_1) + (\lambda_0 - \lambda_2)}$
- Product cross-sale: high cost for false positive, low cost for false negative.
- Patent search: low cost for false positive, high cost for false negative.

Are All Optimal Rules of Form $p > 0$?

- In the above examples, all you need to do is estimate probability of class membership.
- Can all problems be solved like this?
- No!
- Probability is often not sufficient
- User decision depends on the distribution of relevance
- Example: information filter for terrorism

Naïve Bayes

Vector Space Classification

Nearest Neighbor Classification

Recall Vector Space Representation

- Each doc j is a vector, one component for each term (= word).
- Normalize to unit length.
- Have a vector space
 - terms are axes
 - n docs live in this space
 - even with stemming, may have 10000+ dimensions, or even 1,000,000+
Classification Using Vector Spaces

- Each training doc a point (vector) labeled by its topic (= class)
- Hypothesis: docs of the same topic form a contiguous region of space
- Define surfaces to delineate topics in space

Given a test doc

- Figure out which region it lies in
- Assign corresponding class

Binary Classification

- Consider 2 class problems
- How do we define (and find) the separating surface?
- How do we test which region a test doc is in?

Separation by Hyperplanes

- Assume linear separability for now:
 - in 2 dimensions, can separate by a line
 - in higher dimensions, need hyperplanes
- Can find separating hyperplane by linear programming (e.g. perceptron):
 - separator can be expressed as $ax + by = c$
Linear programming / Perceptron

Find a, b, c, such that $ax + by \geq c$ for red points $ax + by \leq c$ for green points.

Relationship to Naive Bayes?

Find a, b, c, such that $ax + by \geq c$ for red points $ax + by \leq c$ for green points.

Linear Classifiers

- Many common text classifiers are linear classifiers.
- Despite this similarity, large performance differences exist.
 - For separable problems, there is an infinite number of separating hyperplanes. Which one do you choose?
 - What to do for non-separable problems?

Which hyperplane?

In general, lots of possible solutions for a, b, c.

Support Vector Machine (SVM)

- Quadratic programming problem.
- The decision function is fully specified by subset of training samples, the support vectors.
- Text classification method du jour.
- Topic of lecture 9.

Category: Interest

- Example SVM features w, t_i
- w, t_i
 - 0.70 prime
 - 0.67 world
 - 0.63 sees
 - 0.60 year
 - 0.46 dlr
 - 0.43 group
 - 0.43 bundesbank
 - 0.43 dlr
 - 0.43 january
More Than Two Classes

- Any-of or multiclass classification
 - For n classes, decompose into n binary problems
- One-of classification: each document belongs to exactly one class
 - How do we compose separating surfaces into regions?
- Centroid classification
- K nearest neighbor classification

Composing Surfaces: Issues

Separating Multiple Topics

- Build a separator between each topic and its complementary set (docs from all other topics).
- Given test doc, evaluate it for membership in each topic.
- Declare membership in topics
 - One-of classification:
 - For class with maximum score/confidence/probability
 - Multiclass classification:
 - For classes above threshold

Negative examples

- Formulate as above, except negative examples for a topic are added to its complementary set.

Centroid Classification

- Given training docs for a topic, compute their centroid
- Now have a centroid for each topic
- Given query doc, assign to topic whose centroid is nearest.
- Exercise: Compare to Rocchio

Example

- Government
- Science
- Arts
k Nearest Neighbor Classification

- To classify document d into class c
- Define k-neighborhood N as k nearest neighbors of d
- Count number of documents I in N that belong to c
- Estimate P(c|d) as I/k

Cover and Hart 1967

- Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate.
- Assume that query point coincides with a training point.
- Both query point and training point contribute error > 2 times Bayes rate

kNN vs. Regression

- kNN has high variance and low bias.
- Linear regression has low variance and high bias.

kNN: Discussion

- Classification time linear in training set
- Training set generation
 - incompletely judged set can be problematic for multiclass problems
- No feature selection necessary
- Scales well with large number of categories
 - Don’t need to train n classifiers for n classes
- Categories can influence each other
 - Small changes to one category can have ripple effect
- Scores can be hard to convert to probabilities
- No training necessary
 - Actually: not true. Why?

Number of neighbors

References

- Trevor Hastie, Robert Tibshirani and Jerome Friedman, "Elements of Statistical Learning: Data Mining, Inference and Prediction"
Kappa Measure

- Kappa measures
- Agreement among coders
- Designed for categorical judgments
- Corrects for chance agreement
- Kappa = \(\frac{P(A) - P(E)}{1 - P(E)} \)
- P(A) – proportion of time coders agree
- P(E) – what agreement would be by chance
- Kappa = 0 for chance agreement, 1 for total agreement.