This lecture
- Wrap up pagerank
- Anchor text
- HITS
- Behavioral ranking

Pagerank: Issues and Variants
- How realistic is the random surfer model?
 - What if we modeled the back button? [Fagi00]
 - Surfer behavior sharply skewed towards short paths [Hube98]
 - Search engines, bookmarks & directories make jumps non-random.
- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Topic Specific Pagerank [Have02]
- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a category (say, one of the 16 top level ODP categories) based on a query & user–specific distribution over the categories
 - Teleport to a page uniformly at random within the chosen category
 - Sounds hard to implement: can’t compute PageRank at query time!

Topic Specific Pagerank [Have02]
- Implementation
 - offline: Compute pagerank distributions wrt to individual categories
 Query independent model as before
 Each page has multiple pagerank scores – one for each ODP category, with teleportation only to that category
 - online: Distribution of weights over categories computed by query context classification
 Generate a dynamic pagerank score for each page – weighted sum of category-specific pageranks

Influencing PageRank (“Personalization”)
- Input:
 - Web graph \(W \)
 - Influence vector \(v \)
 \(v : \text{(page} \rightarrow \text{degree of influence)} \)
- Output:
 - Rank vector \(r \) (page \(\rightarrow \) page importance wrt \(v \))
 - \(r = \text{PR}(W, v) \)
Non-uniform Teleportation
Teleport with 10% probability to a Sports page

Interpretation of Composite Score
- For a set of personalization vectors \(\{v_j\} \)
 \[\sum_j [w_j \cdot PR(W, v_j)] = PR(W, \sum_j [w_j \cdot v_j]) \]
- Weighted sum of rank vectors itself forms a valid rank vector, because PR() is linear wrt \(v_j \)

Interpretation
10% Sports teleportation

Interpretation
10% Health teleportation

Interpretation
pr = (0.9 PR_{sports} + 0.1 PR_{health}) gives you:
9% sports teleportation, 1% health teleportation

The Web as a Directed Graph
Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)
Assumption 2: The anchor of the hyperlink describes the target page (textual context)
Assumptions Tested

- A link is an endorsement (quality signal)
 - Except when affiliated
- Can we recognize affiliated links? [Davi00]
 - 1536 links manually labeled
 - 59 binary features (e.g., on-domain, meta tag overlap, common outlinks)
 - C4.5 decision tree, 10 fold cross validation showed 98.7% accuracy
 - Additional surrounding text has lower probability but can be useful

Assumptions tested

- Anchors describe the target
 - Topical Locality [Davi00b]
 - ~200K pages (query results + their outlinks)
 - Computed “page to page” similarity (TFIDF measure)
 - Link-to-Same-Domain > Cocited > Link-to-Different-Domain
 - Computed “anchor to page” similarity
 - Mean anchor len = 2.69
 - 0.6 mean probability of an anchor term in target page

Anchor Text

WWW Worm – McBryan [Mcbr94]

- For [ibm] how to distinguish between:
 - IBM’s home page (mostly graphical)
 - IBM’s copyright page (high term freq. for ‘ibm’)
 - Rival’s spam page (arbitrarily high term freq.)

A million pieces of anchor text with “ibm” send a strong signal

- “ibm” to “ibm.com” to “IBM home page”

Indexing anchor text

- When indexing a document D, include anchor text from links pointing to D.

Indexing anchor text

- Can sometimes have unexpected side effects – e.g., evil empire.
- Can index anchor text with less weight.

Anchor Text

- Other applications
 - Weighting/filtering links in the graph
 - HITS [Chak98], Hilltop [Bhar01]
 - Generating page descriptions from anchor text [Amit98, Amit00]
Hyperlink-Induced Topic Search (HITS) – Klei98

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 - *Hub pages* are good lists of links on a subject.
 - e.g., "Bob's list of cancer-related links."
 - *Authority pages* occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries.
- Gets at a broader slice of common opinion.

Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition – will turn this into an iterative computation.

The hope

```
Alice   AT&T
|       |
|       |
|       |
```

```
Bob     Sprint
|       |
|       |
|       |
```

```
MCI
```

Long distance telephone companies

High-level scheme

- Extract from the web a base set of pages that *could* be good hubs or authorities.
- From these, identify a small set of top hub and authority pages; → iterative algorithm.

Base set

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
 - Call this the *root set* of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the *base set*.

Visualization
Assembling the base set [Klei98]

- Root set typically 200–1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.
 - (Actually, suffices to text-index strings of the form \texttt{href=URL} to get in-links to \texttt{URL}.)

Distilling hubs and authorities

- Compute, for each page \(x\) in the base set, a hub score \(h(x)\) and an authority score \(a(x)\).
- Initialize: for all \(x\), \(h(x) \leftarrow 1; a(x) \leftarrow 1\).
- Iteratively update all \(h(x), a(x)\);
- After iterations
 - output pages with highest \(h()\) scores as top hubs
 - highest \(a()\) scores as top authorities.

Iterative update

- Repeat the following updates, for all \(x\):
 \[
 h(x) \leftarrow \sum_{y \rightarrow x} a(y)
 \]
 \[
 a(x) \leftarrow \sum_{y \leftarrow x} h(y)
 \]

Scaling

- To prevent the \(h()\) and \(a()\) values from getting too big, can scale down after each iteration.
- Scaling factor doesn’t really matter:
 - we only care about the relative values of the scores.

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, \(h()\) and \(a()\) scores settle into a steady state!
 - proof of this comes later.
- We only require the relative orders of the \(h()\) and \(a()\) scores – not their absolute values.
- In practice, \(~5\) iterations get you close to stability.

Japan Elementary Schools

<table>
<thead>
<tr>
<th>Hubs</th>
<th>Authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>school</td>
<td>The American School in Japan</td>
</tr>
<tr>
<td>LINK Page-13</td>
<td>The LMS Page</td>
</tr>
<tr>
<td>u0.5[1]_Ver 2</td>
<td>u0.5[1]_Ver 2</td>
</tr>
<tr>
<td>a0.5—Ver 2324[1]_Ver 2</td>
<td></td>
</tr>
<tr>
<td>100 Schools HomePage</td>
<td>University</td>
</tr>
<tr>
<td>(Eng)</td>
<td></td>
</tr>
<tr>
<td>K-12 from Japan</td>
<td></td>
</tr>
<tr>
<td>toshie.net</td>
<td></td>
</tr>
<tr>
<td>http://www...</td>
<td></td>
</tr>
<tr>
<td>-site inactive</td>
<td></td>
</tr>
<tr>
<td>-site inactive</td>
<td></td>
</tr>
<tr>
<td>-site inactive</td>
<td></td>
</tr>
<tr>
<td>kidspeace</td>
<td></td>
</tr>
<tr>
<td>Koulutus ja oppilaitokset</td>
<td></td>
</tr>
<tr>
<td>TOYOSA HOMEPAGE</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Cay’s Homepage(Japanese)</td>
<td></td>
</tr>
<tr>
<td>œ*1—Ver 2324[1]_Ver 2</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>œ*1—Ver 2324[1]_Ver 2</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>œ*1—Ver 2324[1]_Ver 2</td>
<td></td>
</tr>
<tr>
<td>œ*1—Ver 2324[1]_Ver 2</td>
<td></td>
</tr>
<tr>
<td>œ*1—Ver 2324[1]_Ver 2</td>
<td></td>
</tr>
</tbody>
</table>
Things to note

- Pulled together good pages regardless of language of page content.
- Use only link analysis after base set assembled
 - Iterative scoring is query-independent.
- Iterative computation after text index retrieval — significant overhead.

Proof of convergence

- n x n adjacency matrix A:
 - each of the n pages in the base set has a row and column in the matrix.
 - Entry A_{ij} = 1 if page i links to page j, else = 0.

\[
\begin{pmatrix}
1 & 0 & 1 \\
2 & 1 & 1 \\
3 & 1 & 0 \\
\end{pmatrix}
\]

Hub/authority vectors

- View the hub scores h() and the authority scores a() as vectors with n components.
- Recall the iterative updates
 \[
 h(x) \leftarrow \sum_{y \rightarrow x} a(y)
 \]
 \[
 a(x) \leftarrow \sum_{x \rightarrow y} h(y)
 \]

Rewrite in matrix form

- h = Aa.
- a = A^T h.

Substituting, h = AA^T h and a = A^T Aa.
Thus, h is an eigenvector of AA^T and a is an eigenvector of A^T A.

Further, our algorithm is a particular, known algorithm for computing eigenvectors: the power iteration method.

Solutions

- ARC [Chak98] and Clever [Chak98b]
 - Distance-2 neighborhood graph
 - Tackling affiliated linkage
 - IP prefix (e.g., 208.47.*) rather than hosts to identify “same author” pages
 - Tackling topic drift
 - Weight edges by match between query and extended anchor text
 - Distribute hub score non-uniformly to outlinks
 - Intuition: Regions of the hub page with links to good authorities get more of the hub score

(For follow-up based on Document Object Model see [Chak01])
Solutions (contd)

- Topic Distillation [Bhar98]
 - Tackling affiliated linkage
 - Normalize weights of edges from/to a single host
 - Tackling topic drift
 - Query expansion.
 - “Topic vector” computed from docs in the initial ranking.
 - Match with topic vector used to weight edges and remove off-topic nodes
- Evaluation
 - 28 broad queries. Pooled results, blind ratings of results by 3 reviewers per query
 - Average precision @ 10
 - Topic Distillation = 0.66, HITS = 0.46

Hilltop
[Bhar01]

- Preprocessing: Special index of “expert” hubs
 - Select a subset of the web (~ 5%)
 - High out-degree to non-affiliated pages on a theme
- At query time compute:
 - Expert score (Hub score)
 - Based on text match between query and expert hub
 - Authority score
 - Based on scores of non-affiliated experts pointing to the given page
 - Also based on match between query and extended anchor-text (includes enclosing headings + title)
 - Return top ranked pages by authority score

Behavior–based ranking

- For each query \(Q \), keep track of which docs in the results are clicked on
- On subsequent requests for \(Q \), re-order docs in results based on click–throughs
- First due to DirectHit \(\rightarrow \) AskJeeves
- Relevance assessment based on
 - Behavior/usage
 - vs. content

Query–doc popularity matrix \(B \)

\[
B_{qj} = \text{number of times doc } j \text{ clicked-through on query } q
\]

When query \(q \) issued again, order docs by \(B_{qj} \) values.

Issues to consider

- Weighing/combining text- and click-based scores.
- What identifies a query?
 - Ferrari Mondial
 - Ferrari Mondial
 - Ferrari mondial
 - ferrari mondial
 - “Ferrari Mondial”
- Can use heuristics, but search parsing slowed.
Vector space implementation

- Maintain a term-doc popularity matrix C
 - as opposed to query-doc popularity
 - initialized to all zeros
- Each column represents a doc j
 - If doc j clicked on for query q, update $C_j \leftarrow C_j + \varepsilon q$ (here q is viewed as a vector).
- On a query q', compute its cosine proximity to C_j for all j.
- Combine this with the regular text score.

Issues

- Normalization of C_j after updating
- Assumption of query compositionality
 - “white house” document popularity derived from “white” and “house”
- Updating – live or batch?

Basic Assumption

- Relevance can be directly measured by number of click throughs
- Valid?

Validity of Basic Assumption

- Click through to docs that turn out to be non-relevant: what does a click mean?
- Self-perpetuating ranking
- Spam
- All votes count the same

Variants

- Time spent viewing page
 - Difficult session management
 - Inconclusive modeling so far
- Does user back out of page?
- Does user stop searching?
- Does user transact?