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Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes
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3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities. 

20-30 Hz

How fast do we 
run the haptic 
rendering loop?

??? Hz

Visual-Haptic Simulation
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> 1000 Hz

The faster the better!

F

x

Haptic Rendering Loop
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‣ Mechanoreceptors in our skin can detect 
vibrations up to ~400 Hz

‣ We are generating a discrete force signal

- sampling rate should be above Nyqvist

Human Perception
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Sampled-Data System
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0 5 10 15

avatar

Errors get worse as stiffness is increased! 
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k ⇥ 2

force errors

Effect of Stiffness
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0 5 10 15

avatar

Errors are reduced with an increased servo rate

0 5 10 15

Servo Rate Effects
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‣ High stiffness and low servo rate can cause 
excess energy to be generated

‣ Energy must be dissipated through 
mechanical device

‣ Advanced control algorithms may also help

Summary of Challenges
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700 N/m

3000 N/m

5000 N/m

> 100 N/m

> 1000 N/m

> 10,000 N/m

> 100,000 N/m

On Stiffness...
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Potential Field Issues
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Recall Potential Fields
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The Sinking Avatar

avatar
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Virtual Box
avatar

virtual object
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Virtual Box

avatar
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Virtual Box

avatar

F
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Virtual Box

avatar

F = ???
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Virtual Box

avatar

F
“pop-out”
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Thin Objects

avatar
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Thin Objects

avatar

“pop-through” ☹
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Building Blocks

avatar

F = �kx F = �kx ?

Object A - stiffness k Object B - stiffness k
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Gap in the Middle!

avatar

☹
Object A - stiffness k Object B - stiffness k
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Overlapping Blocks

Object A - stiffness k

Object B - stiffness k

avatar

F = �kxa F = �kx ?
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Stiffness Variation!

Object A - stiffness k

Object B - stiffness k

avatar
F = �(kxa + kxb)
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Potential Field Problems

‣ Pop-out and pop-through

‣ Gaps between objects

‣ Stiffness variation with 
overlapping objects

‣ How do we deal with these???
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A Constraint-based God-object Method For Haptic Display 

C. B. Zilles J. K. Salisbury 

Department of Mechanical Engineering 
Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 
Cambridge, MA 

Abstract 
Haptic display is the  process of applying forces to a 

h u m a n  “observer” giving the  sensation of touching and 
interacting with real physical objects. Touch i s  unique 
among the  senses because it allows simultaneous ex- 
ploration and  manipula t ion  of a n  env ironment .  

A haptic display s y s t e m  has three m a i n  components.  
T h e  f i r s t  is the  haptic interface, or display device - 
generally s o m e  type of electro-mechanical s y s t e m  able 
t o  exert  controllable forces on the  user  with one or  
m o r e  degrees of freedom. T h e  second i s  the object 
model - a mathematical representation of the  object 
containing its shape and  other properties related t o  the 
w a y  it feels. T h e  third component,  the  haptic render- 
ing algorithm, j o i n s  the  f i r s t  two components t o  com- 
pute ,  in real t i m e ,  the  model-based forces t o  give the 
user  the  sensat ion  of touching the  simulated objects. 

This paper focuses o n  a n e w  haptic rendering al- 
gor i thm f o r  generating convincing interaction forces 
f o r  objects modeled as rigid polyhedra (Fig. 1). W e  
create a virtual model of the  haptic interface, called 
the  god-object, which conforms t o  the  virtual envir- 
o n m e n t .  T h e  haptic interface can  t h e n  be servo-ed 
to this virtual model. T h i s  algorithm i s  extensible to 
other func t ional  descriptions and lays the  groundwork 
f o r  displaying n o t  only shape in format ion ,  but surface 
properties such  as f r ic t ion  and  compliance. 

1 Introduction 
The process of feeling objects through a force- 

generating interface is familiar in the context of using 
teleoperator master devices to touch and interact with 
remotely located objects [7]. Recent interest in en- 
abling interaction with virtual objects [l] has led us to 
investigate devices and algorithms which permit touch 
and manipulative interaction - collectively, haptic in- 
teractions - with these virtual objects. 

The PHANTOM haptic interface [4] permit,s users 
to feel and control the forces arising from point inter- 

Figure 1: This polygonal model of a space shuttle i s  
made up of 616 polygons. This is an example of the 
complexity of objects the god-object algorithm can allow 
the user to  touch. 

a,ctions with simulated objects. The point interaction 
paradigm greatly simplifies both device and algorithm 
development while permitting bandwidth and force fi- 
delity that enable a surprisingly rich range of interac- 
tions. It reduces the problem of computing appropriate 
interaction forces - haptic rendering - to one of tracing 
the motion of a point among objects and generating 
the three force components representing the interac- 
tion with these objects. In this paper the term haptic 
interface poin t  will be used to describe the endpoint 
location of the physical haptic interface as sensed by 
the encoders. 

This work was done with PHANTOM-style device 
with a max force of 18N (4 lbf). We have found this to 
be enough force to make virtual objects feel reasonably 
solid without, saturating the motors. While exploring 
virtual environments most users tend to use less than 
5N (1 lbf) of force. 

0-8186-7108-4195 $4.00 0 1995 IEEE 
146 
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God-Object Algorithm
[From C. Zilles & K. Salisbury, Proc. IEEE/RSJ IROS, 1995.]CS277 - Experimental Haptics, Stanford University, Spring 2014



On Geometric Representation

01001011 ???
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Polygonal Meshes
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Other Representations

volumetric

point cloud

potential field???
implicit surface???
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God-Object Main Idea

‣ Simulate an avatar whose position and 
motion are independent of that of the 
physical device

‣ Avatar tries to follow the physical position 
while obeying laws of quantum mechanics

- Pauli exclusion principle
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What it looks like

avatar
(a.k.a. god-object, proxy, virtual tool, HIP)

device position
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Contact With a Surface

surface

avatar
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Contact With a Surface

surface

test for 
collisions
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Contact With a Surface

surface

test for 
collisions
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Contact With a Surface

surface

projection
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Two Constraints
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Two Constraints

first collision
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Two Constraints

projection

second collision
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Three Constraints

projection

collision
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What about cases with more than three constraints?
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Force Feedback

surface

avatar

F = �kx
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God-Object Demo
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The Sinking Avatar?
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COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1997

7  HAPTIC CONTROLLER

Reliance on a virtual proxy reduces the task of  the haptic
servo controller to minimization of the error between the
configuration of the proxy and position of the haptic device.
Reducing position error of a mechanical system is a problem
which has been discussed extensively in the robotics literature
[6]. In our current implementation we rely on a simple
operational space proportional derivative (PD) controller [13].
As all modeling effects are achieved by the movement of the
proxy, controller gains and other parameters can be set by sole
consideration of the properties of the mechanical system.
The low-level control loop may be separated from the
contact/proxy update loop to guarantee stability of the system
even in the presence of a large number of objects. By running
the control loop at a high fixed clock rate, stability is easier to
ensure and the fidelity of the haptic display degrades
gracefully as the complexity of the environment is increased. If
the proxy update procedure is unable to maintain the same rate
as the controller, objects feel “sticky.” While this effect may
not be desirable, it is preferable to permitting unstable and
dangerous behavior of the haptic device.

8  RESULTS

Our haptic library has been successfully tested on a large
number of polygonal models, including some containing more
than 24,000 polygonal primitives. In our tests the client
computer was a SGI Indigo2 High Impact running IRIX 6.2 and
the haptic server was a 200Mhz Pentium Pro running Linux
2.0.2. Communication between computers was made through a
standard ethernet TCP/IP  connection. The haptic device
employed was a ground based PHANToM manipulator. This 3-
degree-of-freedom force-feedback device has sufficiently high
stiffness, low inertia and low friction for high fidelity force
display. The server produced stable results with position gains
over 1800 Newtons/meter  with no artificial damping. The
proxy update loop computation time is approximately O n(lg )
where n is the number of polygons. This slow asymptotic
growth is the consequence of the dependence of the proxy’s
movement on only its local environment. In contrast, the
rendering time for a graphic display, where the entire world
may be visible at one time, is inherently O n( ) .
The current system is adept in modeling a large number of
geometric models.  Some examples are shown in Figures 9,10
and 11. Figure 9 shows a VRML model of an AT-AT from Star
Wars containing over 11,000 polygons. The high level interface
simplifies the implementation of applications like VRML
browsers.  Figure 10 shows a VRML model of the classic
teapot, composed of 3416 triangular surfaces. Force shading is
used to model the apparently curved surfaces of the underlying
polygonal model. Figure 11 shows a sample test application
where the user can click virtual buttons to select a variety of
geometrical models with numerous different surface
characteristics. These models can be moved to make them
contact or overlap one another, creating possibly thousands of
unexpected new intersections, edges, and corners.
In all cases, the location of the virtual proxy, rather than finger
position, is displayed to the user, further adding to the sense of
rigidity of the modeled environment [26].

Figure 9: Haptic AT-AT (11088 polygons)

Figure 10: Force Shaded Teapot (3416 polygons)

Figure 11: Interactive Haptic EnvironmentFinger-Proxy Algorithm
[From D. Ruspini et al., Proc. ACM SIGGRAPH, 1997.]CS277 - Experimental Haptics, Stanford University, Spring 2014



God-Object Algorithm

avatar

surface
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God-Object Algorithm

surface
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Desired Behavior

surface
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Finger-Proxy Idea

shell

surface
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Complex Shell
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In Two Dimensions

shell = 1 box + 2 circles
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In Three Dimensions

shell = 3 spheres + 3 cylinders + 2 triangles
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Finger-Proxy Algorithm
SIGGRAPH 97, Los Angeles, California, August 3-8, 1997

goal. When the robot is unable to decrease its distance to the
goal, it stops at the local minimum configuration.

PHYSICAL POSITION PROXY POSITION

Figure 1: Virtual Proxy Example

Since a strong correspondence exists between the movement of
the proxy and robot motion planning, many of the algorithms
used in our implementation were developed originally for
robotics applications. With this interaction model, the task of
the haptic servo controller reduces to minimizing the error
between the configuration of the proxy and the position of the
haptic device. In effect, the haptic device is used to attempt to
physically move the goal to the location of the proxy.
The remainder of this paper is organized as follows: In Section
2, we discuss previous work in haptic rendering. The basic
algorithm employed to update the virtual proxy’s position is
presented in Section 3. In Section 4, we discuss the
implementation of force shading—the haptic equivalent of
Phong shading [21] in graphics—within the virtual proxy
framework. Section 5 discusses methods to simulate static and
dynamic friction, and other surface and atmospheric effects. An
overview of the current implemented system is presented in
Section 6, and the low-level haptic controller is presented in
Section 7. Sections 8 and 9 are devoted to the presentation of
results and the discussion of future work.

2 BACKGROUND AND RELATED WORK

In penalty  methods, forces proportional to the amount of
penetration into a virtual volume are applied to the haptic
device. For simple geometries, like spheres and planes, the
direction and amount of penetration are easy to determine. The
simplicity of this approach has facilitated the study of many
interesting situations such as those involving dynamic objects
and surface effects. Massie and Salisbury extended this
technique by subdividing the internal volume and associating
each sub-volume with a surface toward which repulsion forces
are exerted [17]. This approach has also been used successfully
to allow haptic interactions with volumetric data [1,12].
These approaches, however, have a number of drawbacks.
When multiple primitives touch or are allowed to intersect it is
often difficult to determine which exterior surface should be
associated with a given internal volume. In the worst case, a
global search of all the primitives may be required to find the

nearest exterior surface, as seen in Figure 2(a). In addition, as
a finger probe penetrates a surface it will eventually become
closer to another surface of the object. The resultant force
actively pushes the probe out through this second surface. This
situation is illustrated in Figure 2(b).  Finally, as shown in
Figure 2(c), small or thin objects may have insufficient
internal volume to generate the constraint forces required to
prevent the probe from passing through the obstacle. This
problem is particularly troublesome in graphics applications
since most graphic models are constructed almost exclusively
from infinitely thin polygons, lines and points.

(a)

      
                               (b)                            (c)

Figure 2: Limitations of “Penalty” based Haptic Rendering
Methods. (a) Lack of locality: removal of primitive will create
new nearest surface, (b) Force Discontinuities: application of
force causes probe to be attracted toward other surfaces. (c)
“Pop-Thru” of thin objects.

Constraint-based  methods were first proposed for haptic
applications by Zilles and Salisbury [27] to address the
limitations of penalty-based approaches. These methods
employ a god-object which, similar to the virtual proxy, is
constrained by the objects in the environment. This approach
has been used to model interactions between a point-size god-
object and complex polygonal models. The virtual proxy is an
extension of this idea. This paper presents how, in addition to
surface constraints—force shading [19], friction, surface
stiffness, and texture can be modeled by simply changing the
position of the virtual proxy. Also, because the virtual proxy
has a fin ite size, it does not slip through the tiny numerical
gaps found in most polygonal meshes and can therefore operate
without first having to reconstruct the topology of a surface as
is required in the original god-object approach [27].

3  UPDATING PROXY POSITION

For simplicity, we will represent the virtual proxy as a
massless sphere that moves among the objects in the
environment. Because of small numerical errors, polygons that
are intended to share a common edge often contain gaps. The
radius of the proxy should therefore be large enough to avoid

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1997

falling through the holes in the underlying model. In addition,
the user will often wish to make the proxy large enough so that
it is easily visible on a graphical display. We also assume that
all the obstacles in the environment can be divided into a
finite set of convex components.
During the update process, a goal configuration for the proxy is
found at each time step and the proxy attempts to move to this
configuration by direct linear motion. Initially, the goal
configuration is the location of the end-point of the haptic
device. This position, however, will change as the proxy
encounters obstacles in the environment.
The volume swept by the virtual proxy, as it moves during a
given time period, is checked to see if it penetrates any
primitive in the environment. Because the path of the proxy is
linear, this test involves determining whether a line-segment,
specified by the proxy and goal configurations, falls within one
radius of any object in the environment . Since many primitive
objects may exist in the environment, an efficient means of
determining which primitives intersect the proxy’s path is
required. Several fast, general purpose, algorithms have been
developed for this purpose [15,10]. In our current
implementation, we employ an algorithm originally developed
for path-planning applications [22] that builds a bounding-
sphere hierarchy for each object and is capable of quickly
finding the shortest distance between non-convex bodies.
If the proxy’s path does not collide with any obstacles, the
proxy is allowed to move directly towards the goal. If one or
more interfering primitives are found, the proxy’s position is
advanced until it makes contact with the first obstacle in its
path. To model this interaction efficiently, we consider the
configuration space of the proxy, where the configuration-
space obstacles (C-obstacles) [14], consist of all points within
one proxy radius of the original obstacles. Note that, in this
space, the position of the proxy is identified by a point while
all C-obstacles have continuously defined surfaces and non-
zero thickness. A unique constraint plane can then be found
where the line segment that represents the proxy’s path
intersects the C-obstacle. An example of configuration space,
C-obstacles, and proxy constraint planes is shown  in Figure 3.

PHYSICAL POSITION PROXY POSITION

constraint plane

Actual Obstacle Configuration Space Obstacle

Figure 3: Configuration Space Obstacles & Constraint Planes

Introduction of the configuration space allows us to model the
proxy as a point and the obstacles as uniquely defined local
planar surfaces. The proxy is moved until it makes contact with
the closest constraint plane. Planes that fall below this new
position cannot affect the local motion of the proxy and may
therefore be pruned. If the proxy reaches the user’s position, no
further movement is required. Otherwise, a new sub-goal is
generated observing that each constraint plane limits the
directions of motion to the half-space above the plane. The

intersection of all such half-spaces defines a convex,
unbounded polyhedron. The desired solution is the point within
this convex region (the local free-space) that minimizes the
distance to the user’s position. Since this problem is
independent of coordinate translation, and since all the
constraint planes go through the current proxy position, the
problem can be written compactly as

  

minimize  subject tox p

n x

n x

n x

T

T

m
T
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≥
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≥
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ˆ .

1

2
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0
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                (1)

where p is the vector from the current proxy position to the
user’s position, x  is the new sub-goal, and n̂ i mi ,  0 ≤ ≤ ,  are the
unit normals of the constraint planes.
This problem may be solved using a standard quadratic
programming package such as that introduced by Gill et. al [9].
In our case, however, there are many simplifications that make
possible a simpler and faster solution. In our implementation,
this problem is solved in two steps. The minimum set of active
constraint planes is found first; this set is then used to find a
new sub-goal position. If the desired solution lies on a face of
the convex free space, then the solution lies on only one of the
constraint planes. If the solution lies on an edge, then two
constraint planes are required. If the solution lies on a vertex
three planes are needed. Finally, if the user’s position lies in
the free space, then no constraint planes are required. This
convex free space region has a dual space consisting of the
points − ≤ ≤n̂ i mi ,  0  (the outward normals of the planes
forming the free-space region) and the origin (plane at
infinity). The constraint planes that bound the solution can be
found by determining the closest face, edge, or vertex on the
convex hull of this region to a point p̂ , a unit vector with the
same direction as p. This problem may be treated using the
same algorithms employed in the collision detection process
[8]. The vertices of the closest face, edge or vertex indicate
that the corresponding constraint planes bound the solution. An
example of this mapping is shown in Figure 4. As illustrated,
the solution x is constrained by planes a,b and the plane at
infinity o. In the dual, this corresponds to p̂  being nearest the
face {a,b,o}.

 
e

a

b

c

d

b

d
e

a

cp

o

o

p̂x

Figure 4: Constraint Planes and Equivalent Free Space Dual

Once the bounding planes have been determined, Equation 1
may be solved using only the active planes as constraints.
With the inequalities replaced by equalities, the problem can

[From D. Ruspini et al., Proc. ACM SIGGRAPH, 1997.]CS277 - Experimental Haptics, Stanford University, Spring 2014



Finger-Proxy Demo
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Revisiting the Pipeline
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Haptic Rendering

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes
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3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities. 
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Collision Detection

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes
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tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities. 
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Simulation / Optimization

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes
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tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities. 
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Force Feedback

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes
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3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities. 
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Summary

‣ Time is of the essence!

‣ Limitations with potential fields

‣ God-object algorithm

‣ Finger-proxy algorithm

‣ Revisit of the haptic rendering pipeline
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