
Collision Detection I

CS277 - Experimental Haptics
Lecture 6

CS277 - Experimental Haptics, Stanford University, Spring 2014

Motivation

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace.

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed.

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices.

System architecture for haptic rendering
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator.

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces.

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space.

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3.

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred.

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface.

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Problem Definition

‣ We seek efficient algorithms to answer the
following queries:

- Intersection query (do objects overlap?)

- Contact manifolds (set of contact points)

- Penetration depth / intersection volume

- Separation distance

‣ Difficulty increases as we move down...

CS277 - Experimental Haptics, Stanford University, Spring 2014

Geometric Representations

Many different ways to describe the same object
CS277 - Experimental Haptics, Stanford University, Spring 2014

Surface Representations

‣ Implicit surface:

‣ Parametric surface:

‣ Point-sampled surface (point cloud)

‣ Polygonal mesh:

- Triangle mesh

- Quadrilateral (quad) mesh

‣ ... any other ones you can think of?

S(x, y, z) = 0

P (u, v)|u, v 2 D

CS277 - Experimental Haptics, Stanford University, Spring 2014

Triangle Meshes

Why is this the most popular representation?
CS277 - Experimental Haptics, Stanford University, Spring 2014

Terminology

‣Objects are composed
of primitive shapes

‣Broad phase

- Which objects are in a
vicinity?

‣Narrow phase

- Does the geometry
intersect?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Broad Phase Collisions

No possibility
of intersection

CS277 - Experimental Haptics, Stanford University, Spring 2014

Broad Phase Collisions

Possible
intersection

?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Narrow Phase Collisions

Collision!

CS277 - Experimental Haptics, Stanford University, Spring 2014

Today’s Lecture

CS277 - Experimental Haptics, Stanford University, Spring 2014

Primitive Tests
CS277 - Experimental Haptics, Stanford University, Spring 2014

Tests for Meshes

‣ The two most common collision queries
for haptic rendering of polygonal meshes:

- line segment-triangle intersection test

- triangle-triangle intersection test

CS277 - Experimental Haptics, Stanford University, Spring 2014

Ray-Triangle Intersection

‣ Find intersection
between line and plane

‣Discard if point is
outside segment range

‣Use barycentric
coordinates to
determine if the point
is inside the triangle

CS277 - Experimental Haptics, Stanford University, Spring 2014

Barycentric Coordinates

p0

p1

p2

f(u, v) = (1� u� v)p0 + up1 + vp2

u

v

w

(.6, .4, 0)

(.3, .2, .5)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Barycentric Coordinates

f(u, v) = (1� u� v)p0 + up1 + vp2

p0

p1

(.3, .2, .5)

p2

A0

A1

A2

u =
A1

A

v =
A2

A

A = 1
2 |(p1 � p0)⇥ (p2 � p0)|

CS277 - Experimental Haptics, Stanford University, Spring 2014

A Direct Approach

r(t) = o + td

0

@�d p1 � p0 p2 � p0

1

A

0

@
t
u
v

1

A = o� p0

A ray:

A triangle:

Rearrange terms:

f(u, v) = (1� u� v)p0 + up1 + vp2

o + td = (1� u� v)p0 + up1 + vp2Ray-triangle intersect:

Solve for t, u, and v ...
CS277 - Experimental Haptics, Stanford University, Spring 2014

Cramer’s Rule

‣ Given the set of linear equations

‣ Write the determinant of the matrix

‣ Then

0

@a b c

1

A

0

@
x

y

z

1

A = d

det(a,b, c) =

������

a1 b1 c1
a2 b2 c2
a3 b3 c3

������

x =
det(d,b, c)

det(a,b, c)
y =

det(a,d, c)

det(a,b, c)
z =

det(a,b,d)

det(a,b, c)

CS277 - Experimental Haptics, Stanford University, Spring 2014

A Direct Approach
0

@�d p1 � p0 p2 � p0

1

A

0

@
t
u
v

1

A = o� p0

e1 = p1 � p0, e2 = p2 � p0, s = o� p0

0

@
t
u
v

1

A =
1

det(�d, e1, e2)

0

@
det(s, e1, e2)
det(�d, s, e2)
det(�d, e1, s)

1

A

Our equation:

 Applying Cramer’s rule:

where

Check t, u, v within intervals!
CS277 - Experimental Haptics, Stanford University, Spring 2014

Geometric Interpretation

M

V0

V1

V2
V2 0

V1 0

1

1

u

v

O

0

translation

M 0]D

M =

0

@�d p1 � p0 p2 � p0

1

A

[from T. Möller & B. Trumbore, Journal of Graphics Tools, 1997.]
CS277 - Experimental Haptics, Stanford University, Spring 2014

Triangle-Triangle Intersection

‣ Triangles A and B may
intersect if they cross
each other’s plane

‣ Test A’s vertices
against B’s plane, and
vice versa for rejection

‣ Test for interval
overlap along the line
of intersection

CS277 - Experimental Haptics, Stanford University, Spring 2014

Half-Plane Test

‣ Geometric interpretation:

- This tests which side of the plane defined by
triangle abc the point d is on

[a,b, c,d] =

��������

a
x

b
x

c
x

d
x

a
y

b
y

c
y

d
y

a
z

b
z

c
z

d
z

1 1 1 1

��������

= (d� a) · ((b� a)⇥ (c� a))

CS277 - Experimental Haptics, Stanford University, Spring 2014

Half-Plane Test

‣ Given two triangles:

‣ We can first perform the half-plane test on
triangle one:

‣ Then symmetrically perform the half-plane
test on the other triangle...

[p2,q2, r2,p1] [p2,q2, r2,q1] [p2,q2, r2, r1]

4p1q1r1 and 4p2q2r2

CS277 - Experimental Haptics, Stanford University, Spring 2014

Intersection of Intervals

If all , and , then the triangles are co-planar, and this case
is handled separately and discussed later. If not, the intersection of and is a
line, , where is the direction of the line and is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect . These intersections form intervals on , and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.

L L

Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on) that represents the
intersection between and , and that, for example, and lie on the same
side of and that lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges and
and , the vertices are first projected onto :

(3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value, , for . Letting denote the
projection of onto , we see that and are similar, so

(4)

Similar calculations are done to compute , and an interval for is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of for inter-
section with the edges of . If any intersection is found, then the triangles intersect.

2

[from T. Möller, Journal of Graphics Tools, 1997.]
CS277 - Experimental Haptics, Stanford University, Spring 2014

Interval Intersection Test

‣ Intervals on line L are

‣ Intervals overlap if

‣ Perform two additional
determinant tests:

[p1,q1,p2,q2]
[p1, r1, r2,p2]

I1 = [i, j] I2 = [k, l]

k j and i l

If all , and , then the triangles are co-planar, and this case
is handled separately and discussed later. If not, the intersection of and is a
line, , where is the direction of the line and is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect . These intersections form intervals on , and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.

L L

Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on) that represents the
intersection between and , and that, for example, and lie on the same
side of and that lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges and
and , the vertices are first projected onto :

(3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value, , for . Letting denote the
projection of onto , we see that and are similar, so

(4)

Similar calculations are done to compute , and an interval for is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of for inter-
section with the edges of . If any intersection is found, then the triangles intersect.

2

p1

q1r1

p2

q2

r2

k l

i j

CS277 - Experimental Haptics, Stanford University, Spring 2014

Triangle-Triangle Summary

‣ Compute three 4x4 determinants to test first
triangle against the second’s plane

‣ If triangle intersects the plane, perform the
symmetric test using three more determinants

‣ If both triangles intersect the other’s plane,
perform interval overlap test on the intersecting
line with two last 4x4 determinants

‣ What happens with co-planar triangles?!

CS277 - Experimental Haptics, Stanford University, Spring 2014

Two of My Favorite Books

No need to memorize any of these algorithms!

CS277 - Experimental Haptics, Stanford University, Spring 2014

Some Easier Stuff...

‣ Mesh geometry intersection tests are
expensive, and must be performed for
every triangle

‣ Collision detection can be sped up
significantly by using rejection tests on
bounding volumes

CS277 - Experimental Haptics, Stanford University, Spring 2014

Bounding Volumes

‣Most common
bounding volumes are
spheres and boxes

‣ Two most common
collision queries:

- Sphere-sphere
intersection

- Box-box intersection

CS277 - Experimental Haptics, Stanford University, Spring 2014

Sphere-Sphere Intersection

?

Easiest one in the book!
CS277 - Experimental Haptics, Stanford University, Spring 2014

Sphere-Sphere Intersection

‣ Two spheres intersect
if the separation
between their centers
is less than the sum of
their radii:

||c1 � c2|| < r1 + r2 r1

r2

c1

c2

CS277 - Experimental Haptics, Stanford University, Spring 2014

Box-Box Intersection

‣ An axis-aligned box is represented by
lower (minimum coordinate) and upper
(maximum coordinate) vertices

‣ How do we detect intersection of boxes?

p
max

pmin

CS277 - Experimental Haptics, Stanford University, Spring 2014

Box-Box Intersection

‣ Two axis-aligned boxes
intersect if the lower
coordinate of each box
is bounded by the
upper coordinate of
the other:

amin

a
max

b
max

a
min

< b
max

b
min

< a
max

CS277 - Experimental Haptics, Stanford University, Spring 2014

Oriented Box Intersection

How do we test for this kind of box intersection?
CS277 - Experimental Haptics, Stanford University, Spring 2014

Separating Hyperplane Theorem

‣ Two convex polytopes can be separated by a
hyperplane if and only if they are disjoint

‣ For disjoint polyhedra, there exists a separating
plane parallel to a face on either polyhedron, or an
edge selected from each polyhedron (why?)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Separating Axis Test

‣ Project all vertices onto the normal of the
separating plane (“separating axis”)

‣ Projections from each polytope form an interval

‣ Polytopes are disjoint if intervals are disjoint

CS277 - Experimental Haptics, Stanford University, Spring 2014

Oriented Box Intersection

CS277 - Experimental Haptics, Stanford University, Spring 2014

Oriented Box Intersection

‣ Perform separating
axis test on every
possible axis:

- 3 axes (faces of box A)

- 3 axes (faces of box B)

- 3 x 3 = 9 axes from
pairs of box edges

‣ Total: 15 separating
axis tests

CS277 - Experimental Haptics, Stanford University, Spring 2014

Convex Polyhedra

How would we test shapes like these?
CS277 - Experimental Haptics, Stanford University, Spring 2014

Intersection of Convex Polyhedra

‣ Use the separating hyperplane theorem:

- How do we determine what the plane/axis is?

‣ Use a feature tracking approach:

- Polyhedra will collide when their separation
distance vanishes

- Can we tell which elements are about to
collide?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Linear Programming

‣ Maximize

‣ Subject to the linear constraints

‣ where x is a vector of n unknowns, c is a vector of
coefficients, and A and b are constraints which
define an n-dimensional convex polytope

‣ Can detect infeasibility

c

T
x

Ax b

CS277 - Experimental Haptics, Stanford University, Spring 2014

Linear Programming

‣ Four coefficients of the
separating plane are linear
programming variables

‣ Constrain all vertices of
polyhedron A to one side
of plane and vertices of
polyhedron B to the other

‣ LP tells us whether or not
a separating plane exists

‣ Expected linear time

ax + by = c

ax + by � c > 0

ax + by � c < 0

(a, b, c) = ?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Closest Feature Tracking

‣ Proposed by Lin & Canny (1991)

‣ Observe that when contact occurs, it will
occur between the two closest points

‣ Two contact configurations provide
features that determine the closest points

‣ Can use Voronoi regions to track the closest
features on non-overlapping convex
polyhedra

CS277 - Experimental Haptics, Stanford University, Spring 2014

Voronoi Regions

‣ Defines a convex region of space for each
feature containing the set of points closer
to it than any other feature

CS277 - Experimental Haptics, Stanford University, Spring 2014

Feature Tracking

Walk along outside as objects change position...
CS277 - Experimental Haptics, Stanford University, Spring 2014

Lin-Canny Algorithm

‣ Computes minimum separation distance
between closest pair of features

‣ Takes advantage of temporal coherence

‣ What is the expected running time of this
algorithm?

CS277 - Experimental Haptics, Stanford University, Spring 2014

‣ Performance can be near constant time
once the tracking is initialized

‣ Can be quite difficult to implement!

Lin-Canny Algorithm

[from M. Lin & J. F. Canny, Proc. IEEE Intl. Conf. on Robotics and Automation, 1991.]

/
.P

Figure 1: Point-Vertex Applicability Criterion

to the edge that fails the applicability test and will
iteratively call the feature test to verify whether P
and the new edge are the closest features on the two
objects.

5.2 Point-Edge Applicability Crite-
rion

As for the point-vertex case, if P is really the clos-
est point to E , then P must lie within the region
bounded by the four planes which are superposed by
the coboundaries of E , as shown in Fig.2. Two of
these planes are perpendicular to E passing through
the head and the tail of E , respectively. The other
two planes are perpendicular to the coboundaries of
E or the right and the left faces of E . If P satisfies all
the applicability conditions, then the procedure will
return P and E as a pair of the closest features. If
P fails the applicability test of H E or TE, then the
procedure will “walk” to the appropriate end of edge
E and recursively call the general algorithm to ver-
ify whether the new vertex and P are the two closest
features on two objects respectively. If P fails the
applicability test of the right or the left face, then
the procedure will “walk” to the corresponding face
(coboundary of E) and call the general algorithm re-
cursively to verify whether the new feature (the right
or left face of E) and P are pair of the closest features.

’ Right -Face / Left-Facez

Figure 2: Point-Edge Applicability Criterion

5.3 Point-Face Applicability Crite‘rion

Similarly, if P is actually the closest point to F ,
then P must lie within the region bounded by the
planes which are perpendicular to F and containing
the edges in the boundary of F , as shown in Fig.3. If
P fails one applicability test from one of F’s edges,
the procedure will, once again, “walk” to the corre-
sponding edge and call the general algorithm to check
whether the new feature (in this case, boundary of F
- EF) and P are a pair of the closest features. In
addition, we need to check whether P lies above F to
guarantee that P is not inside the second polyhedron.
If P lies beneath F , it implies that there is at least
one feature on the given object closer to P than F
or that collision is possible. Then, the procedure will
return the closest feature of the given object to P and
proceed with the usual checking procedures.

5.4 Preprocessing Procedure
For vertices of typical convex polyhedra, there are
usually three or four edges in the coboundary. The
faces of polyhedra also have four or five edges typi-
cally. Therefore, frequently the applicability criteria
require only three to five quick tests for each round.
When a face has more than five edges in its bound-
ary or when a vertex has more than five edges in its
coboundary, the polyhedron is preprocessed by sub-
dividing the whole volume into smaller cells. That

1010

F

Figure 3: Vertex-Face Applicability Criterion

is, we divide the original polyhedron by inserting sev-
eral virtual planes and edges. After preprocessing,
each vertex of the new cell has only 4 or 5 cobound-
aries (edges) and each face has only 4 or 5 boundaries
(edges). Fig.4 shows how this can be done on a cone
with 8 boundaries (edges) on its bottom face and 8
coboundaries (edges) on its apex and on a cylinder
with 8 edges on its top and bottom faces. This pre-
processing procedure is a simple calculation, and it
guarantees that when the algorithm starts, every fea-
ture has a constant size boundary and coboundary.
Consequently, the three applicability tests described
above run in constant time.

In the next section, we will show how these applica-
bility conditions are used to update the pair of closest
features between two convex polyhedra approximately
in constant time.

6 General Description of the
Approach

Given a pair of features of two polyhedra, we apply
the appropriate applicability check from the last sec-
tion.

Except for case (1) - a pair of vertices, case (5) -
an edge and a face, and case (6) - two faces, we need
to compute the nearest points between two features,
before we can apply the applicability tests described
in the previous section. The details for computing

Figure 4: Preprocessing of a Cone and a Cylindar

these nearest points are rather trivial, thus omitted
here. (Please refer to [15], if necessary.)

(1) If the features are a pair of vertices, then they both
have to satisfy the applicability conditions imposed by
each other, in order for them to be the closest features.
If either one of the vertices fails the applicability test
imposed by the other, the algorithm will return a new
pair of features - one of the two vertices and the edge
for which the test failed, then continue checking the
new features until it finds the closest pair.
(2) Given a vertex and an edge, the algorithm will
check whether the vertex satisfies the applicability
conditions imposed by the edge and whether the near-
est point on the edge to the vertex satisfies the ap-
plicability conditions imposed by the vertex. If both
verifications return value “true”, then they are the
closest features. Otherwise, a corresponding new pair
of features (depending on which test failed) will be
returned and the algorithm will proceed until it finds

101 I

CS277 - Experimental Haptics, Stanford University, Spring 2014

Primitive Test Summary

‣ We covered fast intersection tests for:

- Segment-triangle

- Triangle-triangle

- Sphere-sphere

- Axis-aligned bounding box (AABB)

- Oriented bounding box (OBB)

- Convex polyhedra

‣ Look up others if needed!

CS277 - Experimental Haptics, Stanford University, Spring 2014

Summary

‣ We can test collision between two objects,
but what happens if there are thousands?

CS277 - Experimental Haptics, Stanford University, Spring 2014

