CS277 - Experimental Haptics Lecture 6

Collision Detection I

Motivation

Problem Definition

- We seek efficient algorithms to answer the following queries:
- Intersection query (do objects overlap?)
- Contact manifolds (set of contact points)
- Penetration depth / intersection volume
- Separation distance
- Difficulty increases as we move down...

Geometric Representations

Many different ways to describe the same object

Surface Representations

- Implicit surface: $S(x, y, z)=0$
- Parametric surface: $P(u, v) \mid u, v \in \mathcal{D}$
- Point-sampled surface (point cloud)
- Polygonal mesh:
- Triangle mesh
- Quadrilateral (quad) mesh
- ... any other ones you can think of?

Triangle Meshes

Why is this the most popular representation?

Terminology

- Objects are composed of primitive shapes
- Broad phase
- Which objects are in a vicinity?
, Narrow phase
- Does the geometry
 intersect?

Broad Phase Cotlisions

No possibility
of intersection

CS277 - Experimental Haptics, Stanfored University, Spring 2014

Broad Phase Collisions

Today's Lecture

Primitive Tests

Tests for Meshes

- The two most common collision queries for haptic rendering of polygonal meshes:
- line segment-triangle intersection test
- triangle-triangle intersection test

Ray-Triangle Intersection

- Find intersection between line and plane
- Discard if point is outside segment range
- Use barycentric coordinates to determine if the point is inside the triangle

Barycentric Coordinates

Barycentric Coordinates

A Direct Approach

$$
\text { A ray: } \quad \mathbf{r}(t)=\mathbf{o}+t \mathbf{d}
$$

A triangle: $\quad \mathbf{f}(u, v)=(1-u-v) \mathbf{p}_{0}+u \mathbf{p}_{1}+v \mathbf{p}_{2}$

Ray-triangle intersect:

$$
\mathbf{o}+t \mathbf{d}=(1-u-v) \mathbf{p}_{0}+u \mathbf{p}_{1}+v \mathbf{p}_{2}
$$

$$
\text { Rearrange terms: } \quad\left(\begin{array}{ccc}
-\mathbf{d} & \mathbf{p}_{1}-\mathbf{p}_{0} & \mathbf{p}_{2}-\mathbf{p}_{0}
\end{array}\right)\left(\begin{array}{l}
t \\
u \\
v
\end{array}\right)=\mathbf{o}-\mathbf{p}_{0}
$$

Solve for t, u, and $v . .$.

Cramer's Rule

- Given the set of linear equations

$$
\left(\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\mathbf{d}
$$

- Write the determinant of the matrix

$$
\begin{array}{cc}
\text { Then } & \frac{\operatorname{det}(\mathbf{a}, \mathbf{d}, \mathbf{c})}{\operatorname{det}(\mathbf{d}, \mathbf{b}, \mathbf{c})} \\
\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c}) & z=\frac{\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{d})}{\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c})}
\end{array}
$$

$$
\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

A Direct Approach

Our equation: $\quad\left(\begin{array}{ccc}-\mathbf{d} & \mathbf{p}_{1}-\mathbf{p}_{0} & \mathbf{p}_{2}-\mathbf{p}_{0}\end{array}\right)\left(\begin{array}{l}t \\ u \\ v\end{array}\right)=\mathbf{o}-\mathbf{p}_{0}$

Applying Cramer's rule: $\quad\left(\begin{array}{l}t \\ u \\ v\end{array}\right)=\frac{1}{\operatorname{det}\left(-\mathbf{d}, \mathbf{e}_{1}, \mathbf{e}_{2}\right)}\left(\begin{array}{c}\operatorname{det}\left(\mathbf{s}, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \\ \operatorname{det}\left(-\mathbf{d}, \mathbf{s}, \mathbf{e}_{2}\right) \\ \operatorname{det}\left(-\mathbf{d}, \mathbf{e}_{1}, \mathbf{s}\right)\end{array}\right)$
where $\quad \mathbf{e}_{1}=\mathbf{p}_{1}-\mathbf{p}_{0}, \mathbf{e}_{2}=\mathbf{p}_{2}-\mathbf{p}_{0}, \mathbf{s}=\mathbf{o}-\mathbf{p}_{0}$

Check $\mathrm{t}, \mathrm{u}, \mathrm{v}$ within intervals!

Geometric Interpretation

[from T. Möller \& B.Trumbore, Journal of Graphics Tools, I 997.$]$

Triangle-Triangle Intersection

- Triangles A and B may intersect if they cross each other's plane
- Test A's vertices against B's plane, and vice versa for rejection
- Test for interval overlap along the line of intersection

Half-Plane Test

$$
\begin{aligned}
{[\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}] } & =\left|\begin{array}{cccc}
a_{x} & b_{x} & c_{x} & d_{x} \\
a_{y} & b_{y} & c_{y} & d_{y} \\
a_{z} & b_{z} & c_{z} & d_{z} \\
1 & 1 & 1 & 1
\end{array}\right| \\
& =(\mathbf{d}-\mathbf{a}) \cdot((\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a}))
\end{aligned}
$$

- Geometric interpretation:
- This tests which side of the plane defined by triangle abc the point \mathbf{d} is on

Half-Plane Test

- Given two triangles:

$$
\triangle \mathbf{p}_{1} \mathbf{q}_{1} \mathbf{r}_{1} \quad \text { and } \quad \triangle \mathbf{p}_{2} \mathbf{q}_{2} \mathbf{r}_{2}
$$

- We can first perform the half-plane test on triangle one:

$$
\left[\mathbf{p}_{2}, \mathbf{q}_{2}, \mathbf{r}_{2}, \mathbf{p}_{1}\right] \quad\left[\mathbf{p}_{2}, \mathbf{q}_{2}, \mathbf{r}_{2}, \mathbf{q}_{1}\right] \quad\left[\mathbf{p}_{2}, \mathbf{q}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}\right]
$$

- Then symmetrically perform the half-plane test on the other triangle...

Intersection of Intervals

[from T. Möller, Journal of Graphics Tools, I 997.]

Interval Intersection Test

- Intervals on line L are

$$
I_{1}=[i, j] \quad I_{2}=[k, l]
$$

- Intervals overlap if

$$
k \leq j \text { and } i \leq l
$$

- Perform two additional determinant tests:

$$
\begin{aligned}
& {\left[\mathbf{p}_{1}, \mathbf{q}_{1}, \mathbf{p}_{2}, \mathbf{q}_{2}\right]} \\
& {\left[\mathbf{p}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{p}_{2}\right]}
\end{aligned}
$$

Triangle-Triangle Summary

- Compute three 4×4 determinants to test first triangle against the second's plane
- If triangle intersects the plane, perform the symmetric test using three more determinants
- If both triangles intersect the other's plane, perform interval overlap test on the intersecting line with two last 4×4 determinants
- What happens with co-planar triangles?!

Two of My Favorite Books

No need to memorize any of these algorithms!

Some Easier Stuff...

- Mesh geometry intersection tests are expensive, and must be performed for every triangle
- Collision detection can be sped up significantly by using rejection tests on bounding volumes

Bounding Volumes

- Most common bounding volumes are spheres and boxes
- Two most common collision queries:
- Sphere-sphere intersection
- Box-box intersection

Sphere-Sphere Intersection

Easiest one in the book!

Sphere-Sphere Intersection

- Two spheres intersect if the separation between their centers is less than the sum of their radii:

$$
\left\|\mathbf{c}_{1}-\mathbf{c}_{2}\right\|<r_{1}+r_{2}
$$

Box-Box Intersection

- An axis-aligned box is represented by lower (minimum coordinate) and upper (maximum coordinate) vertices
- How do we detect intersection of boxes?

Box-Box Intersection

- Two axis-aligned boxes intersect if the lower coordinate of each box is bounded by the upper coordinate of the other:

$$
\begin{aligned}
& \mathbf{a}_{\min }<\mathbf{b}_{\max } \\
& \mathbf{b}_{\min }<\mathbf{a}_{\max }
\end{aligned}
$$

Oriented Box Intersection

How do we test for this kind of box intersection?

Separating Hyperplane Theorem

- Two convex polytopes can be separated by a hyperplane if and only if they are disjoint
- For disjoint polyhedra, there exists a separating plane parallel to a face on either polyhedron, or an edge selected from each polyhedron (why?)

Separating Axis Test

- Project all vertices onto the normal of the separating plane ("separating axis")
- Projections from each polytope form an interval
- Polytopes are disjoint if intervals are disjoint

Oriented Box Intersection

Oriented Box Intersection

- Perform separating axis test on every possible axis:
- 3 axes (faces of box A)
- 3 axes (faces of box B)
- $3 \times 3=9$ axes from pairs of box edges
- Total: I5 separating axis tests

Convex Polyhedra

How would we test shapes like these?

Intersection of Convex Polyhedra

- Use the separating hyperplane theorem:
- How do we determine what the plane/axis is?
- Use a feature tracking approach:
- Polyhedra will collide when their separation distance vanishes
- Can we tell which elements are about to collide?

Linear Programming

- Maximize

$$
\mathbf{c}^{T} \mathbf{x}
$$

- Subject to the linear constraints

$$
\mathbf{A} \mathbf{x} \leq \mathbf{b}
$$

- where \mathbf{x} is a vector of n unknowns, \mathbf{c} is a vector of coefficients, and \mathbf{A} and \mathbf{b} are constraints which define an n-dimensional convex polytope
- Can detect infeasibility

Linear Programming

- Four coefficients of the separating plane are linear programming variables
- Constrain all vertices of polyhedron A to one side of plane and vertices of polyhedron B to the other
- LP tells us whether or not a separating plane exists
- Expected linear time

Closest Feature Tracking

- Proposed by Lin \& Canny (1991)
- Observe that when contact occurs, it will occur between the two closest points
- Two contact configurations provide features that determine the closest points
- Can use Voronoi regions to track the closest features on non-overlapping convex polyhedra

Voronoi Regions

- Defines a convex region of space for each feature containing the set of points closer to it than any other feature

Feature Tracking

Walk along outside as objects change position...

Lin-Canny Algorithm

- Computes minimum separation distance between closest pair of features
- Takes advantage of temporal coherence
- What is the expected running time of this algorithm?

Lin-Canny Algorithm

- Performance can be near constant time once the tracking is initialized

- Can be quite difficult to implement!

Figure 1: Point-Vertex Applicability Criterion

Figure 2: Point-Edge Applicability Criterion

Figure 3: Vertex-Face Applicability Criterion
[from M. Lin \& J. F. Canny, Proc. IEEE Intl. Conf. on Robotics and Automation, I99 I.]

Primitive Test Summary

- We covered fast intersection tests for:
- Segment-triangle
- Triangle-triangle
- Sphere-sphere
- Axis-aligned bounding box (AABB)
- Oriented bounding box (OBB)
- Convex polyhedra
- Look up others if needed!

Summary

- We can test collision between two objects, but what happens if there are thousands?

