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Motivation

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine  

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities. 
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Problem Definition

‣ We seek efficient algorithms to answer the 
following queries:

- Intersection query (do objects overlap?)

- Contact manifolds (set of contact points)

- Penetration depth / intersection volume

- Separation distance

‣ Difficulty increases as we move down...
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Geometric Representations

Many different ways to describe the same object
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Surface Representations

‣ Implicit surface:

‣ Parametric surface:

‣ Point-sampled surface (point cloud)

‣ Polygonal mesh:

- Triangle mesh

- Quadrilateral (quad) mesh

‣ ... any other ones you can think of?

S(x, y, z) = 0

P (u, v)|u, v 2 D
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Triangle Meshes

Why is this the most popular representation?
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Terminology

‣Objects are composed 
of primitive shapes

‣Broad phase

- Which objects are in a 
vicinity?

‣Narrow phase

- Does the geometry 
intersect?
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Broad Phase Collisions

No possibility 
of intersection
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Broad Phase Collisions

Possible 
intersection

?
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Narrow Phase Collisions

Collision!
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Today’s Lecture
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Primitive Tests
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Tests for Meshes

‣ The two most common collision queries 
for haptic rendering of polygonal meshes:

- line segment-triangle intersection test

- triangle-triangle intersection test
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Ray-Triangle Intersection

‣ Find intersection 
between line and plane

‣Discard if point is 
outside segment range

‣Use barycentric 
coordinates to 
determine if the point 
is inside the triangle
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Barycentric Coordinates

p0

p1

p2

f(u, v) = (1� u� v)p0 + up1 + vp2
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Barycentric Coordinates

f(u, v) = (1� u� v)p0 + up1 + vp2

p0

p1

(.3, .2, .5)
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A1
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A2

A

A = 1
2 |(p1 � p0)⇥ (p2 � p0)|
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A Direct Approach

r(t) = o + td

0

@�d p1 � p0 p2 � p0

1

A

0

@
t
u
v

1

A = o� p0

A ray:

A triangle:

Rearrange terms:

f(u, v) = (1� u� v)p0 + up1 + vp2

o + td = (1� u� v)p0 + up1 + vp2Ray-triangle intersect:

Solve for t, u, and v ...
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Cramer’s Rule

‣ Given the set of linear equations

‣ Write the determinant of the matrix

‣ Then

0

@a b c

1

A

0

@
x

y

z

1

A = d

det(a,b, c) =

������

a1 b1 c1
a2 b2 c2
a3 b3 c3

������

x =
det(d,b, c)

det(a,b, c)
y =

det(a,d, c)

det(a,b, c)
z =

det(a,b,d)

det(a,b, c)
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A Direct Approach
0

@�d p1 � p0 p2 � p0
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Our equation:

 Applying Cramer’s rule:

where

Check t, u, v within intervals!
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Geometric Interpretation
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[from T. Möller & B. Trumbore, Journal of Graphics Tools, 1997.]
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Triangle-Triangle Intersection

‣ Triangles A and B may 
intersect if they cross 
each other’s plane

‣ Test A’s vertices 
against B’s plane, and 
vice versa for rejection

‣ Test for interval 
overlap along the line 
of intersection
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Half-Plane Test

‣ Geometric interpretation:

- This tests which side of the plane defined by 
triangle abc the point d is on

[a,b, c,d] =

��������

a
x

b
x

c
x

d
x
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y
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y
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y

d
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��������

= (d� a) · ((b� a)⇥ (c� a))
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Half-Plane Test

‣ Given two triangles:

‣ We can first perform the half-plane test on 
triangle one:

‣ Then symmetrically perform the half-plane 
test on the other triangle... 

[p2,q2, r2,p1] [p2,q2, r2,q1] [p2,q2, r2, r1]

4p1q1r1 and 4p2q2r2
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Intersection of Intervals

If all , and , then the triangles are co-planar, and this case
is handled separately and discussed later. If not, the intersection of and is a
line, , where is the direction of the line and is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect . These intersections form intervals on , and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.

L L

Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on ) that represents the
intersection between and , and that, for example, and lie on the same
side of and that lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges and
and , the vertices are first projected onto :

(3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value, , for . Letting denote the
projection of onto , we see that and are similar, so

(4)

Similar calculations are done to compute , and an interval for is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of for inter-
section with the edges of . If any intersection is found, then the triangles intersect.

2

[from T. Möller, Journal of Graphics Tools, 1997.]
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Interval Intersection Test

‣ Intervals on line L are

‣ Intervals overlap if

‣ Perform two additional 
determinant tests:

[p1,q1,p2,q2]
[p1, r1, r2,p2]

I1 = [i, j] I2 = [k, l]

k  j and i  l

If all , and , then the triangles are co-planar, and this case
is handled separately and discussed later. If not, the intersection of and is a
line, , where is the direction of the line and is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect . These intersections form intervals on , and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.

L L

Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on ) that represents the
intersection between and , and that, for example, and lie on the same
side of and that lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges and
and , the vertices are first projected onto :

(3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value, , for . Letting denote the
projection of onto , we see that and are similar, so

(4)

Similar calculations are done to compute , and an interval for is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of for inter-
section with the edges of . If any intersection is found, then the triangles intersect.

2

p1

q1r1

p2

q2

r2

k l

i j
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Triangle-Triangle Summary

‣ Compute three 4x4 determinants to test first 
triangle against the second’s plane

‣ If triangle intersects the plane, perform the 
symmetric test using three more determinants

‣ If both triangles intersect the other’s plane, 
perform interval overlap test on the intersecting 
line with two last 4x4 determinants

‣ What happens with co-planar triangles?!
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Two of My Favorite Books

No need to memorize any of these algorithms!
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Some Easier Stuff...

‣ Mesh geometry intersection tests are 
expensive, and must be performed for 
every triangle

‣ Collision detection can be sped up 
significantly by using rejection tests on 
bounding volumes
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Bounding Volumes

‣Most common 
bounding volumes are 
spheres and boxes

‣ Two most common 
collision queries:

- Sphere-sphere 
intersection

- Box-box intersection
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Sphere-Sphere Intersection

?

Easiest one in the book!
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Sphere-Sphere Intersection

‣ Two spheres intersect 
if the separation 
between their centers 
is less than the sum of 
their radii:

||c1 � c2|| < r1 + r2 r1

r2

c1

c2
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Box-Box Intersection

‣ An axis-aligned box is represented by 
lower (minimum coordinate) and upper 
(maximum coordinate) vertices

‣ How do we detect intersection of boxes?

p
max

pmin
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Box-Box Intersection

‣ Two axis-aligned boxes 
intersect if the lower 
coordinate of each box 
is bounded by the 
upper coordinate of 
the other:

amin

a
max

b
max

a
min

< b
max

b
min

< a
max
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Oriented Box Intersection

How do we test for this kind of box intersection?
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Separating Hyperplane Theorem

‣ Two convex polytopes can be separated by a 
hyperplane if and only if they are disjoint

‣ For disjoint polyhedra, there exists a separating 
plane parallel to a face on either polyhedron, or an 
edge selected from each polyhedron (why?)
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Separating Axis Test

‣ Project all vertices onto the normal of the 
separating plane (“separating axis”)

‣ Projections from each polytope form an interval

‣ Polytopes are disjoint if intervals are disjoint
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Oriented Box Intersection
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Oriented Box Intersection

‣ Perform separating 
axis test on every 
possible axis:

- 3 axes (faces of box A)

- 3 axes (faces of box B)

- 3 x 3 = 9 axes from 
pairs of box edges

‣ Total: 15 separating 
axis tests
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Convex Polyhedra

How would we test shapes like these?
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Intersection of Convex Polyhedra

‣ Use the separating hyperplane theorem:

- How do we determine what the plane/axis is?

‣ Use a feature tracking approach:

- Polyhedra will collide when their separation 
distance vanishes

- Can we tell which elements are about to 
collide?
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Linear Programming

‣ Maximize

‣ Subject to the linear constraints

‣ where x is a vector of n unknowns, c is a vector of 
coefficients, and A and b are constraints which 
define an n-dimensional convex polytope

‣ Can detect infeasibility

c

T
x

Ax  b

CS277 - Experimental Haptics, Stanford University, Spring 2014



Linear Programming

‣ Four coefficients of the 
separating plane are linear 
programming variables

‣ Constrain all vertices of 
polyhedron A to one side 
of plane and vertices of 
polyhedron B to the other

‣ LP tells us whether or not 
a separating plane exists

‣ Expected linear time

ax + by = c

ax + by � c > 0

ax + by � c < 0

(a, b, c) = ?
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Closest Feature Tracking

‣ Proposed by Lin & Canny (1991)

‣ Observe that when contact occurs, it will 
occur between the two closest points

‣ Two contact configurations provide 
features that determine the closest points

‣ Can use Voronoi regions to track the closest 
features on non-overlapping convex 
polyhedra
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Voronoi Regions

‣ Defines a convex region of space for each 
feature containing the set of points closer 
to it than any other feature
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Feature Tracking

Walk along outside as objects change position...
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Lin-Canny Algorithm

‣ Computes minimum separation distance 
between closest pair of features

‣ Takes advantage of temporal coherence

‣ What is the expected running time of this 
algorithm?
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‣ Performance can be near constant time 
once the tracking is initialized

‣ Can be quite difficult to implement!

Lin-Canny Algorithm

[from M. Lin & J. F. Canny, Proc. IEEE Intl. Conf. on Robotics and Automation, 1991.]
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Figure 1: Point-Vertex Applicability Criterion 

to the edge that fails the applicability test and will 
iteratively call the feature test to verify whether P 
and the new edge are the closest features on the two 
objects. 

5.2 Point-Edge Applicability Crite- 
rion 

As for the point-vertex case, if P is really the clos- 
est point to E ,  then P must lie within the region 
bounded by the four planes which are superposed by 
the coboundaries of E ,  as shown in Fig.2. Two of 
these planes are perpendicular to E passing through 
the head and the tail of E ,  respectively. The other 
two planes are perpendicular to the coboundaries of 
E or the right and the left faces of E .  If P satisfies all 
the applicability conditions, then the procedure will 
return P and E as a pair of the closest features. If 
P fails the applicability test of H E  or TE, then the 
procedure will “walk” to the appropriate end of edge 
E and recursively call the general algorithm to ver- 
ify whether the new vertex and P are the two closest 
features on two objects respectively. If P fails the 
applicability test of the right or the left face, then 
the procedure will “walk” to the corresponding face 
(coboundary of E )  and call the general algorithm re- 
cursively to verify whether the new feature (the right 
or left face of E )  and P are pair of the closest features. 

’ Right -Face / Left-Facez 

Figure 2: Point-Edge Applicability Criterion 

5.3 Point-Face Applicability Crite‘rion 

Similarly, if P is actually the closest point to F ,  
then P must lie within the region bounded by the 
planes which are perpendicular to F and containing 
the edges in the boundary of F ,  as shown in Fig.3. If 
P fails one applicability test from one of F’s edges, 
the procedure will, once again, “walk” to the corre- 
sponding edge and call the general algorithm to check 
whether the new feature (in this case, boundary of F 
- EF) and P are a pair of the closest features. In 
addition, we need to check whether P lies above F to 
guarantee that P is not inside the second polyhedron. 
If P lies beneath F ,  it implies that there is at least 
one feature on the given object closer to P than F 
or that collision is possible. Then, the procedure will 
return the closest feature of the given object to P and 
proceed with the usual checking procedures. 

5.4 Preprocessing Procedure 
For vertices of typical convex polyhedra, there are 
usually three or four edges in the coboundary. The 
faces of polyhedra also have four or five edges typi- 
cally. Therefore, frequently the applicability criteria 
require only three to five quick tests for each round. 
When a face has more than five edges in its bound- 
ary or when a vertex has more than five edges in its 
coboundary, the polyhedron is preprocessed by sub- 
dividing the whole volume into smaller cells. That 
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Figure 3: Vertex-Face Applicability Criterion 

is, we divide the original polyhedron by inserting sev- 
eral virtual planes and edges. After preprocessing, 
each vertex of the new cell has only 4 or 5 cobound- 
aries (edges) and each face has only 4 or 5 boundaries 
(edges). Fig.4 shows how this can be done on a cone 
with 8 boundaries (edges) on its bottom face and 8 
coboundaries (edges) on its apex and on a cylinder 
with 8 edges on its top and bottom faces. This pre- 
processing procedure is a simple calculation, and it 
guarantees that when the algorithm starts, every fea- 
ture has a constant size boundary and coboundary. 
Consequently, the three applicability tests described 
above run in constant time. 

In the next section, we will show how these applica- 
bility conditions are used to update the pair of closest 
features between two convex polyhedra approximately 
in constant time. 

6 General Description of the 
Approach 

Given a pair of features of two polyhedra, we apply 
the appropriate applicability check from the last sec- 
tion. 

Except for case (1) - a pair of vertices, case (5) - 
an edge and a face, and case (6) - two faces, we need 
to compute the nearest points between two features, 
before we can apply the applicability tests described 
in the previous section. The details for computing 

Figure 4: Preprocessing of a Cone and a Cylindar 

these nearest points are rather trivial, thus omitted 
here. (Please refer to [15], if necessary.) 

(1) If the features are a pair of vertices, then they both 
have to satisfy the applicability conditions imposed by 
each other, in order for them to be the closest features. 
If either one of the vertices fails the applicability test 
imposed by the other, the algorithm will return a new 
pair of features - one of the two vertices and the edge 
for which the test failed, then continue checking the 
new features until it finds the closest pair. 
(2) Given a vertex and an edge, the algorithm will 
check whether the vertex satisfies the applicability 
conditions imposed by the edge and whether the near- 
est point on the edge to the vertex satisfies the ap- 
plicability conditions imposed by the vertex. If both 
verifications return value “true”, then they are the 
closest features. Otherwise, a corresponding new pair 
of features (depending on which test failed) will be 
returned and the algorithm will proceed until it finds 
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Primitive Test Summary

‣ We covered fast intersection tests for:

- Segment-triangle

- Triangle-triangle

- Sphere-sphere

- Axis-aligned bounding box (AABB)

- Oriented bounding box (OBB)

- Convex polyhedra

‣ Look up others if needed!
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Summary

‣ We can test collision between two objects, 
but what happens if there are thousands?
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