
Course Projects, Past & Present

CS277 - Experimental Haptics
Lecture 9a

Course Project Requirements

‣ Final project is worth 40% (40 points)

- Project proposal (5 points)

- May 6th

- Project milestone/presentation (5 points)

- May 20th and May 22nd

- Project demonstration & showcase (30 points)

- May 30th

Project Proposal

‣ Should be (only) 1-2 pages long

‣ Give instructors an idea of what you intend
to accomplish

‣ We will give you feedback with respect to
suitability and scope

‣ Submit one proposal per team (one or two
people) by May 6th

Project Milestone/Presentation

‣ In-class presentation

- Project goals

- Demo of intermediate results

‣ Fundamental aspects of your project should
be in place and working reasonably well

‣ Helps us to detect problems early on and
to help you with unanticipated challenges

Project Showcase

‣ Joint exhibition with ME327

- Friday, May 30th, 1:30-3:00 PM

- Building 550 atrium, grove area

‣ Distinguished guests, high-profile exposure!

‣ 1-page abstract = no comprehensive report

‣ Let us know well ahead of time if you have
a schedule conflict

Course Project Ideas

‣ Video game, simulation, or advanced
algorithm/technique

- Physics/dynamics simulations

- Collaborative or competitive networked haptics

- Rich haptic environments

‣ Let’s see some examples!

CS277 - Experimental Haptics Stanford University 3 June 2008

Haptic Airhockey

Denise Jones, Min Young Kim

The objective of this project is to build an air
hockey game with haptics. The main
components of the game are the dynamics
simulation, the force control, and the sound
control. This is a one player game, with
artificial intelligence used for the movement
of the opponent’s paddle.

Fig 1. Start screen

In order to simulate the true feeling of air
hockey, the surface of the table is soft, as
though the paddle is on a layer of air, though
the side walls are solid. In addition, there are
three different scenarios for dealing with the
collision between the puck and the player’s
paddle. If the paddle is stationary, the puck is
simply reflected, and the force is proportional
to the pucks change in velocity. If the
difference between the puck velocity and the
paddle velocity is very small, then it is
assumed that the collisions between the paddle
and puck will be inelastic. This is because for
a small amount of time the puck and the
paddle will move together at the same velocity
as is the case during inelastic collisions. The
force felt on the paddle is equal to the pucks
mass times the acceleration applied to it. If

both the paddle and puck are moving quickly
toward each other and a collision occurs, then
elastic collision equations are used to calculate
the final velocity of the puck and the force felt
on the paddle.

Fig 2. Attempted Cheating

As an added bonus, an anti-cheating effect
was implemented. Since it is not allowed in
air hockey to pick up and move the puck,
when a user picks up the puck with the paddle,
a spring force pulls the user’s paddle with the
puck back toward the table.

We used BASS sound library and several
sound data for implementing unique sounds
into the game. There are “clanks” when the
puck hits the wall or a paddle. There is also a
spring sound while the user is cheating. The
frequency and volume of these sounds are
affected by the force reaction of each of the
events. There are also unique sounds when
the user achieves a goal, the AI achieves a
goal, or if the user wins or loses. Finally there
is 3D background music while playing the
game.

CS277 - Experimental Haptics Stanford University 3 June 2008

Lock Picking Simulation

David Johnson

Picking a lock is one of the few activities that
doesn’t use any sense other than touch.
Everything that happens inside of the lock is
hidden from the person’s view and the only
way to get information from the lock is
through the forces you feel through the lock
picks.

Fig 1. Front view of the lock

This program gives you the ability to see what
is happening inside the lock as you pick it.
When you get the pin to the right height it
changes color as you feel the change in force.
By giving visual cues that correspond with the
forces, this program should be able to train a
person to recognise the slight changes in force
that are associated with setting the pin to the
correct height. It also teaches you how the
torque affects how the pins feel. Adjusting the
torque can play an important role in how easy
it is to identify the next pin to set and how
easy it is to set the pin without lifting it too
far.

Fig 2. Cross section of the lock so user can see

what is happening inside

How to Pick a Lock

You first use a tension tool to apply torque to
the keyhole, like you would when you turn a
key. As the lock tries to rotate it gets blocked
by one of the pins. This pin becomes difficult
to push up on because of the sideway pressure
on it. Putting a lock pick inside the keyhole,
you lift up on each of the pins you find the one
that is more difficult to lift than the others.
This is the pin that must be set to the correct
height next.

As you are lifting that pin, at some point you
should feel the force from the pin suddenly
decrease. This happens when the pin is at the
correct height. If you stop lifting the pin at
this point the pin will remain at this correct
height. The lock will rotate very slightly and
catch on another pin. If you repeat the same
procedure for each pin and get all the pins to
their correct heights the lock will be free to
turn and will open.

 CS277 – Experimental Haptics
 Stanford University
 3 June 2008

Sonny Chan & Robert Wilson

Maximum
Experience
Prepare yourself

for the ultimate

virtual fencing ex-

perience! By tak-

ing advantage of

the latest in haptic

interface technolo-

gies , Maximum

Fencing Deluxe

delivers a truly unique experience that cannot be rep-

licated using any traditional game interfaces. It al-

lows you to virtually and safely duel your friends (or

foes) over your local network, and to literally feel the

wrath of their blade. The immersive environment is

so real that it is no longer just a fencing

game, but a simulation!

Maximum Haptics
Point proxies are extremely simple, useful, and intui-

tive. When it comes to modeling blades, though,

they just don't cut it. Maximum Fencer Deluxe fea-

tures a ray proxy approach similar to one described

by Mitra and Niemeyer (Mitra & Niemeyer, Pres-

ence 16:4, 2007) that treats each blade

as a line segment. The player is coupled

to the virtual environment through a

digital spring-damper between the de-

vice location and the "manipulation

point" on the blade, where a fencer

would normally control the blade with

his thumb and finger. Contact between

the blades, guards, and bodies is handled

using velocity constraints. These regu-

late the velocities at the closest points

between two objects so that penetration of

objects cannot occur during an integration

time step in the dynamics engine. As a result,

the user feels contact forces complete with

mechanical advantage. To complete the haptic

immersion, physical properties of the blade

such as mass, inertia, the first bending mode,

and friction are modeled.

Maximum Immersion
The dueling action of Maximum Fencer De-

luxe takes place within a fully immersive 3D

environment. Carefully animated blades and human

models al- low the duelist to see all the details

that are felt through the haptic interface.

Full-speed haptics and dy-

namics simulations are run

on both the host and client systems

to provide both duelists with the ultimate feel

of fencing. Finally, a full musical score and a set of

finely tuned sound effects complete the illusion of

really being there!

Maximum Strategy
To succeed at Maximum Fencer Deluxe the initiate

must learn fundamental

skills mirroring the sport

of fencing. Parries, dis-

engages, and advance

attacks are all critical,

and maintaining proper

distance and timing re-

main central. With train-

ing, two duelists can

execute advanced strate-

gies such as feints and

combination attacks.

Powered by:

CS277 - Experimental Haptics Stanford University 11 March 2010

Santhi Elayaperumal, Matt Montgomery

Introduction

Haptic MasterMind is a “touchy-feely” twist on a
classic strategy game. In traditional MasterMind, the
player breaks a code based on colourful round pegs.
From a choice of six pegs, any combination, including
repetition, of four pegs make up the code. In this
haptic version, balls of various textures replace the
colourful pegs, and the player “feels” his or her way
out of the code. The balls can be placed in one of
four slots, each representing a place in the code.
Based on scored guesses, the user attempts to break
the code.

Scoring

The default “hard” scoring method is such:

Pressing “E” on the keyboard turns on “easy” scoring,
which gives a score based on each slot position.

Haptic Ball Types

Of the six haptic balls to choose from, three are
“squishy” and three are “stiff”. Of the two types,
there are three effects:

1.) Rubbery

2.) Magnetic

3.) Vibrating

The “squishy” objects are deformable, and were
created using the GEL-Module dynamics libraries in
CHAI3D. The deformable objects will change shape

and surface effects when the cursor interacts with
them. The stiff objects will not deform. To quickly
see if a ball is deformable or stiff, the player can
repeatedly tap the cursor on it.

Game Environment

Figure 1 shows an example of a game in play.

The six playable balls to choose from appear in front
of the “active row”. These balls will always have the
same haptic effect based on their initial position. Pick
up a ball by moving near it and pressing the CENTER
button on the Novint Falcon.

Once over the desired slot in the active row, drop it
into the tray by letting go of the CENTER button. To
delete a ball in play, pull it out of the slot, and while
holding onto the CENTER button, press “D”.

When all four slots are full, press the RIGHT button
on the Falcon to get scored. If the code has not been
broken, a new tray will appear. It is possible to scroll
back into the workspace to feel balls in the previously
played rows. The row will then highlight and the
corresponding score will be indicated by a red square.

The game environment shows the haptic effects and
forces between the multiple objects in the screen.
Force optimizing methods were implemented to only
render forces on objects near the cursor, in order to
keep up the haptic rendering rate. The game
programming makes use of multiple structures which
inherit cClasses within the CHAI3D library.

A number with a black background tells
how many balls have the correct haptic
texture in the correct slot.

A number with a white background tells
how many balls have the correct haptic
texture but are in the incorrect slot.

A green circle means “correct effect and correct position.”
A yellow circle means “correct effect and wrong position.”
A red “x” means “wrong effect,” texture is not in the code.

Figure 1. The game environment while in play. The active row
is highlighted, and its score is followed by the red square. In
“easy” scoring, both scoring methods are shown.

 CS277 - Experimental Haptics Stanford University 11 March 2010

Haptic Toothbrush
Sammy Y. Long

Haptic Toothbrush offers the exciting experience
brushing the virtual teeth with our favorite device
Novint Falcon! The body and bristles of the tooth
brush realistically turn and bend as they interact with
the teeth. User can rotate the device as they like.

Fig 1 Haptic Toothbrush

Algorithms behind the Brush
1. Multiple Interacting Points (god-object)

I extended CHAI3D cGeneric3dofPointer to a
toothbrush mesh with 6 3dofPointers attached which
represent the end points of each bristle. God-object
algorithm detects if the bristle penetrates the tooth,
updates the proxy, and computes the contact force.

2. Virtual Coupling Force & Torque

A virtual coupling spring is added between the virtual
brush (center of mass) and the real device position,
with a damping component (Figure2). In each time
step, the position of the brush is updated by Hooke’s
Law, given the two forces applied on it: the force
from the bristles (Fbristle; in green; closer look in Fig3),
and the force from the coupling spring (Fc; in black).
Explicit Euler Integration is performed.

 Fbrush = Fbristle + Fc

The orientation of the toothbrush is updated, in
every time step, from the sum of the two torque
exerted on it: one resulted from Fbristle, and the other
from the torsion spring.

Τbrush = r × Fbristle – kRθ - bRω

Fig 2 Virtual Coupling

3. Spring-Mass Dynamic System for each Bristle

Each bristle is modelled by a spring which connects
its end point and its attachment point to the handle,
named it “bristle spring” (Fig3). The attachment
points are fixed relative to the brush handle. Each
end point position is updated according to the two
forces exerted on it: Fattach, the spring force from the
attachment spring, and Favatar, the spring force which
models the contact (god-object).

Fbristle, the total force exerted by the bristle system
used in the previous steps, is the sum of all individual
spring force from each bristle.

Fbristle = sum (Fattach[i]), 0 ≤ i <6

Fig 3 the Bristle Spring-Mass System

Reference:
[1] CHAI3D
[2] DAB: Interactive Haptic Painting with 3D Virtual Brushes. Bill et al.
Department of Computer Science, University of North Carolina Chapel Hill,
NC

CS277 - Experimental Haptics Stanford University 11 March 2010

Haptic Water Polo
 David Pursell

Haptic water polo is a game that tries to emulate
some of the fundamental individual aspects of
water polo, specifically carrying and shooting a
ball. In water polo, there are goals on each side of
the arena, and the primary objective is to throw
the ball into the opposing goal. One unique aspect
of the game is that no players except the
goalkeepers may touch the ball with both hands
simultaneously, so all catching and shooting must
be done with a single hand. This makes the game
a prime candidate for haptic representation, since
these actions can be intuitively conveyed through
a single controller.
The most interesting part of this simulation is
how to control the ball. The two main goals of
this project were that the player must feel as if he
is holding a weight in his hand when his avatar is
holding the ball, and when the ball is shot it must
travel more or less in the direction that the player
wanted.

Fig 1. Holding the ball in shooting position
The first goal, feeling the weight of the ball, is
simple if the player is holding the ball still.
However, fakes, an integral part of water polo, are
performed by bringing the arm partially forward
as if shooting, but then neglecting to release the
ball and bringing the arm back again. When the
user performs a fake, the program calculates a
discrete approximation of the ball acceleration to
apply a counteractive force, so that the player will

feel like the ball is continuing to pull his arm
forward as he is trying to halt the fake.
The second goal, accuracy while shooting, is
achieved by assuming an exact coupling between
hand position and ball position. This means that
instead of simulating momentum and forces due
to the hand pushing on the ball, the program
instead assumes that ball velocity is equal to the
user's hand velocity. While not quite physically
accurate because it doesn't account for things like
skin pliancy and finger deformation, this
assumption allows for a reasonably accurate and
controllable ball velocity

Fig 2. Swimming towards the ball
One additional goal for this project was to limit
the user input to the haptic device itself. This
becomes a challenge due to the variety of actions
that need to be taken, for instance, the user needs
to control both which direction the avatar swims
as well as how the avatar's arm moves while
shooting the ball. The solution implemented here
is to divide the controller's workspace into halves.
When the user is in the bottom half of the
workspace, the avatar is swimming; in the top
half, the avatar is vertical in the water (called
“eggbeatering” in water polo). This leads to an
intuitive control scheme – when the user wants to
lift the ball out of the water, he just raises his
hand – that uses only the haptic device for input.

CS277 - Experimental Haptics Stanford University 11 March 2010

Realistic Slicing Sensations using Haptics

Alex Quach

The goal of my project is to accurately model the
forces involved when slicing through various
deformable objects using a knife. The feeling of
slicing through an orange, a piece of meat, a
cucumber, or a tomato is unique to the sliced
object, and my project attempts to capture the
various sensations that come from slicing through
each of these objects. I came up with a
parameterized model for expressing the
deformability, surface stiffness, and other
properties of the layers of each object. For
example, the orange’s peel would have a different
feeling than the fruit itself.

Fig 1. Title screen.

In Super Food Cutter Panic 2, the player must
cleanly cut through the given object without
mangling it. The player begins with an easy
object like tofu, before moving on to more
difficult objects like oranges and eggs. The player
must carefully use the haptic device to carefully
bisect the object, sawing back and forth as
necessary. The knife probably will not be
serrated, so it may take some vigorous sawing to
get through some of the objects.

Fig 2. Gameplay.
Getting the objects to be simulated well took
some effort, but addressing stability and the
slicing of the polygonal model was extremely
difficult. Slicing is notoriously difficult to do
using standard polygonal models. Voxels can
help, but require completely different algorithms
that I didn’t have time to implement. As for the
forces, I realized quickly that the haptics device
could not generate forces large enough to give an
adequate cutting sensation, and that the haptics
device cannot detect force. Because cutting
revolves more around the force applied, I had to
make major concessions in my theoretical cutting
model to make it work. Furthermore, I ran into
stability issues, because I was often being caught
in small areas with large deltas in forces applied.
Since the knife is wedged in the food and
therefore has normal forces from every direction,
it’s extremely easy for the device to become
unstable. A lot of my effort went into attempting
to keep the device stable while ensuring a good
experience. Although I didn’t get as realistic an
experience as I wanted, I learned a great deal
about the problems that haptics researchers often
encounter, and got a lot of experience with
constructing a video game.

CS277 - Experimental Haptics Stanford University 11 March 2010

Crosscut Saw Simulation

John Jessen

Overview
This project attempts to realistically simulate the feeling
of sawing through a tree with a crosscut handsaw. Forces
against the user's hand are implemented using the chai 3D
haptic rendering library and a Novint Falcon haptic
device. Rendering of the tree structure was implemented
using OpenGL and C++. Sound was added using SFML.
Implementation: Haptics
To simulate the forces applied to the saw when sawing
through the tree, a set of points representing the tip of
each blade on the saw were defined relative to the position
of the haptic tool in the graphical environment. To allow
for fast collision detection between the saw points and the
tree, the tree is rendered and defined by a set of cubic
voxels arranged into the shape of a cylinder. When it is
determined that at least one of the points of the saw has
penetrated the surface of the tree, the projected point of
the haptic tool position is locked into place until a
significant enough force is applied to the haptic device to
destroy the intersected voxels.

Figure 1. Collision detection and rendering of the tree were
implemented using voxels and point quads.

This force is determined by the distance of the tool from
the projected point. To determine when the user has
applied enough force to destroy the voxels intersected by
the saw, the force applied by the user is divided by the
number of voxels intersected by the points of the saw. If
the resulting value is larger than some predefined voxel
strength threshold, then the intersected voxels are deleted
and the projected point is moved in the direction of the
actual tool position.

Implementation: Graphics
Using voxels also allows for easy rendering of the
deformation of the tree. For each voxel present in the
environment, a point quad is rendered, where the color of
the quad depends on the distance of the quad from the
center of the tree. As voxels are destroyed, fewer points
are rendered, creating the illusion of actually sawing away
parts of the tree. A simple particle system was also used to
show sawdust emanating from a lateral cut on the tree.

Figure 2. Contact points used for collision detection are
presented in red.

Implementation: Sound
In addition to simulating the visual and haptic aspects of
sawing, two sound tracks of a person sawing forward and
backward through a tree were used. While the approach
used in this project is somewhat lacking in realism, a
portion of the forward or backward sound tracks were
played depending on the location the saw gets stuck in the
tree and the distance by which the saw moves after
destroying a set of voxels. To vary the sawing sound, the
pitch and volume of each incremental sawing sound are
randomly tweaked from the source sound file.
User Input
Pressing 3 and 4 will increase and decrease the point quad
size. Pressing 1 and 2 will increase and decrease the
strength of each voxel in the tree, making the tree harder
to saw. The cuts made to the tree can be reset by pressing
R, and the points used for collision detection between the
saw and the voxels can be turned on and off by pressing P.
References:

“An amputation simulator with bone sawing haptic interaction”, M.S. Hsieh,
M.D. Tsai, Y.D. Yeh, Oct. 2005

 “Visuohaptic Simulation of Bone Surgery for Training and Evaluation”, D.
Morris, C. Sewell, F. Barbagli, K. Salisbury, N. Blevins, S. Girod, Nov. 2006

CS277 - Experimental Haptics Stanford University 11 March 2010

RHYTHM GAME WITH HAPTIC DEVICE

Chintan Hossain, Yanzhu Du

Introduction
Rhythm games are a popular genre of games
which simulate playing an instrument. Notes
drop down into view and the player must play the
right notes at the right time. The more accurately
the notes are played, the higher the score. Almost
all rhythm games available currently require a
dedicated controller to play. Haptic devices are
well suited to replace dedicated controllers in
rhythm games, because a haptic device can
simulate tactile interactions with a musical
instrument.

Gameplay
There are four drums within the workspace of the
haptic device, which are rendered as rigid objects.
Every time the avatar hits the top of one of the
drums, a drum sound is played. The target notes
for each of the drums drop into view. When a
drum is hit, the player gains score according to
the timing accuracy of the drum hit.

Fig 1. Screenshot of the Haptic Drum game

The game can be played with multiple devices,
turning it into a 2-handed game. One avatar is
displayed for each haptic device, and each device
can hit any drum within the workspace. Using
one device for each hand makes the game more

fun, and allows more complex and challenging
beats to be played.

Event Based Haptics
The game makes use of event based haptics to
make the drumheads feel stiffer and more
realistic. When a drum head is hit, the program
generates a momentum impulse perpendicular to
the drum head. This causes user to feel a sharp
kick upon hitting the drum head, which makes it
feel like a rigid object. The momentum impulse
is spread out over several haptic rendering time
steps due to the maximum force limit of the
device.

Fig 2. A momentum pulse, illustrated in blue, is
applied upon contact with a drumhead. This
kicks the avatar away, making the drum feel

stiffer.

CS277 - Experimental Haptics Stanford University 10 March 2011

Haptic Pottery

Rifat R Joyee, Narendran Thiagarajan

Haptic pottery is a single person game for pottery
enthusiasts to get “hands-on” with the art of pot
making. Players use the falcon to haptically
interact with the clay on the pottery wheel. A
variety of tools allow different types of interaction
with the clay to make different types of products.
The sound effects add more realism to the
experience. The haptic pottery has a free form
mode and a game mode - where the players are
asked to remake a pot from a given picture.

Fig 1. Starting point: Clay on the wheel

User Experience

Pottery is made by deforming clay into objects of
a required shape. Here we simulate pottery by
starting with cylindrical mount of clay. The player
uses the falcon to touch the surface of clay and
shape it similar to real pottery. There are various
tools they can use to curve out different shapes.
We have implemented three different tools -
cylinder, sphere and point tool. The point tool
makes very narrow groove in the pottery clay, the
cylindrical tool curves out larger area easily and
the sphere tool is similar to the cylinder but with a
round object.

Game Mechanics

The game starts with a target shape and
challenges the player to achieve that using the
toolkit. The score measures how close the user is
to the target. As the user levels up, the shapes get

harder and the wheel spins faster. Different tools
can be selected by pressing 1 to 4. Use ‘a’, ‘s’ and
‘d’ to select the level.

Fig 2. Finished pot

Techniques
The technique we use to render the pottery is
Cylindrical Element Method (by Han, et al.). This
techniques is based on the fact that clay pots on a
turning wheel are symmetric about a central
vertical axis. During collision detection, the
position of the tool at any point is known. Also
the since the cylinders are stacked vertically there
by greatly decreasing the number of cylinders to
check collision with. If collision is detected 3
different forces act on the tool - Stiffness,
Viscosity and Friction.

Texture and Sounds
To make the graphic experience richer we used
texture on the pottery wheel, wet clay and
background. We also use SDL sound library to
simulate the electric motor under the wheel and
the background environment. The ambient sound
is always played for a pleasant user experience.
There are different sounds for the rotating wheel
and the tool shaping the clay.

CS277 - Experimental Haptics Stanford University 11 March 2010

Staff Fighting Simulator
Aubrey Shapero, Dillon McCoy

This program uses two Novint Falcons on one

computer. The devices are set up back-to-back, and
users grip them from the sides. This simulates the
sensation of grabbing a staff with two hands. The
user can feel the forces and torques according to the
actual physics of holding a rigid stick in two
locations.

Fig 1. Two Falcons back-to-back

Our program also implements a new feature that
we call “dynamic gripping.” There are many
programs that use proxies other than plain spheres, but
few programs, if any, allow the user to change the
interaction point on the non-spherical proxy.
Changing the interaction point on a non-spherical
proxy is non-intuitive and strange, assuming there is
one interaction point. However, a staff proxy is the
simplest non-spherical proxy in which changing the
interaction points along the proxy is intuitive and
quite natural.

In this program, there are default positions for the
hand proxies, but the user can change his/her hand
positions by gripping the devices described as
follows: Gripping either hand will make that hand the
“fixed” hand, and the other the “free” hand. When in
this configuration, the position on the staff for the
fixed hand gets fixed, and the staff proxy must go
through the position of where the free hand is, but the
free hand is allowed to slide along staff.

Additionally, the user will experience a number of
different forces. First, there are the low frequency
forces based solely on the position of the two devices
versus the position of the proxy staff. Using

F1 + F2 = Ftotal and
F1d1 + F2d2 = Ftotal dtotal

allows us to calculate what low-frequency force each
hand should feel, where Ftotal is the total force being
felt, F1 , F2 are the left and right hand forces
respectively, and d1,d2 are the distances of the left and
right hands to the left end of the proxy staff,
respectively.

The next force applied is the impulse response
force, which is an implementation of event-based
haptics in which the program applies a decaying
sinusoid wave train of force on top of the low
frequency force following the same equations
presented before.

The last applied collision forces are the vibration
forces, in which we model the vibration modes of an
unsupported beam. The force felt at the left hand (and
right hand similarly) for each mode is

FL = A * |V| * sin(2πf) * GL * Eimpact

where A is scalar, |V| is the speed at the point of the
impact, and GL and Eimpact are the “gain” and the
“excitation.” GL and Eimpact are amplitudes of the
unsupported beam equation at the points of the left
hand and the collision point, respectively, for that
mode.

Users also feel the weight of the staff and a
longitudinal force towards the hand proxies if both
hands are supposed to be fixed.

Fig 2. The pink spheres show the hand positions of the

user when fighting the computer.
Finally, in the actual game, the player will have to

block a pre-programmed strike and strike the
computer avatar.

CS277 - Experimental Haptics Stanford University 11 March 2010

Haptic Jenga

Evan Jeng

Jenga is a popular game of strategy and
manual dexterity. The game is played with 54
wooden blocks, each measuring (1.5 x 2.5 x
7.5 cm). To setup the game, the blocks are
stacked into a tower with three blocks placed
adjacently per level. The orientation of the
blocks alternate every level, for example, if
blocks in a given level lie north-south, then
the next level will have the blocks lying east-
west.
Once the tower is set up, players take turn to
remove a single block from the tower and
placing the block at the top of the tower. Only
one hand may be used at a time during play.
The game ends when any block falls from the
tower, other than the block being knocked out
to move to the top.

Fig 1. Initial game setup

Our game keeps track of the current phase
within the turn (i.e. remove or replace) and
instructs the player to act accordingly. During
the remove block phase, the player can either
push a block out of the tower, or press the
user button on the Novint Falcon to enable

grasping and pulling the block out. As in
reality, a larger frictional force is experienced
when operating on blocks near the bottom of
the stack due to the weight of the blocks
above. During the replace block phase, the
game lets the player select from three
potential spaces at the top of the tower, in
which pressing the user button confirms the
selection. If at any time, more than one block
falls from the tower, the game comes to an
end. However, the loser is permitted to vent
his frustration by knocking around and
throwing blocks from the collapsed pile
before starting a new game.

Fig 2. The game ends when the tower collapses.

In addition to wood, different types of block
materials (steel, glass, rubber) are selectable
for an alternate gaming experience.
Camera controls are simple and intuitive
through either keyboard control or moving the
cursor off-screen in the desired direction.
The game was implemented in C++ using
chai3d libraries and the Open Dynamics
Engine for physics.

CS277 - Experimental Haptics Stanford University 13 March 2012

HAPTICUDA
Nan Jiang

The high refresh rate of haptic rendering can be a
computational challenge. Relying on the CPU
alone limits what a user can experience on a
haptic device. In recent years, games have been
using the GPU not only for graphics rendering but
also for complex physics simulations. In this
project we bring haptics onto the GPU as well. By
adding haptics extensions into many existing
physics simulations, a user can experience a wide
array of complex environments.
The physics simulations are offloaded to the GPU
using NVIDIA CUDA. Many particle and grid
based physics algorithms exist that take advantage
of the computation power of the GPU. We have
included three simulation demos.

The Ball Pit
This simulation is based on an existing demo
from the CUDA SDK. The GPU performs the
dynamic collision of 32K particles. The haptic
device controls the motion and senses the impact
on a large ball. Though the force feedback is
simply the sum of colliding forces, you easily feel
the granularity of each particle.

Mass vs. Anti-mass
Another simulation based on a CUDA SDK
demo. Forces between particles are generated
through gravitational potential fields. The GPU

calculates the pair interaction between 8K
particles and the haptic cursor.

Ink Drop
This simulation is built from scratch based on
existing stable fluid algorithms. An invisible fluid
responds to the movement of the haptic cursor.
Ink can also be injected to visually track the
behaviour of the fluid. The haptic feedback is
based on pressure and velocity of the fluid
surrounding the cursor. System stability can be
problem when the fluid both respond and acts on
the haptic device. As ink, velocity, and pressure
are processed through 262K grid elements,
making a mess has never been this easy.

CS277 - Experimental Haptics Stanford University 11 March 2011

Fruit Ninja Real

Yu-Ta Lu

Fruit Ninja Real is a game in which some fruits
are shot into the air and then fall, and the player's
task is to cut through the fruits while they are in
the air before falling out of the screen to get high
scores. The game idea is the same as the iPhone
game Fruit Ninja. However, in Fruit Ninja Real,
the game experience is augmented with the usage
of the haptic device - Falcon. The player is now
operating Falcon to control the cutter in the
virtual 3D world, and when the cutter slices
through the fruits, the corresponding force will be
passed back to the player as if he/she is cutting
fruits in the air in real world.
In the game, the fruits follow physical rules. This
means their motion will be affected by the force
applied to it. They rotate if the player is not
applying force right toward its center, and they
are pushed away if the player is not slicing them
hard enough to cut through them.

Fig 1. Fruit Ninja Real Game Play

Method
I modeled the fruits using a multilayer approach.
Imagine we want to model a watermelon. A
watermelon is composed of two main layers: the
peel (green) part and the meat (red) part. These
two layers have different properties. The peel

layer is stiff while the meat layer is softer.
Moreover, imagine that you are using a fruit knife
to cut the watermelon lightly from its surface and
then gradually applying more force. At the
beginning, the knife will be stuck on the surface
when the force is low. Then, as you put more
force on the knife, at a certain moment the knife
suddenly can cut into the peel. This property is
similar to friction. When the knife is inside the
fruit, there is static friction between the knife's
side face and the fruit's texture preventing the
knife from moving further, and when the knife is
applying the force higher than the maximal static
friction the friction becomes dynamic friction
which remains constant. Other than the two
friction properties, a layer also needs the stiffness
property to display how hard the layer is. In all,
there are three main properties: maximal static
friction, dynamic friction, and stiffness.
Besides the layers' properties, to make the
experience even more real, when the final force
applied on the tool is computed, the same force in
the opposite direction will be applied to the fruit,
resulting in physically real motion composed of
rotation and translation.

Discussion
When implementing, lots of efforts were put on
tweaking the three parameters of the fruit.
Although in theory the dynamic and static friction
properties make a difference, but it turned out that
the difference is not easily sensable, probably
because the friction force direction is parallel to
the tool force direction rather than perpendicular
to it.
One further idea I think interesting but didn't have
enough time to implement is modeling the texture
of the surface of the peel. For example, while a
watermelon has very smooth surface, a
pineapple's surface can have some bumps, and a
kiwi fruit's surface is hairy (which sounds very
hard to model). This may add more reality to the
fruit model.

Summary

‣ Start thinking about course projects now

- Find a partner - it will make life easier

- Bring ideas for discussion on Thursday

‣ Be creative, innovative, and artistic

‣ Remember to make use of haptics!!!

