CS277 - Experimental Haptics Lecture 13

Six-DOF Haptic Rendering I

Outline

- Motivation
- Direct rendering
- Proxy-based rendering
 - Theory
 - Taxonomy

Motivation

The Holy Grail?

Tool-Mediated Interaction

How many degrees of freedom do we need?

6-DOF Interaction

3-DOF Position/Translation

Avatars for 6-DOF Haptics

3-DoF Position/Translation Render Force

6-DoF

+ Orientation/Rotation + Render Torque

Impedance-Controlled Device

Direct Rendering

- Analogue to force field rendering
- Must consider multiple contacts in different positions for 6-DOF rendering

Forces on a Body

Contact Model

For each contact, you will need

- The contact position on the tool,
- and one of
 - a force vector
 (magnitude + direction), or
 - a contact normal and penetration depth

Demo

Properties of Direct Rendering

What are the advantages and disadvantages?

[From B. Heidelberger et al., Vision Modeling and Visualization, 2004.]

Direct Rendering Summary

- Advantages
 - Easy to implement
 - Free space feels like free space
- Limitations
 - Object interpenetration
 - Pop-through
 - Force discontinuities
 - Unbounded stiffness!

Proxy-Based Rendering

[From J. E. Colgate et al., Proc. IEEE/RSJ IROS, 1995.]

6-DOF Virtual Coupling

- Translational and rotational spring/ damper coupling
 - Force proportional to displacement
 - Torque proportional to orientation difference
- Virtual walls again!

[From W.A. McNeely et al., Proc. SIGGRAPH, 1999.]

Proxy Simulation in 3-DOF

Proxy Simulation in 6-DOF

CS277 - Experimental Haptics, Stanford University, Spring 2014

Proxy Motion

Numerically integrate the ODE over time to obtain x, the position of the avatar:

$$m\ddot{\mathbf{x}} = \mathbf{F}_{\text{net}}$$

 Do the same with moments to obtain orientation

te
to
n
$$\mathbf{F}_2 = k \Delta \mathbf{x}_2$$

 $\mathbf{F}_1 = k \Delta \mathbf{x}_1$
 $\mathbf{F}_1 = k \Delta \mathbf{x}_1$
 $\mathbf{F}_{net} = \sum_{i}^{n} \mathbf{F}_i + \mathbf{F}_{vc}$

Potential Problems?

Quasi-Static Equilibrium

Quasi-Static Equilibrium

Quasi-Static Equilibrium

Quasi-Static Proxy Motion

Solve directly for the position x for which the net force acting on the proxy is zero:

$$\sum_{i} k \, \Delta \mathbf{x}_{i} + k_{\rm vc} \, \Delta \mathbf{x}_{\rm vc} = \mathbf{0}$$

 Do the same with orientation to obtain net moment of zero

Still Problems?

Hard Constraints

Generalized acceleration: $\mathbf{a} \equiv (\vec{a}, \vec{\alpha})$ Non-penetration constraint: $\vec{a} \cdot \hat{\mathbf{n}} + \vec{\alpha} \cdot (\mathbf{r} \times \hat{\mathbf{n}}) \ge 0$

Solve for Contact Forces

Find f_i which satisfy: $a_i = \vec{a} \cdot \hat{\mathbf{n}}_i + \vec{\alpha} \cdot (\mathbf{r}_i \times \hat{\mathbf{n}}_i) \ge 0$ With condition: $f_i a_i = 0$

Solve for Contact Forces

Write motion of contact points as:

$\mathbf{a} = \mathbf{A}\mathbf{f} + \mathbf{b}$

Express conditions in matrix form:

 $\mathbf{Af} + \mathbf{b} \ge \mathbf{0}, \ \mathbf{f} \ge \mathbf{0} \ \text{and} \ \mathbf{f}^T (\mathbf{Af} + \mathbf{b}) = \mathbf{0}$

- Solve linear complementarity problem for f
- Integrate ODE to obtain position as before

[From D. Baraff, Proc. SIGGRAPH, 1994.]

Solve Directly for Motion

Gauss' Principle

The proxy's constrained motion is that which minimizes the acceleration energy:

$$\mathbf{a}_c = \arg\min_{\mathbf{a}} \frac{1}{2} \left(\mathbf{F} - \mathbf{M} \mathbf{a} \right)^{\mathrm{T}} \mathbf{M}^{-1} \left(\mathbf{F} - \mathbf{M} \mathbf{a} \right)$$

Subject to the contact constraints:

$$\mathbf{J}_c \ \mathbf{a} \ge \mathbf{0}$$

 Solution can be obtained via quadratic programming or point projection

[From S. Redon et al., Proc. IEEE Intl. Conf. on Robotics and Automation, 2002.]

Solve Directly for Motion

Taxonomy

	Soft Constraints	Hard Constraints
Massless	Quasi-Static	Distance
Proxy	Equilibrium	Minimization
Proxy with	Penalty-Based	Constrained
Mass	Dynamics	Dynamics

[Adapted from M.A. Otaduy et al., Proceedings of the IEEE, 2013.]

Soft vs. Hard Constraints

Proxy With vs. Without Mass

Demo

Summary

- Motivation for 6-DOF haptic rendering
- Direct rendering
 - Like force fields: not very good!
- Proxy-based rendering
 - Taxonomy of proxy-based methods
- On Thursday:
 - Study examples of 6-DOF rendering methods