
Six-DOF Haptic Rendering II

CS277 - Experimental Haptics
Lecture 14

CS277 - Experimental Haptics, Stanford University, Spring 2014

Outline

‣ Generic model for proxy-based rendering

‣ Study of three significant 6-DOF haptic
rendering algorithms

- McNeely, Puterbaugh, & Troy 1999

- Otaduy & Lin 2005

- Ortega, Redon, & Coquillart 2007

CS277 - Experimental Haptics, Stanford University, Spring 2014

Proxy-Based Rendering

Device
Controller

Virtual
Coupling

Proxy
Solver

Collision
Detector

position +
orientation

force +
torque

position +
orientation

force +
torque

position +
orientation

contact points +
normals or forces

The paper is organized as follows: Section 2 provides a
summary of related work. Section 3 gives an overview of
our approach. Section 4 describes how we compute the
motion of the god-object to ensure realistic haptic interac-
tion with rigid bodies. Section 5 presents our novel
constraint-based quasi-static approach to computing the
force applied to the user. Section 6 discusses methods for
producing haptic effects for surface perception such as force
shading and textures. Section 7 demonstrates our approach
on several benchmarks and shows how our approach is able
to provide the user with a high-quality haptic display of
contacting rigid bodies. We also discuss the benefits and
limitations of our approach. Finally, Section 8 concludes
and details several future research directions.

2 RELATED WORK

Haptic display of virtual objects has been an active area of
research over the last decade. In 1995, Zilles and Salisbury
[2] proposed what appears to be the first constraint-based
method for three degree-of-freedom haptic rendering of
generic polygonal objects. They introduced the god-object, an
idealized representation of the position of the haptic device
that is constrained to the surface of the obstacles. In their
three degree-of-freedom approach, the location of the god-
object minimizes at each time step the distance to the haptic
device; the difference between the two positions provides
the force direction. Ruspini et al. [6] extend this approach by
replacing the god-object by a small sphere and propose
methods to smooth the object surface and add friction.
Niemayer and Mitra [7] propose dynamic proxies to better
simulate dynamic effects. Several authors have proposed to
extend the virtual proxy approach to a three degree-of-
freedom interaction with objects defined by implicit
representations [8], [9].

Some authors have proposed six degree-of-freedom
haptic display algorithms. McNeely et al. [10] propose a
voxel sampling method. Johnson et al. [11] use local
minimum distances to compute the force applied to the
user. Gregory et al. [12] extend the virtual proxy approach
to six degrees of freedom and estimate the local penetration
depth to compute the force and torque applied to the user.
These methods, like most six degree-of-freedom haptic
display methods [13], [14], [15], [16], [17], [18], do not
attempt to prevent the interpenetration between the virtual
objects, which might lead to missing some collisions
between the virtual objects and can lead to the well-known
pop-through effect, where the virtual proxy can traverse thin
objects or objects parts [6], thereby degrading the percep-
tion of geometric details. Berkelman et al. [19] have
proposed a general constraint-based method for a six
degree-of-freedom interaction with rigid bodies. However,
their approach includes a virtual coupling [5] which leads
to perceptible force artifacts (see discussion in Section 7).
Recent work on stable six degree-of-freedom interactions by
Otaduy and Lin [20], however, has shown that the force
artifacts created by a virtual coupling can be reduced
through the use of an implicit integration method.

To the best of our knowledge, the approach described in
this paper seems to be the first six degree-of-freedom
constraint-based haptic rendering method that does not
suffer from the visual or haptic artifacts of previous
approaches (i.e., interpenetrations, forces felt at a distance,
or artificial friction and sticking).

3 OVERVIEW

Our method extends the classical three degree-of-freedom
constraint-based method by Zilles and Salisbury [2] by
employing a six degree-of-freedom god-object, i.e., an idealized
representation of the haptic device that is constrained to
remain on the surface of the environment obstacles when
the haptic device penetrates the environment obstacles (see
Fig. 2). At each time step, we attempt to reduce the
discrepancy between two rigid reference frames: one
attached to the haptic device, and one attached to the
virtual object. We typically place the origin at the center of
gravity of the virtual object, although any point can be
chosen. Only the god-object is displayed (and not the actual
configuration of the haptic device), so that even when the
haptic device penetrates the environment obstacles, the user

ORTEGA ET AL.: A SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD FOR HAPTIC DISPLAY OF RIGID BODIES WITH SURFACE... 459

Fig. 1. Haptic interaction with Stanford bunnies. The approach
described in this paper allows us to provide a user with high-quality
haptic display of contacting rigid bodies (here, two Stanford bunnies
containing about 27,000 triangles each). Our constraint-based force
computation method allows the manipulated object to come in contact
with and slide on the environment obstacles without penetrating them,
while providing the user with precise haptic display, where each vertex,
edge, and face can potentially be felt.

Fig. 2. Six degree-of-freedom god-object. Although the haptic device
penetrates the environment obstacles (configuration xh), the god-object
is constrained to remain on the surface of the obstacles (configuration
xs). We propose new algorithms to compute the motion of the god-object
and the force applied to the user based on the discrepancy between
these two configurations.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Virtual Coupling

Virtual
Coupling

position +
orientation

force +
torque

force +
torque

position +
orientation

Figure 7. Dynamic model based on virtual coupling.

This 6-DOF spring makes the dynamic object tend to acquire
the same position and orientation of the virtual haptic handle,
assuming that the two objects are initially registered in some man-
ner, e.g., with the center of the handle located at the dynamic
object’s center of mass and the handle’s main axis aligned with
one of the dynamic object’s principal axes. The virtual object is
assigned mass properties, which are reflected at the haptic inter-
face as apparent mass that is added to the haptic device’s intrinsic
inertia. We operated at a small reflected mass of 12 g. The force
and torque equations used here are:

where
, = spring translational stiffness and viscosity

, = spring rotational stiffness and viscosity

 = equivalent-axis angle (including axis direction)

, = dynamic object’s relative linear and angular velocity.

Spring stiffness is set to a reasonably high value that is still
comfortably consistent with stable numerical behavior at the
known time sampling rate. Stiffness and viscosity are straightfor-
wardly related to obtain critically damped behavior. A limitation
of this simple formalism is that it is only valid for a dynamic
object having equal moments of inertia in every direction, such as
a sphere of uniform mass density. Since we were not interested in
reflected moments of inertia, and indeed sought to minimize them,
this was an acceptable limitation. It represents an implicit con-
straint on the virtual object’s mass density distribution but not on
its geometrical shape.

5.2 Virtual Stiffness Considerations
When the virtual object is in resting contact with the half-voxel-

deep force field described by stiffness , we want to prevent the
user from stretching the spring so far as to overcome the force field
and drag the dynamic object through it. The spring force is
clamped to its value at a displacement of s/2, where s is the voxel
size. In the worst case, this contact force is entirely due to a single
point-voxel interaction, which therefore determines an upper limit
on the spring force. This can be viewed as a modification of the
god-object concept [25], in which the god-object is allowed to
penetrate a surface by up to a half voxel instead of being analyti-
cally constrained to that surface.

Whenever many point-voxel intersections occur simultaneously,
the net stiffness may become so large as to provoke haptic instabil-
ities associated with fixed-time-step numerical integration. To
cope with this problem, we replace the vector sum of all point-
voxel forces by their average, i.e., divide the total force by the cur-
rent number of point-voxel intersections, N. This introduces force
discontinuities as N varies with time, especially for small values of
N, which degrades haptic stability. We mitigate this side effect by
deferring the averaging process until N = 10 is reached:

 if

 if

and similarly for torque. is adjusted to assure reasonably sta-
ble numerical integration for the fixed time step and at least 10
simultaneous point-voxel intersections. While this heuristic leads
to relatively satisfactory results, we are investigating a hybrid of
constraint-based and penalty-based approaches that formally
address both the high-stiffness problem and its dual of low stiff-
ness but high mechanical advantage. Forcing an object into a nar-
row wedge-shaped cavity is an example of the latter problem.

Dynamic simulation is subject to the well studied problem of
non-passivity, which might be defined as the unintended genera-
tion of excessive virtual energy [2,10]. In a haptic system, non-
passivity manifests itself as distracting forces and motions (nota-
bly, vibrations) with no apparent basis in the virtual scenario. Non-
passivity is inherent in the use of time-sampled penalty forces and
in the force discontinuity that is likely to occur whenever a point
crosses a voxel boundary. Another potential source of non-passiv-
ity is insufficient physical damping in the haptic device [10]. Even
a relatively passive dynamic simulation may become highly non-
passive when placed in closed-loop interaction with a haptic
device, depending on various details of the haptic device’s design,
its current kinematic posture, and even the user’s motion behavior.

The most direct way to control non-passivity is to operate at the
highest possible force-torque update rate supported by the haptic
device, which for our work was the relatively high value of 1000
Hz. We also investigated the technique of computationally detect-
ing and dissipating excessive virtual energy. While this had some
success, it was eventually replaced by the simpler technique of
empirically determining the largest value of consistent with
stable operation over the entire workspace of the haptic device. As
a further refinement, we discovered some residual instability in the
dynamic object when it lies in free space. Whenever that occurs,
therefore, we apply zero force and torque to the haptic device
(overriding any non-zero spring values). A free-space configura-
tion is trivially detected as every point of the dynamic object inter-
secting a free-space voxel of the environment.

5.3 Pre-Contact Braking Force
The treatment of spring-force clamping in section 5.2 ignored

the fact that the dynamic object’s momentum may induce deeper
instantaneous point-voxel penetration than is possible under rest-
ing contact, thereby overcoming the force field. Currently, we do
not attempt to avoid this outcome in every instance. Instead, we
generate a force in the proximity voxel layer that acts to reduce the
point’s velocity, called the pre-contact braking force. In order to
avoid a surface stickiness effect, the force must only act when the
point is approaching contact, not receding from a prior contact. To
determine whether the point is approaching or receding, consult its

m

d

−Fspring

Haptic Handle

Dynamic Object

kR Fspring

kT
bT

bR

Fspring kTd bTv–=

τspring kRθ bRω–=

kT bT
kR bR

θ

v ω

K ff

FNet FTotal= N 10<

FNet
FTotal
N 10⁄
---------------= N 10≥

K ff

K ff

405

Fc = kTx+ bTv

⌧ c = kR✓ + bR!
CS277 - Experimental Haptics, Stanford University, Spring 2014

Proxy Solver

‣Goal is to compute
position, orientation of
the proxy, given

- Applied force, torque
from virtual coupling

- Contact forces or
constraints

Proxy
Solver

force +
torque

position +
orientation

position +
orientation

contact points +
normals or forces

The paper is organized as follows: Section 2 provides a
summary of related work. Section 3 gives an overview of
our approach. Section 4 describes how we compute the
motion of the god-object to ensure realistic haptic interac-
tion with rigid bodies. Section 5 presents our novel
constraint-based quasi-static approach to computing the
force applied to the user. Section 6 discusses methods for
producing haptic effects for surface perception such as force
shading and textures. Section 7 demonstrates our approach
on several benchmarks and shows how our approach is able
to provide the user with a high-quality haptic display of
contacting rigid bodies. We also discuss the benefits and
limitations of our approach. Finally, Section 8 concludes
and details several future research directions.

2 RELATED WORK

Haptic display of virtual objects has been an active area of
research over the last decade. In 1995, Zilles and Salisbury
[2] proposed what appears to be the first constraint-based
method for three degree-of-freedom haptic rendering of
generic polygonal objects. They introduced the god-object, an
idealized representation of the position of the haptic device
that is constrained to the surface of the obstacles. In their
three degree-of-freedom approach, the location of the god-
object minimizes at each time step the distance to the haptic
device; the difference between the two positions provides
the force direction. Ruspini et al. [6] extend this approach by
replacing the god-object by a small sphere and propose
methods to smooth the object surface and add friction.
Niemayer and Mitra [7] propose dynamic proxies to better
simulate dynamic effects. Several authors have proposed to
extend the virtual proxy approach to a three degree-of-
freedom interaction with objects defined by implicit
representations [8], [9].

Some authors have proposed six degree-of-freedom
haptic display algorithms. McNeely et al. [10] propose a
voxel sampling method. Johnson et al. [11] use local
minimum distances to compute the force applied to the
user. Gregory et al. [12] extend the virtual proxy approach
to six degrees of freedom and estimate the local penetration
depth to compute the force and torque applied to the user.
These methods, like most six degree-of-freedom haptic
display methods [13], [14], [15], [16], [17], [18], do not
attempt to prevent the interpenetration between the virtual
objects, which might lead to missing some collisions
between the virtual objects and can lead to the well-known
pop-through effect, where the virtual proxy can traverse thin
objects or objects parts [6], thereby degrading the percep-
tion of geometric details. Berkelman et al. [19] have
proposed a general constraint-based method for a six
degree-of-freedom interaction with rigid bodies. However,
their approach includes a virtual coupling [5] which leads
to perceptible force artifacts (see discussion in Section 7).
Recent work on stable six degree-of-freedom interactions by
Otaduy and Lin [20], however, has shown that the force
artifacts created by a virtual coupling can be reduced
through the use of an implicit integration method.

To the best of our knowledge, the approach described in
this paper seems to be the first six degree-of-freedom
constraint-based haptic rendering method that does not
suffer from the visual or haptic artifacts of previous
approaches (i.e., interpenetrations, forces felt at a distance,
or artificial friction and sticking).

3 OVERVIEW

Our method extends the classical three degree-of-freedom
constraint-based method by Zilles and Salisbury [2] by
employing a six degree-of-freedom god-object, i.e., an idealized
representation of the haptic device that is constrained to
remain on the surface of the environment obstacles when
the haptic device penetrates the environment obstacles (see
Fig. 2). At each time step, we attempt to reduce the
discrepancy between two rigid reference frames: one
attached to the haptic device, and one attached to the
virtual object. We typically place the origin at the center of
gravity of the virtual object, although any point can be
chosen. Only the god-object is displayed (and not the actual
configuration of the haptic device), so that even when the
haptic device penetrates the environment obstacles, the user

ORTEGA ET AL.: A SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD FOR HAPTIC DISPLAY OF RIGID BODIES WITH SURFACE... 459

Fig. 1. Haptic interaction with Stanford bunnies. The approach
described in this paper allows us to provide a user with high-quality
haptic display of contacting rigid bodies (here, two Stanford bunnies
containing about 27,000 triangles each). Our constraint-based force
computation method allows the manipulated object to come in contact
with and slide on the environment obstacles without penetrating them,
while providing the user with precise haptic display, where each vertex,
edge, and face can potentially be felt.

Fig. 2. Six degree-of-freedom god-object. Although the haptic device
penetrates the environment obstacles (configuration xh), the god-object
is constrained to remain on the surface of the obstacles (configuration
xs). We propose new algorithms to compute the motion of the god-object
and the force applied to the user based on the discrepancy between
these two configurations.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Dynamic Proxy Simulation

r1

r2

F1

F2

M1 = r1 ⇥ F1

M2 = r2 ⇥ F2

CM

Fc

⌧ c

F = Fc +
X

i

Fi

= ma

⌧ = ⌧ c +
X

i

Mi

= ICM↵+ ! ⇥ ICM!

CS277 - Experimental Haptics, Stanford University, Spring 2014

‣ Explicit Euler finite difference equation:

‣ with the state variable

Time Integration

yn+1 = yn +�t ẏn

y(t) =

0

BB@

x

✓
P = mv

L = I !

1

CCA ẏ(t) =

0

BB@

ẋ

✓̇
Ṗ

L̇

1

CCA =

0

BB@

1
mP

!
F

⌧

1

CCA

CS277 - Experimental Haptics, Stanford University, Spring 2014

Comments on Virtual Coupling

‣ The spring-damper coupling filters high
frequency force variations (or
discontinuities) applied to the virtual tool

- Can be a good or a bad thing...

‣ A stiffer coupling spring allows the
operator to feel more of the contact forces

‣ However, stiff coupling springs can lead to
instabilities in free space (why?)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Limitations of Time Integration

What happens with a harmonic oscillator?
CS277 - Experimental Haptics, Stanford University, Spring 2014

Implicit Time Integration

‣ Implicit Euler finite difference equation:

‣ Using first order Taylor approximation:

yn+1 = yn +�t ẏn+1

yn+1 = yn +�t

ẏn +

@ẏ

@y
(yn+1 � yn)

�

✓
I ��t

@ẏ

@y

◆
(yn+1 � yn) = �t ẏn

CS277 - Experimental Haptics, Stanford University, Spring 2014

Summary

‣ Implicit Euler integration is much more
stable than explicit integration

‣ Undershoots rather than overshoots

‣ Requires computing the derivatives
(Jacobian) of the force vector with respect
to state variables

‣ Allows use of stronger penalty forces,
stiffer virtual coupling

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Detection

‣Mesh-mesh collision
detection was the
thoughest in the book!

‣Dynamic proxy solver
also requires
penetration depth

‣ Poses the greatest
challenge to 6-DOF
haptic rendering...

Collision
Detector

position +
orientation

contact points +
normals or forces

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Detection Approaches

‣ Recall 1000 Hz update rate requirement
for haptic rendering

- How can we possibly get it fast enough?

‣ Many approaches, but we will examine two:

- Simplify or modify geometric representation

- Run collision detection at a lower rate if needed

CS277 - Experimental Haptics, Stanford University, Spring 2014

“preassemble” the Boeing 777 and is now employed on commer-
cial, military, and space programs throughout Boeing. FlyThru can
maintain a frame rate of ~20 Hz, independent of the amount of
static geometry. This is achieved by rendering the static geometry
once to the color and Z-buffers, then reusing those images for sub-
sequent frames [20]. This visualization scheme provided smooth
motion with no noticeable lag.

One disadvantage of using two separate computers is that setup
and usage tend to be cumbersome. In light of this, we have also
implemented our approach on an Octane with two processors —
one used strictly for haptics and the other for graphics.

6.3 Virtual Scenario
The static environment of our virtual scenario consisted of sim-

ulated aircraft geometry, with beams, tubes, wires, etc., voxelized
at 5 mm resolution. Its polyhedral representation contains 593,409
polygons. Its FlyThru representation consumed 26 MB of mem-
ory, and its voxelized representation consumed 21 MB. Voxeliza-
tion time on a 250 MHz SGI Octane was 70 sec. A closeup shot of
a dynamic object (a teapot) maneuvering through a portion of this
environment is shown in Figure 10.

The dynamic object for much of our testing was a small teapot
(75 mm from spout to handle), logically representing a small tool
or part, which when voxelized at 5 mm resolution yielded 380
points in its pointshell for the PC haptics processor. The dedicated
haptics processor of the two-processor Octane system was able to
achieve a maximum of 600 points for the same object.

Figure 10. Dynamic object in the test environment.

6.4 Preliminary Test Results
We haptically rendered the motion of the teapot through the

simulated aircraft geometry, paying particular attention to motion
behavior and quality of force feedback. We evaluated the feeling
of free space as well as resting and sliding contact (with the force
field). In an attempt to explore the system’s limits, we sought to
induce haptic instabilities and exact-surface interpenetrations by
trapping the teapot in congested areas and by staging high-speed
collisions.

Subjectively, the observed free-space behavior was indistin-
guishable from power-off operation, for translational as well as
rotational motion. Sliding behavior on a flat or slowly curving sur-
face was notably smooth. A relatively slight surface roughness was
felt when sliding in contact with two surfaces. Torques were

clearly felt. We were able to move the teapot easily through con-
gested areas where combinations of rotation and translation were
required to find a path through the area, similar to path planning
for maintenance access.

Throughout such investigation, a 1 kHz update requirement was
maintained. We were unable to cause the teapot to pass completely
through any of the environment surfaces, including relatively thin
ones, even at maximum collision speed. There were remarkably
few potential exact-surface interpenetration events. One natural
metric is the ratio of penetration to collision events (PR) defined as
the number of haptic frames registering one or more potential
exact-surface penetrations divided by the number of haptic frames
registering contact with the force-field layer (including penetration
events).

We evaluated the benefit of the pre-contact braking force by
selectively disabling it and re-measuring PR. The effect of this was
fewer exact-surface penetrations, as shown in Table 2.

All such work was done with the haptic device limited to 15 N
force and 0.1 Nm torque. At these limits we found the device to be
stable for every possible type of motion.

7. CONCLUSIONS AND FUTURE WORK
The voxel-based approach to haptic rendering presented here

enables 6-DOF manipulation of a modestly sized rigid object
within an arbitrarily complex environment of static objects. The
size of the moving object (i.e., the number of points in the point
shell) is limited by the processor speed, while the size of the static
environment is limited by memory. A force model was described
in which the interaction of the moving object’s surface normals
with the static voxmap was used to create haptic forces and
torques. Results of testing an implementation of our approach on a
6-DOF haptic device showed that the performance appears to be
acceptable for maintenance and assembly task simulations, pro-
vided that the task can tolerate voxel level accuracy.

It is apparent to us that we are just beginning to discover all the
potential uses for the voxmap sampling method in haptics and
other fields. Our primary focus will be to enhance the performance
of the system for use in complex environments.

The voxel sampling method can be easily parallelized, using
clones of the static environment and cyclic decomposition of the
dynamic object’s pointshell. We intend to take advantage of this by
investigating parallel computing environments, specifically low-
latency cluster computing. This will allow haptic simulation of
larger and more complex dynamic objects.

Another area of interest that we are pursuing involves using
wider-bit-width voxel types (4-bit, 8-bit, etc.). This enhancement
will allow for an extended force field range to model compliance
when simulating varying material types.

We also intend to continue investigating solutions to problem-
atic situations, like the wedge problem and tunnelling (moving
through a thin object without detecting collision), as well as fur-
ther reducing non-passivity.

Table 2. Penetration ratio

Test Braking Penetrations Contacts PR
1 No 70 69,000
2 Yes 6 108,000

1.0 10 3–×

6 10 5–×

407

Voxmap PointShell™
[From W. A. McNeely et al., Proc. SIGGRAPH, 1999.]

CS277 - Experimental Haptics, Stanford University, Spring 2014

Voxelized Geometry

‣ Point-voxel collision tests are fast

‣ Idea: Voxelize all the geometry

voxel-deep force field. The net force and torque acting on the
dynamic object is obtained as the sum of all force/torque contribu-
tions from such point-voxel intersections.

Figure 2. Tangent-plane force model.

The tangent-plane force model was inspired by the fact that the
surfaces of contacting objects are tangent at an osculation point. It
is important that the force takes its direction from a precomputed
surface normal of the dynamic object. This proves to be consider-
ably faster than the common practice of dynamically computing it
from the static object’s surface, or in the case of a force field,
dynamically taking the gradient of a potential field.

One can see that this simple model has discontinuities in force
magnitude when a point crosses a voxel boundary, for example,
under sliding motion. Section 5 describes how discontinuities can
be mitigated for haptic purposes.

4. VOXEL DATA STRUCTURES
This section outlines the creation and usage of voxel-based data

structures that are required under our approach. Exact (polygonal)
surface penetration and memory usage will also be discussed.

4.1 Voxmap and Point Shell
One begins by selecting a global voxel size, s, that meets the vir-

tual scenario’s requirements for accuracy and performance. The
performance aspect is that the force model requires traversing a set
of point samples, and s determines the number of such points.
Consider a solid object such as the teapot in Figure 3(a). It parti-
tions space into regions of free space, object surface, and object
interior. Now tile this space into a volume occupancy map, or vox-
map, as in Figure 3(b). The collection of center points of all sur-
face voxels constitutes the point shell needed by the tangent-plane
force model, as in Figure 3(c).

Figure 3. Teapot: (a) polygonal model, (b) voxel model, (c)
point shell model.

This method for creating the point shell is not optimal, but it is
convenient. Its accuracy may be improved by choosing points that
lie on the exact geometrical representation.

Each voxel is allocated two bits of memory that designate it as a
free space, interior, surface, or proximity voxel. The 2-bit voxel
types are defined in Table 1 and illustrated by an example in
Figure 4.

A neighbor voxel is defined as sharing a vertex, edge, or face
with the subject voxel. Each voxel has 26 neighbors. It is impor-
tant that each static object be voxelized in its final position and ori-

entation in the world frame, because such transformations cause its
voxelized representation to change shape slightly.

Figure 4. Assignment of 2-bit voxel values.

By the nature of 3D scan conversion, voxmaps are insensitive to
surface imperfections such as gaps or cracks that are smaller than
the voxel width. However, identifying the interior of a voxmap can
be difficult. We adopt the practice of (1) scan-converting to create
surface voxels, (2) identifying free-space voxels by propagating
the voxelized walls of the object’s bounding box inward until sur-
face voxels are encountered, and (3) declaring all other voxels to
be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

4.2 Avoiding Exact Surface Interpenetration
In the tangent-plane force model shown in Figure 2, the exact

surfaces of colliding objects are allowed to interpenetrate by
voxel-scale distances during a point-voxel intersection. While this
may be acceptable for some applications, we seek instead to pre-
clude exact-surface interpenetration. We do this by offsetting the
force field outward away from the surface by two voxel layers, as
shown in Figure 5. (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as
surface bounding volumes.) The offset force layer then serves to
maintain a minimum object separation that provably precludes
exact-surface interpenetration.

Figure 5. Criterion for exact-surface interpenetration.

d

Force Vector Along
Point Normal

Point
Shell

Static
Surface

Tangent
Plane

(a) (b) (c)

Table 1. Voxel types (2-bit)

Value Voxel type Description
0 Free space Encloses only free-space volumes
1 Interior Encloses only interior volumes
2 Surface Encloses a mix of free-space, sur-

face, and interior volumes
3 Proximity Free-space neighbor of a surface

voxel

1

1

1

1

2

2

1

1

2

3

2

2

3

3

3

3

0

0

0

0
Exact Surface

1

1

2

Surface Layer

Force Layer{Offset Layers

OK BAD

Exact Surface

403

Polygonal model, “Voxmap”, and “PointShell”
representations of a teapot

CS277 - Experimental Haptics, Stanford University, Spring 2014

Computing the Voxmap

voxel-deep force field. The net force and torque acting on the
dynamic object is obtained as the sum of all force/torque contribu-
tions from such point-voxel intersections.

Figure 2. Tangent-plane force model.

The tangent-plane force model was inspired by the fact that the
surfaces of contacting objects are tangent at an osculation point. It
is important that the force takes its direction from a precomputed
surface normal of the dynamic object. This proves to be consider-
ably faster than the common practice of dynamically computing it
from the static object’s surface, or in the case of a force field,
dynamically taking the gradient of a potential field.

One can see that this simple model has discontinuities in force
magnitude when a point crosses a voxel boundary, for example,
under sliding motion. Section 5 describes how discontinuities can
be mitigated for haptic purposes.

4. VOXEL DATA STRUCTURES
This section outlines the creation and usage of voxel-based data

structures that are required under our approach. Exact (polygonal)
surface penetration and memory usage will also be discussed.

4.1 Voxmap and Point Shell
One begins by selecting a global voxel size, s, that meets the vir-

tual scenario’s requirements for accuracy and performance. The
performance aspect is that the force model requires traversing a set
of point samples, and s determines the number of such points.
Consider a solid object such as the teapot in Figure 3(a). It parti-
tions space into regions of free space, object surface, and object
interior. Now tile this space into a volume occupancy map, or vox-
map, as in Figure 3(b). The collection of center points of all sur-
face voxels constitutes the point shell needed by the tangent-plane
force model, as in Figure 3(c).

Figure 3. Teapot: (a) polygonal model, (b) voxel model, (c)
point shell model.

This method for creating the point shell is not optimal, but it is
convenient. Its accuracy may be improved by choosing points that
lie on the exact geometrical representation.

Each voxel is allocated two bits of memory that designate it as a
free space, interior, surface, or proximity voxel. The 2-bit voxel
types are defined in Table 1 and illustrated by an example in
Figure 4.

A neighbor voxel is defined as sharing a vertex, edge, or face
with the subject voxel. Each voxel has 26 neighbors. It is impor-
tant that each static object be voxelized in its final position and ori-

entation in the world frame, because such transformations cause its
voxelized representation to change shape slightly.

Figure 4. Assignment of 2-bit voxel values.

By the nature of 3D scan conversion, voxmaps are insensitive to
surface imperfections such as gaps or cracks that are smaller than
the voxel width. However, identifying the interior of a voxmap can
be difficult. We adopt the practice of (1) scan-converting to create
surface voxels, (2) identifying free-space voxels by propagating
the voxelized walls of the object’s bounding box inward until sur-
face voxels are encountered, and (3) declaring all other voxels to
be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

4.2 Avoiding Exact Surface Interpenetration
In the tangent-plane force model shown in Figure 2, the exact

surfaces of colliding objects are allowed to interpenetrate by
voxel-scale distances during a point-voxel intersection. While this
may be acceptable for some applications, we seek instead to pre-
clude exact-surface interpenetration. We do this by offsetting the
force field outward away from the surface by two voxel layers, as
shown in Figure 5. (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as
surface bounding volumes.) The offset force layer then serves to
maintain a minimum object separation that provably precludes
exact-surface interpenetration.

Figure 5. Criterion for exact-surface interpenetration.

d

Force Vector Along
Point Normal

Point
Shell

Static
Surface

Tangent
Plane

(a) (b) (c)

Table 1. Voxel types (2-bit)

Value Voxel type Description
0 Free space Encloses only free-space volumes
1 Interior Encloses only interior volumes
2 Surface Encloses a mix of free-space, sur-

face, and interior volumes
3 Proximity Free-space neighbor of a surface

voxel

1

1

1

1

2

2

1

1

2

3

2

2

3

3

3

3

0

0

0

0
Exact Surface

1

1

2

Surface Layer

Force Layer{Offset Layers

OK BAD

Exact Surface

403

voxel-deep force field. The net force and torque acting on the
dynamic object is obtained as the sum of all force/torque contribu-
tions from such point-voxel intersections.

Figure 2. Tangent-plane force model.

The tangent-plane force model was inspired by the fact that the
surfaces of contacting objects are tangent at an osculation point. It
is important that the force takes its direction from a precomputed
surface normal of the dynamic object. This proves to be consider-
ably faster than the common practice of dynamically computing it
from the static object’s surface, or in the case of a force field,
dynamically taking the gradient of a potential field.

One can see that this simple model has discontinuities in force
magnitude when a point crosses a voxel boundary, for example,
under sliding motion. Section 5 describes how discontinuities can
be mitigated for haptic purposes.

4. VOXEL DATA STRUCTURES
This section outlines the creation and usage of voxel-based data

structures that are required under our approach. Exact (polygonal)
surface penetration and memory usage will also be discussed.

4.1 Voxmap and Point Shell
One begins by selecting a global voxel size, s, that meets the vir-

tual scenario’s requirements for accuracy and performance. The
performance aspect is that the force model requires traversing a set
of point samples, and s determines the number of such points.
Consider a solid object such as the teapot in Figure 3(a). It parti-
tions space into regions of free space, object surface, and object
interior. Now tile this space into a volume occupancy map, or vox-
map, as in Figure 3(b). The collection of center points of all sur-
face voxels constitutes the point shell needed by the tangent-plane
force model, as in Figure 3(c).

Figure 3. Teapot: (a) polygonal model, (b) voxel model, (c)
point shell model.

This method for creating the point shell is not optimal, but it is
convenient. Its accuracy may be improved by choosing points that
lie on the exact geometrical representation.

Each voxel is allocated two bits of memory that designate it as a
free space, interior, surface, or proximity voxel. The 2-bit voxel
types are defined in Table 1 and illustrated by an example in
Figure 4.

A neighbor voxel is defined as sharing a vertex, edge, or face
with the subject voxel. Each voxel has 26 neighbors. It is impor-
tant that each static object be voxelized in its final position and ori-

entation in the world frame, because such transformations cause its
voxelized representation to change shape slightly.

Figure 4. Assignment of 2-bit voxel values.

By the nature of 3D scan conversion, voxmaps are insensitive to
surface imperfections such as gaps or cracks that are smaller than
the voxel width. However, identifying the interior of a voxmap can
be difficult. We adopt the practice of (1) scan-converting to create
surface voxels, (2) identifying free-space voxels by propagating
the voxelized walls of the object’s bounding box inward until sur-
face voxels are encountered, and (3) declaring all other voxels to
be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

4.2 Avoiding Exact Surface Interpenetration
In the tangent-plane force model shown in Figure 2, the exact

surfaces of colliding objects are allowed to interpenetrate by
voxel-scale distances during a point-voxel intersection. While this
may be acceptable for some applications, we seek instead to pre-
clude exact-surface interpenetration. We do this by offsetting the
force field outward away from the surface by two voxel layers, as
shown in Figure 5. (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as
surface bounding volumes.) The offset force layer then serves to
maintain a minimum object separation that provably precludes
exact-surface interpenetration.

Figure 5. Criterion for exact-surface interpenetration.

d

Force Vector Along
Point Normal

Point
Shell

Static
Surface

Tangent
Plane

(a) (b) (c)

Table 1. Voxel types (2-bit)

Value Voxel type Description
0 Free space Encloses only free-space volumes
1 Interior Encloses only interior volumes
2 Surface Encloses a mix of free-space, sur-

face, and interior volumes
3 Proximity Free-space neighbor of a surface

voxel

1

1

1

1

2

2

1

1

2

3

2

2

3

3

3

3

0

0

0

0
Exact Surface

1

1

2

Surface Layer

Force Layer{Offset Layers

OK BAD

Exact Surface

403

0 = free space
1 = interior
2 = surface
3 = proximity

CS277 - Experimental Haptics, Stanford University, Spring 2014

‣ Approximate with centers of surface voxels

‣ Add inward-pointing surface normals

Computing the PointShell

Our approach is distinguished primarily by its high haptic ren-
dering speed, which is derived primarily from:
•A simple penalty force scheme called the tangent-plane force

model, explained in section 3.
•A fixed-depth voxel tree, explained in section 4.3.
•A voxel map that collectively represents all static objects,

explained in section 4.4.

Although the simplicity of our force model is critically impor-
tant to performance, it is so simple that it generates force magni-
tude discontinuities (but not force direction discontinuities),
especially under sliding motion. In 3-DOF point-contact haptics,
force discontinuities can be devastating to force quality and stabil-
ity, but under our 6-DOF approach there is a stochastic effect that
lessens their impact. However, it proved necessary to introduce
various measures to explicitly enhance force quality and stability,
such as:
•A single-body dynamic model based on virtual coupling
• Pre-contact braking forces

All such measures are explained in section 5.
Data storage is often a secondary consideration in haptics work,

because it is tempting to trade memory efficiency for higher per-
formance. However, voxels are so relatively inefficient as geomet-
ric modeling elements that we improve their memory efficiency by
generalizing the octree method, as explained in section 4.3.

2. PREVIOUS WORK
Although largely the result of unpublished work, there are

numerous examples of 6-DOF haptic rendering for scenarios con-
taining a very limited number of geometrically well behaved vir-
tual objects, for example [6,7,24]. Our approach differs from this
work primarily in its ability to render considerably more complex
6-DOF scenarios with no formal constraints on object shape,
although at reduced accuracy.

Our approach includes a collision detection technique based on
probing a voxelized environment with surface point samples.
Voxel-based methods have been applied to non-haptic collision
detection [12,15,16] and to 3-DOF haptics [3,18]. Sclaroff and
Pentland [22] apply surface point sampling to implicit surfaces.

Intermediate representations for haptics were suggested by Ada-
chi et al. [1], and have been subsequently elaborated [17]. This
involves using a simple haptics proxy that approximates the exact
scene and is simple enough to update the forces at the required
high refresh rate, while a slower but more exact collision detection
and/or dynamic simulation runs asynchronously and updates the
proxy’s parameters. Our work differs by tightly integrating colli-
sion detection, the force model, and the dynamic model into a sin-
gle loop that updates forces directly at 1000 Hz.

There has been much work in multibody dynamic simulation for
physically based modeling, for example [4,23]. Mirtich and Canny
[19] track the contacts found from an iterative collision detection
method and use this information to generate constant-size
impulses. In general, such work is characterized by its emphasis
on accuracy over rendering performance, and consequently it
relies on methodology such as exact-surface collision detection
and simultaneous surface constraint satisfaction, which currently
fall far short of 6-DOF haptics performance requirements.

Our dynamic model adopts the practice of using an artificial
coupling between the haptic display and virtual environment, as

originally proposed by Colgate et al. [10] and recently elaborated
by Adams and Hannaford [2]. We also adopt a version of the “god
object” concept suggested by Zilles and Salisbury [25] and others
[21], generalized to 6-DOF and modified to use penalty forces that
only approximately satisfy surface constraints. In addition, we use
the concept of pre-contact braking force suggested by Clover [9].

Hierarchical techniques, such as employed by Gottschalk [13],
can be used to alleviate convex-hull bounding box limitations for
objects in very close proximity by recursively generating a tree of
bounding volumes around finer features of the object. While this
technique speeds collision detection, it also introduces indetermi-
nacy in the cycle rate due to the varying cost of traversing the tree
structure to an unknown depth to check each colliding polygon
against object polygons. Cycle-rate should not only be fast but
should also have a rate that is as constant as possible.

Temporal and spatial coherence can also be exploited [4,5,8] by
assuming that objects move only slightly within each time step,
thus allowing extrapolation from the previous state of the system.
The number of polygon tests carried out at each time step is effec-
tively reduced, increasing cycle-rate at the cost of introducing
indeterminacy. With certain configurations or motions of objects,
however, there are often noticeable drops in performance — a situ-
ation which is unacceptable in a real-time simulation.

3. TANGENT-PLANE FORCE MODEL
In our tangent-plane force model, dynamic objects are repre-

sented by a set of surface point samples, plus associated inward
pointing surface normals, collectively called a point shell. During
each haptic update the dynamic object’s motion transformation is
applied to every point of the point shell. The environment of static
objects is collectively represented by a single spatial occupancy
map called a voxmap, which is illustrated in Figure 1. Each hapti-
cally rendered frame involves sampling the voxmap at every point
of the point shell.

Figure 1. Voxmap colliding with point shell.

When a point interpenetrates a voxel (assumed for now to be a
surface voxel) as shown in Figure 2, a depth of interpenetration is
calculated as the distance d from the point to a plane within the
voxel called the tangent plane.

The tangent plane is dynamically constructed to pass through
the voxel’s center point and to have the same normal as the point’s
associated normal. If the point has not penetrated below that plane
(i.e., closer to the interior of the static object), then d is zero. Force
is simply proportional to d by Hooke’s law (). We call

the “force field stiffness,” since the voxel represents a half-

Voxmap

Point Shell
and Normals

Original
Objects

F K ff d=
K ff

402

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Response

‣ Virtual tool is dynamically simulated, so we
can apply forces to it

‣ Use tangent-plane force model and Hooke’s
Law

voxel-deep force field. The net force and torque acting on the
dynamic object is obtained as the sum of all force/torque contribu-
tions from such point-voxel intersections.

Figure 2. Tangent-plane force model.

The tangent-plane force model was inspired by the fact that the
surfaces of contacting objects are tangent at an osculation point. It
is important that the force takes its direction from a precomputed
surface normal of the dynamic object. This proves to be consider-
ably faster than the common practice of dynamically computing it
from the static object’s surface, or in the case of a force field,
dynamically taking the gradient of a potential field.

One can see that this simple model has discontinuities in force
magnitude when a point crosses a voxel boundary, for example,
under sliding motion. Section 5 describes how discontinuities can
be mitigated for haptic purposes.

4. VOXEL DATA STRUCTURES
This section outlines the creation and usage of voxel-based data

structures that are required under our approach. Exact (polygonal)
surface penetration and memory usage will also be discussed.

4.1 Voxmap and Point Shell
One begins by selecting a global voxel size, s, that meets the vir-

tual scenario’s requirements for accuracy and performance. The
performance aspect is that the force model requires traversing a set
of point samples, and s determines the number of such points.
Consider a solid object such as the teapot in Figure 3(a). It parti-
tions space into regions of free space, object surface, and object
interior. Now tile this space into a volume occupancy map, or vox-
map, as in Figure 3(b). The collection of center points of all sur-
face voxels constitutes the point shell needed by the tangent-plane
force model, as in Figure 3(c).

Figure 3. Teapot: (a) polygonal model, (b) voxel model, (c)
point shell model.

This method for creating the point shell is not optimal, but it is
convenient. Its accuracy may be improved by choosing points that
lie on the exact geometrical representation.

Each voxel is allocated two bits of memory that designate it as a
free space, interior, surface, or proximity voxel. The 2-bit voxel
types are defined in Table 1 and illustrated by an example in
Figure 4.

A neighbor voxel is defined as sharing a vertex, edge, or face
with the subject voxel. Each voxel has 26 neighbors. It is impor-
tant that each static object be voxelized in its final position and ori-

entation in the world frame, because such transformations cause its
voxelized representation to change shape slightly.

Figure 4. Assignment of 2-bit voxel values.

By the nature of 3D scan conversion, voxmaps are insensitive to
surface imperfections such as gaps or cracks that are smaller than
the voxel width. However, identifying the interior of a voxmap can
be difficult. We adopt the practice of (1) scan-converting to create
surface voxels, (2) identifying free-space voxels by propagating
the voxelized walls of the object’s bounding box inward until sur-
face voxels are encountered, and (3) declaring all other voxels to
be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

4.2 Avoiding Exact Surface Interpenetration
In the tangent-plane force model shown in Figure 2, the exact

surfaces of colliding objects are allowed to interpenetrate by
voxel-scale distances during a point-voxel intersection. While this
may be acceptable for some applications, we seek instead to pre-
clude exact-surface interpenetration. We do this by offsetting the
force field outward away from the surface by two voxel layers, as
shown in Figure 5. (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as
surface bounding volumes.) The offset force layer then serves to
maintain a minimum object separation that provably precludes
exact-surface interpenetration.

Figure 5. Criterion for exact-surface interpenetration.

d

Force Vector Along
Point Normal

Point
Shell

Static
Surface

Tangent
Plane

(a) (b) (c)

Table 1. Voxel types (2-bit)

Value Voxel type Description
0 Free space Encloses only free-space volumes
1 Interior Encloses only interior volumes
2 Surface Encloses a mix of free-space, sur-

face, and interior volumes
3 Proximity Free-space neighbor of a surface

voxel

1

1

1

1

2

2

1

1

2

3

2

2

3

3

3

3

0

0

0

0
Exact Surface

1

1

2

Surface Layer

Force Layer{Offset Layers

OK BAD

Exact Surface

403

F = K↵ d

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Response

‣ Net force on virtual tool is sum of penalty
forces from point-voxel intersections

‣ Problem: What happens with multiple,
simultaneous contacts?

‣ Solution:

F
net

=

8
><

>:

F
total

, N < 10

F
total

1
10N

, N � 10

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Response

‣ Another problem: Can a point-voxel
intersection occur on an interior voxel?

‣ Solution: Apply a “braking viscosity” force
at the proximity voxels.

‣ Large point velocities are still a problem...

F =

(
�bv(�n · v), n · v < 0

0, n · v � 0

CS277 - Experimental Haptics, Stanford University, Spring 2014

Summary

‣ This rendering method can provide a
constant 1000 Hz update rate that includes
collision detection (on a 350 MHz PC!)

‣ Resolution is limited by voxel size, and finer
voxel grids use cubically more memory

‣ Many problems with ad-hoc solutions...

‣ Still one of the first highly successful 6-DoF
rendering techniques

CS277 - Experimental Haptics, Stanford University, Spring 2014

Figure 3: Manipulation of a Spoon in Con-
tact with a Cup Using Virtual Coupling. As
the spoon is constrained inside the handle of the
cup, the contact force and torque are perceived
through a virtual coupling. A wireframe image
of the spoon represents the actual configuration
of the haptic device.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Simulation Time (in ms.)

Penetration Depth (in mm.)
Runge−Kutta IV (100g, 2kN/m)
Backward Euler (10g, 2kN/m)
Backward Euler (10g, 10kN/m)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Simulation Time (in ms.)

Coupling Deviation (in mm.)
Runge−Kutta IV (100g, 2kN/m)
Backward Euler (10g, 2kN/m)
Backward Euler (10g, 10kN/m)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Simulation Time (in ms.)

Contact Force (in N)

Runge−Kutta IV (100g, 2kN/m)
Backward Euler (10g, 2kN/m)
Backward Euler (10g, 10kN/m)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Simulation Time (in ms.)

Feedback Force (in N)
Runge−Kutta IV (100g, 2kN/m)
Backward Euler (10g, 2kN/m)
Backward Euler (10g, 10kN/m)

Figure 4: Analysis of Forces and Positions During Contact. Compar-
ison of maximum local penetration depth (top left), coupling deviation
(top right), contact force (bottom left), and feedback or coupling force
(bottom right) using different numerical integration methods and contact
stiffness values.

experiments with and without the use of the linearized con-
tact model. In the experiment without linearized contact
model and with an error threshold of 0.4%, the simulation
soon became unstable to the point that the state of the up-
per jaw diverged to infinity. For clarity of the graphs, we
have not included the data of this experiment.

Fig. 6 shows graphs of maximum local penetration
depth (top left), frame rate of the contact thread (bottom
left), coupling deviation (center), and feedback or coupling
force (right) during 900 milliseconds of simulation, using
different error tolerances for sensation-preserving simpli-
fication, with and without (w/o) linearized contact model.
The models of both jaws can be bounded by spheres of
6cm-radius. We scaled the workspace of the haptic de-
vice by a factor of 0.4, therefore the forces plotted in
the graphs are scaled by a factor of 2.5 before being fed
back to the user. All the experiments were executed us-
ing Backward Euler semi-implicit integration as described
in Sec. 4.2, a mass m = 10g for the upper jaw, coupling
stiffness kc = 500N/m, and contact stiffness k = 5kN/m.

The plots demonstrate that, with the linearized contact
model and an error threshold of 2.5% the behavior of the
system became very stable and responsive. For exam-
ple, the maximum local penetration depth never exceeded
0.1mm, thanks to high stability with a contact stiffness as
high as 5kN/m. With the linearized contact model but re-
ducing the error threshold, the behavior degraded slightly,
but remained considerably stable. With an error threshold

of 0.4% the update rate of the contact thread went down
to 100Hz at times. Even in such a challenging situation,
the computation of approximate contact forces with the lin-
earized contact model maintained high stability.

On the other hand, without the linearized contact model,
the performance degraded rapidly. Even with an error
threshold of 2.5%, which kept the update rate of the contact
thread over 500Hz., the feedback force became clearly un-
stable. The comparison of simulation data with and with-
out the linearized contact model clearly indicates the influ-
ence of the linearized contact model on the stability of the
system when the update rate of the contact thread decays.
This observation demonstrates that the linearized contact
model is a key factor for successful 6-DoF haptic render-
ing of complex models.

8 Conclusion

We have presented a novel approach for 6-DoF haptic
rendering, by simulating the rigid body dynamics of the
grasped object using implicit integration. Implicit inte-
gration involves the linearization of virtual coupling and
penalty-based force and torque in the state space of the
rigid body. We have combined our approach with a fast,
perceptually-based collision detection algorithm [22], pro-
ducing stable and responsive haptic manipulation of ob-
jects with tens of thousands of triangles. Next we compare

8

Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
0-7695-2310-2/05 $20.00 © 2005 IEEE

Stable & Responsive Manipulation
[From M. A. Otaduy & M. Lin, Proc. IEEE World Haptics Conference, 2005.]

CS277 - Experimental Haptics, Stanford University, Spring 2014

Sensation-Preserving Simplification

‣ Finding all contact points between detailed
polygonal models can be really expensive!

‣ Take advantage of perceptive limitations

contrast, we attack the problem of force rendering for arbitrary 3D
polyhedral object-object interaction, which involves a substantially
higher computational complexity. Force rendering of object-object
interaction also makes it much more challenging to correctly cache
results from previous computations.
McNeely et al. [1999] proposed “point-voxel sampling”, a dis-

cretized approximation technique for contact queries that generates
points on moving objects and voxels on static geometry. This ap-
proximation algorithm is the first to offer run-time performance in-
dependent of the environment’s input size by sampling the object
geometry at a resolution that the given processor can handle. A re-
cent approach proposed by Gregory et al. [2000] is limited to hap-
tic display of object-object interaction for relatively simple models
that can be easily represented as unions of convex pieces. Kim et al.
[2002] attempt to increase the stability of the force feedback using
contact clustering, but their algorithm for contact queries suffers
from the same computational complexity.
The idea of using multiresolution representations for haptic ren-

dering has been recently investigated by several researchers. Pai
and Reissel [1997] investigated the use of multiresolution image
curves for 2D haptic interaction. El-Sana and Varsheny [2000] pro-
posed the construction of a multiresolution hierarchy of the model
during preprocessing. At run-time, a high-detail representation is
used for regions around the probe pointer and a coarser represen-
tation farther away. The proposed approach only applies to haptic
rendering using a point probe exploring a 3D model. It does not ex-
tend naturally to force display of two interacting 3D objects, since
multiple disjoint contacts can occur simultaneously at widely vary-
ing locations without much spatial coherence. The latter problem is
the focus of our paper.

3 Overview

In this section, we first present important findings from studies on
tactual perception that guide our computational model. Then, we
describe the requirements for haptic rendering and our design goals.

3.1 Haptic Perception of Surface Detail

From a perceptual perspective, both formal studies and experimen-
tal observations have been made regarding the impact of contact
areas and relative size (or curvature) of features to the size of the
contact probe (or finger) on identifying fine surface features.
Klatzky and Lederman [1995] conducted and documented stud-

ies on identification of objects using “haptic glance”, a brief hap-
tic exposure that placed several temporal and spatial constraints on
stimulus processing. They showed that a larger contact surface area
helped in the identification of textures or patterns, though it was bet-
ter to have a stimulus of the size comparable or just slightly smaller
than that of the contact area when exploring geometric surface fea-
tures.
Okamura and Cutkosky [1999] defined a fine (geometric) sur-

face feature based on the ratio of its curvature to the radius of the
fingertip acquiring the surface data. Their paper gives examples on
how a larger fingertip, and thus a larger surface contact area, can
miss some surface detail.
In this paper, we mainly focus on geometric surface features, not

microscopic surface roughness or friction. We draw the following
key observation from these studies relevant to our computational
model:

Human haptic perception of the existence of geometric
surface features depends on the ratio between the con-
tact area and the size of the feature, not the absolute size
of the feature itself.

Here we broadly define the size of a given feature in all three di-
mensions, namely width, length, and height. The width and length
of a feature can be intuitively considered as the “inverse of reso-
lution” (formally defined in Sec. 4) of the simplified model. That
is, higher resolution around a local area implies that the width and
length of the geometric surface features in that neighborhood are
smaller, and vice versa. We extend the concept of “height” to in-
clude a perceivable amount of surface deviation introduced in the
simplification process, according to haptic perception.

Figure 2: Contact area and resolution: (a) high resolution model
with large contact area; (b) low resolution model with large contact
area; (c) high resolution model with small contact area.

As illustrated in Fig. 2, the observation drawn by Okamura and
Cutkosky [1999] for tactile feedback can extend to haptic rendering
of contact forces between rigid bodies. The resolution at which the
models are represented affects the number of contact points used
to describe object interaction. However, increasing the resolution
beyond a sufficiently large value does not affect the computed net
force much, as shown in Fig. 2(a) and (b).
Our proposed model of acceptable error metrics differs notably

from that of human visual perception in both the current mesh sim-
plification literature and visual collision perception. In visual ren-
dering, a combination of surface deviation (or Hausdorff distance)
and the viewing distance from the object is used to determine if
the representation of the objects requires higher resolution. In hap-
tic rendering, on the other hand, this is governed by the relationship
among the surface deviation, the resolution of the simplified model,
and the contact surface area. We will later show how this relation-
ship lays the foundation of our algorithmic design and contact query
process for haptic rendering in Sec. 4 and Sec. 5.

3.2 Requirements and Design Desiderata

We aim to create multiresolution representations where geometric
surface detail is filtered when it cannot be perceived by the sense of
touch. The resulting multiresolution hierarchies can be used to per-
form time-critical contact queries that stop when the reported result
is accurate up to some tolerance value. This helps to automatically
speed up the contact query computation for haptic rendering.
In our haptic rendering framework, we have chosen BVHs of

convex hulls, because overlap tests between convex hulls can be
executed rapidly in expected constant time with motion coherence
[Guibas et al. 1999]. Furthermore, convex hulls provide at least
equally good, if not superior, fitting to the underlying geometry as
OBBs [Gottschalk et al. 1996] or k-dops [Klosowski et al. 1998].
We integrate BVHs of convex hulls with multiresolution repre-

sentations so that the hierarchies, while being used for effective col-
lision detection, can themselves be used to report contact points
and normals with bounded errors at different levels of resolution.
To summarize, our goal is to design multiresolution hierarchies
that:

1. Minimize perceptible surface deviation. We achieve this
goal by filtering the detail at appropriate resolutions and by
using a novel sensation preserving refinement test for collision
detection;

A74

[From M. A. Otaduy & M. Lin, ACM Transactions on Graphics 22(3), 2003.]
CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Detection Strategy

‣ Create multi-resolution hierarchies of the
meshes (levels of detail)

‣ Accelerate collision detection with BVH

‣ Only refine search where details are
perceptible!

CS277 - Experimental Haptics, Stanford University, Spring 2014

Constructing the Hierarchy

‣ Perform full convex decomposition on
original mesh

‣ Then start merging pieces in priority of
highest resolution (most detail)

- Perform filtered edge collapse decimation to
simplify components while preserving convexity

‣ Mark as level of detail whenever number of
components is halved

CS277 - Experimental Haptics, Stanford University, Spring 2014

Levels of Detail
Figure 4: Filtered Edge Collapse with Convexity Constraints.
The figure shows a filtered edge collapse where bisection search
is required to find a position that meets the convexity constraints.
G and L represent feasible regions of global and local constraints
respectively.

4.4 Multiresolution Hierarchy Generation

The hierarchy of LODs is created by applying successive filtered
edge collapses on the given mesh, while performing a surface con-
vex decomposition and merging convex pieces. First we compute
the convex decomposition of the initial mesh. We then compute the
value of resolution for all edges, and set them as valid for collapse.
The edges are inserted in a priority queue, where edges with higher
resolution have higher priority.
The main processing loop always tries to filter and collapse the

edge with highest priority. If the filtered edge collapse is successful,
the affected edges update their resolution and priority, and they are
reset as valid for collapse. Moreover, the filtering and simplification
may have relaxed some convexity constraints in the neighborhood
of the collapsed edge, so we attempt to merge convex pieces in the
process as well. If the filtered edge collapse fails, the edge is set as
invalid for collapse. The process continues until no edges are valid
for collapse.
This process must yield a hierarchy of static LODs. We have

decided to generate a new LOD every time the number of convex
pieces is halved. All the pieces in LOD M j that are merged to a
common pieceC ∈M j+1 during the processing will haveC as their
parent in the BVH.
Ideally, the process will end with one single convex piece, which

serves as the root for the hierarchy to be used in the collision de-
tection. However, this result is rarely achieved in practice, due to
topological and geometric constraints that cannot be removed by a
local operation such as filtered edge collapse. In such cases, the
hierarchy is completed using a pairwise convex hull merging step.
We call these remaining completing LODs “free” LODs.
During the process, we assign to each LODM j an associated res-

olution r j. This resolution is the smallest resolution of an edge that
has been collapsed before the LODM j is generated. Geometrically
it means that the LOD M j preserves all the detail of the original
mesh at a resolution lower than r j. In our sensation preserving sim-
plification for haptic rendering, we wish to maximize the resolution
at which LODs are generated. As will be explained in Sec. 5, the
perceptual error for haptic rendering is measured by taking into ac-
count the resolution of the surface detail culled away. By maximiz-
ing the resolution at which LODs are generated, the contact queries
can be completed faster. This is the basis for selecting edge resolu-
tion as the priority for filtered edge collapses. The pseudo code for
the entire process of hierarchy construction is given in Appendix A
on the conference proceedings CD.
Fig. 5 shows several of the LODs obtained when processing a

model of a lower jaw (see Sec. 6 for statistics on this model). The
LODs 3 and 6 shown in the figure are obtained from the original
model by our simplification process. The convex pieces shown for
the original model are successively merged to create the BVH dur-
ing the process of simplification. Thus, the multiresolution hierar-
chy itself serves as BVH for collision detection. Unlike other types

of BVHs, with our simplification processing the different levels of
the BVH only bound their associated LOD; they do not necessarily
bound the original surface. This fact has some implications for the
contact queries, described in Sec. 5.3. The free LODs 11 and 14 in
the figure are obtained through pairwise merging of convex hulls.
They serve to complete the BVH, but cannot be considered as LODs
of a multiresolution hierarchy. Fig. 6 shows a more detailed view of
the simplification and merging process. Notice how in the creation
of the first LOD, most of the simplification and merging takes place
at the gums. The gums are, indeed, the locations with detail at the
highest resolution. When the processing reaches LOD 7, one tooth
in particular is covered by a single convex patch, thus showing the
success of the processing.

Figure 5: Hierarchy of the Lower Jaw. From left to right and
top to bottom, original mesh, LOD0, and convex decompositions of
LOD0, LOD3, LOD6, LOD11 and LOD14.

Figure 6: Detail View of the Hierarchy. From left to right and
top to bottom, original mesh, LOD0, and convex decompositions of
LOD0, LOD1, LOD2, LOD4 and LOD7.

4.5 Error Metrics

In this section, we present the parameters that must be computed
after the hierarchy is created, in order to quantify the error for sen-
sation preserving haptic rendering. The utilization of these param-
eters during the contact queries is explained in Sec. 5. To perform
sensation preserving haptic rendering using a multiresolution hier-
archy, we must measure the error that is introduced in the contact
query and force computation and refine the query if the error is
above a given tolerance. Once the hierarchies of LODs are created,
with the resolution r computed for each LOD, we must compute
several additional parameters for measuring the error:

548

LOD hierarchy doubles as bounding volume hierarchy!
CS277 - Experimental Haptics, Stanford University, Spring 2014

Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2003 ACM 0730-0301/03/0700-0543 $5.00

Sensation Preserving Simplification for Haptic Rendering
Miguel A. Otaduy Ming C. Lin
Department of Computer Science

University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/LODHaptics/

Abstract

We introduce a novel “sensation preserving” simplification algo-
rithm for faster collision queries between two polyhedral objects
in haptic rendering. Given a polyhedral model, we construct a mul-
tiresolution hierarchy using “filtered edge collapse”, subject to con-
straints imposed by collision detection. The resulting hierarchy is
then used to compute fast contact response for haptic display. The
computation model is inspired by human tactual perception of con-
tact information. We have successfully applied and demonstrated
the algorithm on a time-critical collision query framework for hap-
tically displaying complex object-object interaction. Compared to
existing exact contact query algorithms, we observe noticeable per-
formance improvement in update rates with little degradation in the
haptic perception of contacts.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Hierarchy and Geomet-
ric Transformations; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: Level-of-Detail Algorithms, Haptics, Collision Detec-
tion

1 Introduction

Haptic rendering, or force display, is emerging as an alternative
form or an augmentation for information presentation, in addition
to visual and auditory rendering. The sense of touch is one of the
most important sensory channels, yet it is relatively poorly under-
stood as a form of human-machine interface. Coupled with graph-
ical rendering, force feedback can enhance the user’s ability to in-
teract intuitively with complex synthetic environments and increase
the sense of presence in exploring virtual worlds [Brooks, Jr. et al.
1990; Mark et al. 1996; Hollerbach et al. 1997; Salisbury 1999].
The first step in displaying force and torque between two 3D

virtual objects is collision query and contact handling. Collision
detection has been well studied, and many practical techniques and
theoretical advances have been developed (see surveys by Lin and
Gottschalk [1998] and Klosowski et al. [1998]). Yet, despite the
huge body of literature in this area, the existing algorithms cannot
run at the desired force update rates (at least hundreds of Hz but
preferably several kHz) for haptic rendering of complex models.

Figure 1: Adaptive Resolution Selection. Top: Moving jaws in
contact, rendered at their highest resolution; Bottom: The appro-
priate resolution (shown in blue and green) is selected adaptively
for each contact location, while the finest resolution is displayed in
wireframe.

This is mainly due to the fact that the optimal running time of any
collision detection algorithm intrinsically depends on both the input
and output sizes of the problem. Those in turn depend on both
the combinatorial complexity and the contact configuration of the
objects involved in the queries. While we can render millions of
polygons at interactive rates, we can barely create a force display
of an environment consisting of just tens of thousands of polygons
at the desired update rates.
Inspired by the large body of research in digital geometry pro-

cessing and mesh simplification, we propose an algorithm based
on multiresolution hierarchies of object geometry to perform time-
critical collision queries for haptic rendering. In addition, our
method is influenced by findings from tactual perception and spa-
tial recognition to preserve pertinent contact information for haptic
display.

Main Contribution: We introduce the notion of sensation pre-
serving simplification to accelerate collision queries between two

543

Collision Detection

‣ Traverse BVH as usual
for collision detection,
except...

‣Only recurse when the
higher resolution is
deemed percitible

‣Otherwise, use
approximate geometry
at the current LOD

CS277 - Experimental Haptics, Stanford University, Spring 2014

‣ Still cannot guarantee speed!

‣ As low as 100 Hz with 40k triangles

‣ Haptic thread can render forces at 1000 Hz
while contact thread runs at a variable rate

Variable Rate Collision Detection

Figure 1: Rendering Pipeline. A haptic thread runs at force update rates simulating the dynamics of the grasped object
and computing force feedback, while a contact thread runs asynchronously and updates contact forces.

grasped object, and a contact thread that executes collision
detection and response. In this way, collision detection is
less a bottleneck for the simulation and the synthesis of
feedback force and torque. The different threads and mod-
ules of the rendering pipeline are highlighted in Fig. 1.

Next we describe the threads of the rendering pipeline in
more detail, and we introduce the notation used throughout
the paper.

3.1 Multirate Architecture

The haptic thread runs at a high frequency (1kHz in the
experiments described in Sec. 7), computing rigid body
simulation and force feedback. Each frame, the haptic
thread executes the following sequence of operations:

1. Read state of the haptic device at time ti.

2. Linearize the coupling force and torque at time ti−1.

3. Linearize the contact force and torque at time ti−1.

4. Solve the state of the grasped object at time ti, using
implicit integration.

5. Compute the coupling force and torque at time ti.

6. Send the coupling force and torque to the device con-
troller.

The contact thread runs asynchronously, at the high-
est frequency possible, given the complexity of the contact
scenario. We have followed the sensation-preserving sim-
plification approach proposed by Otaduy and Lin [22] for
executing collision detection between complex polygonal
models. Specifically, the contact thread performs the fol-
lowing sequence of operations every loop:

1. Fetch the state of the grasped object.

2. Perform collision detection based on sensation-
preserving simplification.

3. Cluster contacts and compute cluster representatives.

4. For each cluster representative, compute the contact
force and torque and their Jacobians.

3.2 Notation

We use lower-case bold-face letters to represent vectors
and quaternions, and upper-case letters to represent matri-
ces. In matrix operations, vectors are in column form, and
quaternions are treated as 4×1 vectors, unless we explic-
itly indicate that they are involved in quaternion products.
Unless otherwise specified, all magnitudes are expressed
in global coordinates of the virtual world. Given a vector
u = (ux,uy,uz)T , u∗ denotes the skew-symmetric matrix
used for representing a cross product as a matrix-vector
product:

u∗ =

0 −uz uy
uz 0 −ux
−uy ux 0

 (1)

4 Rigid Body Dynamics

In this section, we formulate the implicit integration for
penalty-based dynamic simulation of the grasped object.

4.1 Equations of Rigid Body Motion

We formulate the state of a rigid body in terms of the posi-
tion of its center of mass, x, a quaternion describing its
orientation, q, its linear momentum, P, and its angular
momentum, L. With this selection of state variables, the
Newton-Euler equations that describe rigid body dynam-
ics can be written as a function of external forces F and
torques T by the following ODEs:

ẏ(t) =

ẋ
q̇
Ṗ
L̇

=

1
m P

1
2 ωqq

F
T

(2)

where m is the mass of the body. The term ωq indicates
a quaternion with scalar part 0 and vector part the angular
velocity ω . Given the rotation matrix R and the mass ma-
trix M of the body, its angular velocity ω can be expressed
in terms of state variables as:

ω = RM−1RT L (3)

3

Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
0-7695-2310-2/05 $20.00 © 2005 IEEE

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Response

‣ Remember problem with multiple contacts?

‣ K-means clustering is used to group
contacts into representative points

‣ Each cluster described by point and normal

‣ Viscoelastic penalty-based force applied to
the virtual tool for each contact:

where kc and bc represent linear stiffness and damping re-
spectively; kθ and bθ represent angular stiffness and damp-
ing respectively; and xh, vh, and ωh represent the position,
linear velocity, and angular velocity of the haptic device.

5.2 Jacobian of Virtual Coupling

Here we list the Jacobians of coupling force and torque
w.r.t. the different state variables. Note that the Jacobians
w.r.t. the quaternion are expressed columnwise (i.e., sepa-
rately for each component qi of the quaternion). For more
details on the formulation of the Jacobians, please refer to
[20].

∂Fc

∂x
= −kcI (13)

∂Tc

∂x
= −kc(Rc)∗ (14)

∂Fc

∂qi
= −kc

∂R
∂qi

c+bcc∗
∂ω
∂qi

(15)

∂Tc

∂qi
= (Rc)∗

∂Fc

∂qi
−Fc

∗ ∂R
∂qi

c+ kθ
∂uc

∂qi
−bθ

∂ω
∂qi

(16)

∂Fc

∂P
= −

bc

m
I (17)

∂Tc

∂P
= −

bc

m
(Rc)∗ (18)

∂Fc

∂L
= bcc∗RM−1RT (19)

∂Tc

∂L
= (bc(Rc)∗c∗ −bθ I)RM−1RT (20)

5.3 Synthesis of Force Feedback

After solving the object state at each frame, we compute
coupling force and torque based on Eq. 12, using the newly
computed object state. The resulting force and torque
values are sent to the device controller as feedback com-
mands.

5.3.1 Nonlinear Coupling

Haptic devices present physical limitations that should also
be accounted for in the design of virtual coupling. Force
(and torque) saturation is one example. When the user
pushes against a virtual surface and the device reaches its
maximum force value, the user feels no difference as a re-
sult of pushing further. The coupling force in the simula-
tion, however, keeps growing; and so does object interpen-
etration. To avoid this, we suggest modeling the coupling
stiffness as a nonlinear function, in a way similar to Wan
and McNeely [25]. We propose a spline force function:
(1) for small deviations, under the saturation value, a lin-
ear force equation; (2) a cubic interpolating force equation;
and (3) for large deviations, a constant saturated force. The

coupling Jacobian must be revised, to account for the non-
linearity of the stiffness. Please refer to [20] for more de-
tails.

6 Collision Detection and Response

We begin this section by describing the contact informa-
tion returned by the collision detection module, and then
we describe the force and torque equations for collision re-
sponse, as well as their Jacobians. We conclude the section
with the formulation of the linearized contact model.

6.1 Collision Detection

We perform collision detection using the sensation-
preserving simplification algorithm proposed by Otaduy
and Lin [22]. A contact query returns a set of contacts
that sample the regions of the objects that are closer than a
distance tolerance d. Each contact is described by a point
p on the surface of the grasped object, a point p0 on the
surface of the object in the scene, the contact normal n
pointing outward from the grasped object, and the pene-
tration depth δ (which is positive if p lies inside the scene
object, and negative if p lies outside, but closer than d).

A contact query may return multiple contacts to de-
scribe each contact region. As pointed out by others earlier
[17, 16], discontinuities in the number of contacts affect
the stability of penalty-based simulations, because the to-
tal stiffness depends on the number of contacts. We cluster
contacts based on the K-means clustering technique, and
we compute a representative contact per cluster. Please re-
fer to [20] for more details.

6.2 Penalty-Based Collision Response

After contact clustering, the contact normal n is a represen-
tative value that does not capture exact information about
surface features, therefore we have opted to model each
contact as a planar constraint. The constraint is represented
by the plane with normal n and passing through p0. Note
that it is also convenient to represent p based on its coordi-
nates in the local frame of the grasped object, r. We com-
pute viscoelastic penalty-based force Fp and torque Tp as:

Fp = −kN(x+Rr−p0)− kdn−bN(v+ω × r)
Tp = (Rr)×Fp (21)

N is a matrix that projects a vector onto the normal of the
constraint plane, and it is computed as n nT .

6.3 Jacobian of Contact Force and Torque

Here we list the Jacobians of penalty-based force and
torque w.r.t. the different state variables. Note that the

5

Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
0-7695-2310-2/05 $20.00 © 2005 IEEE

CS277 - Experimental Haptics, Stanford University, Spring 2014

Summary

‣ Adaptive simplification = fast collision
detection between complex models

‣ Fidelity of haptic perception is preserved

‣ Variable rate collision detection allows high
force and haptic update rate

‣ Contact clustering mitigates force
discontinuities and escalating stiffness for
multi-point contact

CS277 - Experimental Haptics, Stanford University, Spring 2014

‣ Did we solve the interpenetration problem?

- Nonpenetration enforced by high contact
stiffness, can cause instability

‣ Are there other limitations?

Dynamic Proxy Limitations

CS277 - Experimental Haptics, Stanford University, Spring 2014

here, most of the existing approaches proposed to explore
textured surfaces are in three degrees of freedom [30], [31],
[32]. Minsky [33] was the first to introduce a system to
synthesize high-frequency textures for a haptic device. Only
in 2D, Minsky used a texture-map method. This approach is
an adaptation of the bump-mapping graphical method
proposed by Blinn [34]. The approach combines the haptic
device location and the map to provide a surface property
and a force feedback. This produces a convincing effect of
high-frequency textures.

A similar effect can be produced by perturbing the force
computed by the six degree-of-freedom constraint-based
god-object approach, using a discrete or continuous func-
tion at the contact point position. For example, a sine
function along one axis could be sufficient for providing
bumps and holes along this axis (cf. Fig. 9). In the case of
multiple contact points, the perturbation vector used to
modify the force vector direction is defined by averaging
the perturbation vector at each contact point.

This method provides high-frequency textures and can
be mixed with the force shading effect described above.
However, similar to the Minsky approach, if the speed of
the god-object is too high, or the update rate of the
simulation loop is too low, the contact point positions can
pass from a hole directly to another one without feeling the
bump in between. This implies a limitation in the texture
frequency according to the exploration speed and the
update rate of the simulation loop.

7 RESULTS AND DISCUSSION

The validation of our approach is performed on a Stringed
Haptic Workbench in which the SPIDAR-G, a tension-based
six degree-of-freedom force-feedback device [35], allows a
user to interact intuitively on a large two-screen display
[36]. The entire algorithm is executed on a 3.2 GHz dual-
processor Xeon PC, to which the haptic device is connected.
This PC communicates with a cluster of PCs only dedicated
to the stereo display on both screens of the Stringed Haptic

Workbench. The communication between the Xeon PC and
the cluster of PCs is ensured by UDP protocols.

Each of the three main loops is launched in its separate
thread. The haptic device thread frequency is fixed by the
device: The constraint-based force computed by the con-
straint-based coupling loop is read from the shared data
and applied to the user at 1,000 Hz. The frequencies of the
constraint-based coupling thread and the god-object simu-
lation thread vary over time, depending on the complexity
of the models and the task being performed (see below).

7.1 Peg-in-a-Hole Benchmark

We first evaluate the quality and the stability of the haptic
interaction in a simple but classical case: the peg-in-a-hole
benchmark (see Fig. 10). This benchmark is well-known
because, although it involves only very simple geometry
(here, 288 triangles for the peg and 280 triangles for the
box), it has typically been a challenge to provide a stable
and realistic haptic display of the insertion of the peg due to
the multiple and potentially redundant contact points
occurring during the task [12].

Fig. 11 reports several timings and statistics measured
during a typical interaction. The first row reports several
key configurations tested during the interaction, including

a. sliding the tip of the peg on the top side of the box,
b. laying the peg on the top side of the box and sliding

it on the box,
c. pushing on the left side of the box,
d. exploring the right extremity of the hole, and
e. inserting the peg in the hole.

The second row reports the time required to compute the
constraint-based force (see Section 5) during the interaction. It
can be seen that the constraint-based force is computed in less
than 25 microseconds throughout the manipulation. The third
row shows that the time required to update the configuration
of the god-object is always smaller than 10 milliseconds,
which is sufficient to prevent any visual lag throughout the
manipulation. The fourth row reports the number of
simultaneous contact points during the interaction, which
can be seen to be fairly limited throughout the manipulation.
This can be easily explained by the fact that 1) new contact
points rarely occur exactly simultaneously and 2) compared
to other approaches using the interpenetration between
virtual objects, constraint-based quasi-static computations
tend to limit the apparition of new contact points, since at

464 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 3, MAY/JUNE 2007

Fig. 9. Bump and Hole Texture. The direction of the force vector F is
perturbed by a sine function. The x position of the contact point is an
entry of the sine function to find a value for perturbing the direction of the
force. The perturbed force FT is transmitted to the haptic device,
allowing the user to feel the bumps and holes defined by this function.

Fig. 10. The models used in the peg-in-a-hole benchmark. The peg
contains 288 triangles, while the hole contains 280 triangles. The hole is
aligned with the Y axis.

6-DOF God-Object
[From M. Ortega et al., IEEE Trans. Visualization and Computer Graphics 13(3), 2005.]

CS277 - Experimental Haptics, Stanford University, Spring 2014

Contraint-Based Proxy Solver

‣Direct analogue of
3-DOF god-object

‣Uses contact positions
and normals only –
presumes objects do
not interpenetrate

‣Computes a trajectory
that does not violate
contact constraints

Proxy
Solver

position +
orientation

position +
orientation

contact points +
normals

The paper is organized as follows: Section 2 provides a
summary of related work. Section 3 gives an overview of
our approach. Section 4 describes how we compute the
motion of the god-object to ensure realistic haptic interac-
tion with rigid bodies. Section 5 presents our novel
constraint-based quasi-static approach to computing the
force applied to the user. Section 6 discusses methods for
producing haptic effects for surface perception such as force
shading and textures. Section 7 demonstrates our approach
on several benchmarks and shows how our approach is able
to provide the user with a high-quality haptic display of
contacting rigid bodies. We also discuss the benefits and
limitations of our approach. Finally, Section 8 concludes
and details several future research directions.

2 RELATED WORK

Haptic display of virtual objects has been an active area of
research over the last decade. In 1995, Zilles and Salisbury
[2] proposed what appears to be the first constraint-based
method for three degree-of-freedom haptic rendering of
generic polygonal objects. They introduced the god-object, an
idealized representation of the position of the haptic device
that is constrained to the surface of the obstacles. In their
three degree-of-freedom approach, the location of the god-
object minimizes at each time step the distance to the haptic
device; the difference between the two positions provides
the force direction. Ruspini et al. [6] extend this approach by
replacing the god-object by a small sphere and propose
methods to smooth the object surface and add friction.
Niemayer and Mitra [7] propose dynamic proxies to better
simulate dynamic effects. Several authors have proposed to
extend the virtual proxy approach to a three degree-of-
freedom interaction with objects defined by implicit
representations [8], [9].

Some authors have proposed six degree-of-freedom
haptic display algorithms. McNeely et al. [10] propose a
voxel sampling method. Johnson et al. [11] use local
minimum distances to compute the force applied to the
user. Gregory et al. [12] extend the virtual proxy approach
to six degrees of freedom and estimate the local penetration
depth to compute the force and torque applied to the user.
These methods, like most six degree-of-freedom haptic
display methods [13], [14], [15], [16], [17], [18], do not
attempt to prevent the interpenetration between the virtual
objects, which might lead to missing some collisions
between the virtual objects and can lead to the well-known
pop-through effect, where the virtual proxy can traverse thin
objects or objects parts [6], thereby degrading the percep-
tion of geometric details. Berkelman et al. [19] have
proposed a general constraint-based method for a six
degree-of-freedom interaction with rigid bodies. However,
their approach includes a virtual coupling [5] which leads
to perceptible force artifacts (see discussion in Section 7).
Recent work on stable six degree-of-freedom interactions by
Otaduy and Lin [20], however, has shown that the force
artifacts created by a virtual coupling can be reduced
through the use of an implicit integration method.

To the best of our knowledge, the approach described in
this paper seems to be the first six degree-of-freedom
constraint-based haptic rendering method that does not
suffer from the visual or haptic artifacts of previous
approaches (i.e., interpenetrations, forces felt at a distance,
or artificial friction and sticking).

3 OVERVIEW

Our method extends the classical three degree-of-freedom
constraint-based method by Zilles and Salisbury [2] by
employing a six degree-of-freedom god-object, i.e., an idealized
representation of the haptic device that is constrained to
remain on the surface of the environment obstacles when
the haptic device penetrates the environment obstacles (see
Fig. 2). At each time step, we attempt to reduce the
discrepancy between two rigid reference frames: one
attached to the haptic device, and one attached to the
virtual object. We typically place the origin at the center of
gravity of the virtual object, although any point can be
chosen. Only the god-object is displayed (and not the actual
configuration of the haptic device), so that even when the
haptic device penetrates the environment obstacles, the user

ORTEGA ET AL.: A SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD FOR HAPTIC DISPLAY OF RIGID BODIES WITH SURFACE... 459

Fig. 1. Haptic interaction with Stanford bunnies. The approach
described in this paper allows us to provide a user with high-quality
haptic display of contacting rigid bodies (here, two Stanford bunnies
containing about 27,000 triangles each). Our constraint-based force
computation method allows the manipulated object to come in contact
with and slide on the environment obstacles without penetrating them,
while providing the user with precise haptic display, where each vertex,
edge, and face can potentially be felt.

Fig. 2. Six degree-of-freedom god-object. Although the haptic device
penetrates the environment obstacles (configuration xh), the god-object
is constrained to remain on the surface of the obstacles (configuration
xs). We propose new algorithms to compute the motion of the god-object
and the force applied to the user based on the discrepancy between
these two configurations.

position +
orientation

CS277 - Experimental Haptics, Stanford University, Spring 2014

Contact Constraints

r2

CMr1n̂1

n̂2

How do we use these to determine
the motion of the proxy?

aCM · n̂k +↵ · (rk ⇥ n̂k) � 0

CS277 - Experimental Haptics, Stanford University, Spring 2014

Gauss’ Principle of Least Constraint

‣ Gauss defined a kinetic distance quantity as

‣ Then the motion of the constrained body is
one that minimizes the kinetic distance

ac = argmin
a

G(a)

G(a) = 1
2 (a� au)T M (a� au)

= 1
2 ||a� au||2M

CS277 - Experimental Haptics, Stanford University, Spring 2014

‣ Write the generalized accelerations as

‣ Obtain unconstrained acceleration from
virtual coupling spring (proxy displacement)

Quasi-Static Proxy Update

a = (aCM ,↵)T

a

u = 1
2 (xh � xs)

xs

xh

au

CS277 - Experimental Haptics, Stanford University, Spring 2014

Optimization Problem

‣ Solve the quadratic programming problem

‣ Then update the proxy with the
constrained motion (possibly with
additional collision query)

aCM · n̂k +↵ · (rk ⇥ n̂k) � 0
G(a) = 1

2 (a� au)T M (a� au)minimize
subject to

x

0
s = xs +

1
2a

c

CS277 - Experimental Haptics, Stanford University, Spring 2014

Constrained Motion
on the generalized acceleration of the god-object: Ja ! 0,
where J is a m" 6 Jacobian.

Gauss’ principle states that the constrained generalized
acceleration ac ¼ ðacG;!!cÞT of the god-object minimizes the
following function [23]:

GðaÞ ¼ 1

2
ða& auÞTMða& auÞ ¼ 1

2
ka& auk2M; ð1Þ

that is, the kinetic distance kac & aukM between the con-
strained acceleration ac and the unconstrained acceleration
au, over the set of possible accelerations fa : Ja ! 0g. In
other words, the constrained acceleration ac is the (non-
euclidean) projection of the unconstrained acceleration au

onto the set of possible accelerations. This projection
problem is solved using Wilhelmsen’s projection algorithm
[24]. Note that the matrices M and J contain all the
necessary and sufficient information to compute the
constrained motion of the god-object.

5 CONSTRAINT-BASED FORCE COMPUTATION

The constraint-based coupling loop determines the forces
applied to the user based on the configuration of the haptic
device and the contact information sent by the god-object
simulation loop. Essentially, the constraint-based coupling
loop performs the same constraint-based quasi-static
computations as in the god-object simulation loop, but
assuming the configuration of the god-object is fixed. This
suppresses the need for collision detection in the constraint-
based coupling loop, and allows us to compute the
constraint-based force applied to the user within a few
microseconds (see Section 7). Precisely, the constraint-based
force applied to the user is computed according to the
following constraint-based force computation algorithm:

1. Data retrieval: The configuration xh of the haptic
device and the configuration xs of the god-object
are read from the shared data, as well as the
matrices M and J, computed in the god-object
simulation loop, which describe the local quasi-
statics of the god-object.

2. Unconstrained acceleration computation: As in the
god-object simulation loop, the unconstrained six-
dimensional acceleration au of the god-object is
computed from xh and the six-dimensional config-
uration xs of the god-object ðau ¼ ksðxh & xsÞÞ.

3. Constraint-based force computation: The con-
strained acceleration ac of the god-object is com-
puted from the unconstrained acceleration au and
the matrices M and J retrieved from the shared data
by solving Gauss’ projection problem. The con-
straint-based force to be applied to the user is then
Fc ¼ khMðac & auÞ, where kh is a coupling constant.1

4. Force transmission: The constraint-based force Fc is
written to the shared data. It will be read by the
haptic loop for application to the user.

Fig. 4 demonstrates this algorithm in the case of a god-
object in contact with an obstacle. For clarity, only two
degrees of freedom are allowed: a vertical translation and a
rotation whose axis is orthogonal to the plane of the figure.
Fig. 4a shows the god-object contacting the obstacle (in blue)
and four successive configurations of the haptic device (in
green), as well as the resulting unconstrained accelerations
au1 ; . . . ; a

u
4 . Fig. 4b shows the corresponding two-dimen-

sional motion-space, i.e., the space of accelerations, and the
linearized nonpenetration constraint resulting from the
contact point (the diagonal line). The possible accelerations
are above this diagonal line. Projecting the unconstrained
accelerations au1 ; . . . ; a

u
4 on the set of possible accelerations

yields the constrained accelerations ac1; . . . ; a
c
4, as well as the

corresponding constraint forces Fc
1; . . . ;F

c
4 applied to the

user. Haptic configurations 1 and 2 result in a force and a
torque which attempt to bring the haptic device back to a
configuration reachable by the god-object, while haptic
configurations 3 and 4, which correspond to accelerations
satisfying the nonpenetration constraint, do not generate
any force.

Note that, because the configuration xs of the god-object
is not updated in the constraint-based coupling loop, the
matrices M and J do not have to be updated either.2 Hence,
only the configuration of the haptic device changes, and the
main computation involved is the determination of the
constrained acceleration ac, which can be performed very
efficiently (see Section 7).

When a new set of constraints is available, some of the
new nonpenetration constraints might not be satisfied by
the current configuration of the haptic device (see Fig. 6a).
This might create a large constraint force if the user has
largely penetrated those new constraints. In order to
smooth the constraint-based force applied to the user and
reduce potentially large forces created by delays in the

ORTEGA ET AL.: A SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD FOR HAPTIC DISPLAY OF RIGID BODIES WITH SURFACE... 461

Fig. 4. Constraint-based force computation. Our method uses Gauss’
least constraints principle to compute the constrained motion of the god-
object and the constraint-based force applied to the user (see Sections 4
and 5).

1. Different constants can be used for the translational and rotational
parts, but this might lead to constraint forces that are not orthogonal to the
nonpenetration constraints (see Section 7).

2. In our implementation, a flag is used to signal the arrival of a new set
of constraints to the constraint-based coupling loop. This flag, written to the
shared data by the god-object simulation loop, allows us to avoid rereading
the matrices M, J, and the god-object configuration xs, which further
speeds up the constraint-based coupling loop.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Continuous Collision Detection

‣Constraint-based
proxy solver requires
non-interpenetrating
contacts

‣Continuous collision
detection is one
method to find
contacts and normals
while enforcing non-
interpenetration

Collision
Detector

position +
orientation

contact points +
normals

CS277 - Experimental Haptics, Stanford University, Spring 2014

Recall 3-DOF God-Object

‣ The segment-triangle
intersection test is a
form of continuous
collision detection

‣ The god-object is
infinitely small, so it
will always miss
polygonal geometry
unless CCD is used!

pt

pt+1

CS277 - Experimental Haptics, Stanford University, Spring 2014

Non-Point Proxies2 Arbitrary in-between motions

Figure 3: Benefit of using a continuous collision detection method for an articulated body. The upper
half of the figure shows two successive configurations of a Puma robot which do not penetrate the
environment. The lower half shows a linear interpolation of the configurations and an intermediate
configuration corresponding to the first time of contact between the robot and the environment.

SIGGRAPH 2004 Course Notes 4

How do we generalize to a polyhedral avatar?

[From S. Redon et al., Transactions of the ASME 5, 2005.]
CS277 - Experimental Haptics, Stanford University, Spring 2014

Arbitrary In-Between Motions

‣We only know the
position of the avatar
at discrete time steps

‣We may assume an
arbitrary object
motion subject to:

- Interpolation

- Continuity

- Rigidity

2 Arbitrary in-between motions

Figure 5: To avoid interpenetrations, it is necessary to compute the objects’ positions at the in-
stant of collision from the in-between motion used for the detection of collisions, and not from the
interpolating motion computed by the dynamics equations.

SIGGRAPH 2004 Course Notes 8

Pt

Pt+1

P(t) = ?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Interpolating Motion

‣Describe a continuous
equation for rigid-body
motion between the
two known positions:

‣where ω is rotation
angle and u is the
rotation axis between
configurations

2 Arbitrary in-between motions

Figure 5: To avoid interpenetrations, it is necessary to compute the objects’ positions at the in-
stant of collision from the in-between motion used for the detection of collisions, and not from the
interpolating motion computed by the dynamics equations.

SIGGRAPH 2004 Course Notes 8

T(t) = c0
+ t(c1 � c0

)

R(t) = cos(!t)(I� uuT
)R0

+ sin(!t)u⇤R0
+ uuT R0

x(t) = P(t)x

c0

c1

R1

R0

CS277 - Experimental Haptics, Stanford University, Spring 2014

Testing for Intersection

‣ Edges intersect at t if

‣ Vertex/face intersect
at time t if

‣How do we find t?

4 Elementary continuous collision detection

4 Elementary continuous collision detection
Continuous collision detection methods for polyhedral objects must only detect three types of

contact. Indeed, all contacts between two polyhedral objects A and B include at least one of these
three elementary contact types:

• an edge of A contacts an edge of B.

• a vertex of A contacts a face of B.

• a face of A contacts a point of B.

Figure 9: Collision detection between two edges.

These contact types are easily expressed geometrically. For the edge/edge case, it su✏ces to
detect a collision between the lines containing the edges. If a(t)b(t) is the first edge and c(t)d(t) is
the second edge, then the lines intersect when:

a(t)c(t) · (a(t)b(t) ⇤ c(t)d(t)) = 0, (19)

i.e. when the vector a(t)c(t) is in the plane defined by the two edges (cf. Figure 9). Once an
intersection has been detected at some instant between the two lines, we check whether it belongs
to the edges or, equivalently, if the edges intersect at that time (and not only the supporting lines.
This can be robustly performed thanks to a discrete edge/edge proximity test (in general, due to
finite precision computations, the edges do not exactly touch at the collision time). We then keep
the earliest valid collision. The contact time is the earliest valid collision time. The contact position
is the position of the vertex at that time, and the contact normal is the (normalized) cross-product
of the edges at that time.

For the vertex/face and face/vertex, a collision is first detected between the point and the plane
containing the face. If a(t) is the point and b(t)c(t)d(t) is the triangle, a collision occurs when:

a(t)b(t) · (b(t)c(t) ⇤ b(t)d(t)) = 0, (20)

that is when the vector a(t)b(t) is in the vector plane defined by the face normal b(t)c(t)⇤b(t)d(t)
(cf. Figure 10). When such a collision is detected, we check whether the point belongs to the face

17 SIGGRAPH 2004 Course Notes

4 Elementary continuous collision detection

Figure 10: Collision detection between a point and a face.

at that time. This can be robustly performed thanks to a vertex/triangle proximity test (in general,
due to finite precision computations, the vertex is not exactly in the plane at the collision time).
We then keep the earliest valid collision. The contact time is the earliest valid collision time. The
contact position is the position of the vertex at that time, and the contact normal is the normal to
the triangle at that time.

In practice, interval arithmetic can be used to solve equations (19) and (20). Formally, these
equations have the form

f(t) = 0, t � [0, 1],

and we want to determine the smallest root tc. Assume we are able to bound the function f over
the time interval [0, 1]. If these bounds do not contain zero, meaning that the function is strictly
positive or strictly negative over the time interval [0, 1], then f cannot have any root in [0, 1].

However, if these bounds do contain zero, then the function f might have a root in [0, 1] (might
only, if the bounds are not tight or if the function is not continuous2). In this case, we refine the
time interval and repeat the process: we bound the function f on the time intervals [0, 1/2] and
[1/2, 1], and we examine these bounds (first [0, 1/2] and then [1/2, 1], since we are looking for the
earliest collision). This process is recursively performed until the examined bounds do not contain
zero (meaning that the function does not have any root on the time sub-interval), or until the size
of the examined time sub-interval is smaller than a user-defined threshold (which characterizes the
temporal precision of the collision detection).

The C++ code for this interval recursive root-finding method is:

bool computeCollisionTime(cInterval I, double &tc) {

// I is the time interval currently examined.
// Initially, I=[0,1].
//
// tc is the time of earliest collision.
//
// The function returns true if and only if a collision has been found

cInterval boundsF=boundFunctionF(I); // bound f over I
2Of course, the functions involved in these notes are all continuous.

SIGGRAPH 2004 Course Notes 18

�����!
a(t)c(t) ·

⇣�����!
a(t)b(t)⇥

�����!
c(t)d(t)

⌘
= 0

�����!
a(t)b(t) ·

⇣�����!
b(t)c(t)⇥

�����!
b(t)d(t)

⌘
= 0

CS277 - Experimental Haptics, Stanford University, Spring 2014

Interval Arithmetic

3 Interval arithmetic

it su⇠ces to express the motion of each link in the reference frame of its parent link, and not in the
world frame. The motion of the root link of the articulated model is still expressed in the world
frame.

Assume, for the sake of simplicity of notation, that the parent of link i is i�1. The index denoting
the world frame is 0. Let Pi�1

i (t) denote the position matrix of link i in the reference frame of its
parent link i� 1. Then the matrix

P0
i (t) = P0

1(t).P
1
2(t)...P

i�1
i (t) (14)

describes the motion of link i in the world frame.
Figure 8 shows an interpolating motion for an articulated model, where the motion of each link

has a constant translational and rotational velocity in the reference frame of its parent. Note that
the rigidity of each link is preserved.

3 Interval arithmetic
A simple way to robustly perform the computations involved in the various steps of a continuous

collision detection algorithm is to use interval arithmetic.
Interval arithmetic consists in computing with intervals instead of numbers. Several good in-

troductions to interval arithmetic can be found for example in [Moo62, Sny92, Kea96]. As is well
known, the definition of a closed real interval [a, b] is:

I = [a, b] = {x ⇤ IR, a 6 x 6 b} (15)

This definition can be generalized to vectors. A vector interval is simply a vector whose compo-
nents are intervals:

In = [a1, b1]⇥ ...⇥ [an, bn]

= {x = (x1,...,xn) ⇤ IRn, ai 6 xi 6 bi ⌅i, 1 6 i 6 n}
(16)

In IIR3, for example, a simple alternate notation can be:
�

⇤
[xl, xu]
[yl, yu]
[zl, zu]

⇥

⌅ (17)

The set of intervals is denoted IIR, while the set of vector intervals is denoted IIRn.
Basic operations can be transposed to intervals:

[a, b] + [c, d] = [a + c, b + d]

[a, b]� [c, d] = [a� d, b� c]

[a, b]⇥ [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

1/ [a, b] = [1/b, 1/a] if a > 0 or b < 0

[a, b] / [c, d] = [a, b]⇥ (1/ [c, d]) if c > 0 or d < 0

[a, b] 6 [c, d] if b 6 c

(18)

Elementary operations in IIRn are performed component-wise. Operations between real numbers and
real intervals can be performed by identifying IR and the set of “point” intervals {[x, x], x ⇤ IR}.

15 SIGGRAPH 2004 Course Notes

I = [a, b] = {x 2 R, a x b}

CS277 - Experimental Haptics, Stanford University, Spring 2014

Solving for Intersection

‣ To Solve:

‣ Use interval arithmetic, evaluate using the
interval t = [0,1]

‣ If zero is in the result interval, halve and
repeat:

�����!
a(t)c(t) ·

⇣�����!
a(t)b(t)⇥

�����!
c(t)d(t)

⌘
= 0

�����!
a(t)b(t) ·

⇣�����!
b(t)c(t)⇥

�����!
b(t)d(t)

⌘
= 0,

t = [0, 1]
t = [0, 1

2] t = [12 , 1]
t = [0, 1

4] t = [14 , 1
2] t = [12 , 3

4] t = [34 , 1]

CS277 - Experimental Haptics, Stanford University, Spring 2014

Bounding Volumes

‣ Continuous collision detection also works
with bounding volume intersection tests

‣ For example, the sphere test becomes

‣ Conservative test:

- There may be an intersection if the lower bound
on the left is less than the right side

||
������!
c1(t)c2(t)|| r1 + r2

(c2(t)� c1(t))2 (r1 + r2)2

CS277 - Experimental Haptics, Stanford University, Spring 2014

CCD Summary

‣ Finds the first contact
between the avatar
and the scene along a
motion path

‣Not quite “continuous”,
but computes time of
contact to a precision

‣Can combine with
structures like BVHs

2 Arbitrary in-between motions

Figure 4: Use of an arbitrary in-between motion to interpolate the known successive positions of
the teapot.

5 SIGGRAPH 2004 Course Notes

CS277 - Experimental Haptics, Stanford University, Spring 2014

Collision Detection Performance

‣ Fast, but not haptic
rates for large meshes

‣ Execution time varies:

- 70 Hz for 27k triangles

‣Again, use multiple
threads at different
rates...

The paper is organized as follows: Section 2 provides a
summary of related work. Section 3 gives an overview of
our approach. Section 4 describes how we compute the
motion of the god-object to ensure realistic haptic interac-
tion with rigid bodies. Section 5 presents our novel
constraint-based quasi-static approach to computing the
force applied to the user. Section 6 discusses methods for
producing haptic effects for surface perception such as force
shading and textures. Section 7 demonstrates our approach
on several benchmarks and shows how our approach is able
to provide the user with a high-quality haptic display of
contacting rigid bodies. We also discuss the benefits and
limitations of our approach. Finally, Section 8 concludes
and details several future research directions.

2 RELATED WORK

Haptic display of virtual objects has been an active area of
research over the last decade. In 1995, Zilles and Salisbury
[2] proposed what appears to be the first constraint-based
method for three degree-of-freedom haptic rendering of
generic polygonal objects. They introduced the god-object, an
idealized representation of the position of the haptic device
that is constrained to the surface of the obstacles. In their
three degree-of-freedom approach, the location of the god-
object minimizes at each time step the distance to the haptic
device; the difference between the two positions provides
the force direction. Ruspini et al. [6] extend this approach by
replacing the god-object by a small sphere and propose
methods to smooth the object surface and add friction.
Niemayer and Mitra [7] propose dynamic proxies to better
simulate dynamic effects. Several authors have proposed to
extend the virtual proxy approach to a three degree-of-
freedom interaction with objects defined by implicit
representations [8], [9].

Some authors have proposed six degree-of-freedom
haptic display algorithms. McNeely et al. [10] propose a
voxel sampling method. Johnson et al. [11] use local
minimum distances to compute the force applied to the
user. Gregory et al. [12] extend the virtual proxy approach
to six degrees of freedom and estimate the local penetration
depth to compute the force and torque applied to the user.
These methods, like most six degree-of-freedom haptic
display methods [13], [14], [15], [16], [17], [18], do not
attempt to prevent the interpenetration between the virtual
objects, which might lead to missing some collisions
between the virtual objects and can lead to the well-known
pop-through effect, where the virtual proxy can traverse thin
objects or objects parts [6], thereby degrading the percep-
tion of geometric details. Berkelman et al. [19] have
proposed a general constraint-based method for a six
degree-of-freedom interaction with rigid bodies. However,
their approach includes a virtual coupling [5] which leads
to perceptible force artifacts (see discussion in Section 7).
Recent work on stable six degree-of-freedom interactions by
Otaduy and Lin [20], however, has shown that the force
artifacts created by a virtual coupling can be reduced
through the use of an implicit integration method.

To the best of our knowledge, the approach described in
this paper seems to be the first six degree-of-freedom
constraint-based haptic rendering method that does not
suffer from the visual or haptic artifacts of previous
approaches (i.e., interpenetrations, forces felt at a distance,
or artificial friction and sticking).

3 OVERVIEW

Our method extends the classical three degree-of-freedom
constraint-based method by Zilles and Salisbury [2] by
employing a six degree-of-freedom god-object, i.e., an idealized
representation of the haptic device that is constrained to
remain on the surface of the environment obstacles when
the haptic device penetrates the environment obstacles (see
Fig. 2). At each time step, we attempt to reduce the
discrepancy between two rigid reference frames: one
attached to the haptic device, and one attached to the
virtual object. We typically place the origin at the center of
gravity of the virtual object, although any point can be
chosen. Only the god-object is displayed (and not the actual
configuration of the haptic device), so that even when the
haptic device penetrates the environment obstacles, the user

ORTEGA ET AL.: A SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD FOR HAPTIC DISPLAY OF RIGID BODIES WITH SURFACE... 459

Fig. 1. Haptic interaction with Stanford bunnies. The approach
described in this paper allows us to provide a user with high-quality
haptic display of contacting rigid bodies (here, two Stanford bunnies
containing about 27,000 triangles each). Our constraint-based force
computation method allows the manipulated object to come in contact
with and slide on the environment obstacles without penetrating them,
while providing the user with precise haptic display, where each vertex,
edge, and face can potentially be felt.

Fig. 2. Six degree-of-freedom god-object. Although the haptic device
penetrates the environment obstacles (configuration xh), the god-object
is constrained to remain on the surface of the obstacles (configuration
xs). We propose new algorithms to compute the motion of the god-object
and the force applied to the user based on the discrepancy between
these two configurations.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Implementation Diagram

only sees the rigid body that he manipulates in a realistic,
contacting only configuration. As a result, the user feels that
the rigid body he or she is manipulating is correctly sliding
on the surface of the obstacles. The motion of the god-object
and the force applied to the user are computed from the
discrepancy between the configurations of the god-object
and the haptic device, thanks to a novel constraint-based
quasi-static approach which suppresses visual and haptic
artifacts typically found in previous approaches.

Our algorithm is divided in three asynchronous loops:
1) the god-object simulation loop, which updates the
configuration of the god-object based on the configuration
of the haptic device and the environment obstacles, 2) the
constraint-based coupling loop, which determines the
constraint-based force applied to the user based on the
configurations of the god-object and the haptic device, as
well as the current set of contact points and normals, and
3) the haptics loop, which controls an impedance-like haptic
device which reads the force that has to be applied to the
user and writes the current configuration of the haptic
device (see Fig. 3). The haptics loop is considered as a
generic black box, and this paper focuses on the two other
processes, i.e., the god-object simulation loop and the
constraint-based coupling loop.

4 SIX DEGREE-OF-FREEDOM GOD-OBJECT

SIMULATION

4.1 Overview

The motion of the god-object is computed based on the
relative configurations of the haptic device and the god-
object, as well as the current set of contact points. Precisely,
we perform a constraint-based quasi-static simulation of the
god-object according to the following god-object simulation
algorithm:

1. Data retrieval: The six-dimensional configuration xh

of the haptic device is retrieved from the shared data
(see Fig. 3).

2. Unconstrained acceleration computation: The un-
constrained six-dimensional acceleration au of the
god-object is computed from xh and the six-dimen-
sional configuration xs of the god-object:

au ¼ ksðxh # xsÞ;

where ks is a coupling constant (ks ¼ 0:5 in our
implementation). This is similar to the virtual
coupling method [5], except that we directly control
the acceleration of the god-object. Because the

motion of the god-object is quasi-static, this amounts
to directly control the displacement of the god-
object.

3. Constraint-based quasi-static computations: The
constrained acceleration ac of the god-object is
computed based on the current contact information
(i.e., the one resulting from the previous god-object
simulation step) and the unconstrained acceleration
au. This involves forming the 6% 6 god-object mass
matrix M and the 6%m contact Jacobian J, where m
is the number of contact points (see details below).

4. Collision detection: The target configuration of the
god-object is computed from its constrained accel-
eration using an explicit Euler integration step. We
use the continuous collision detection algorithm
introduced by Redon et al. [21] to detect collisions
on a path interpolating the current and target god-
object configurations. If the interpolating path is free
of collisions, the god-object is placed in the target
configuration. If a new contact occurs, however, the
continuous collision detection algorithm determines
the first contacting configuration along the inter-
polating path, as well as the new contact positions
and normals. The configuration reached by the god-
object at the end of this step is the new god-object
configuration.

5. Constraints transmission: The matrices M and J
corresponding to the new god-object configuration
are written to the shared data, so that they can be
retrieved by the constraint-based coupling loop to
compute the constraint-based force applied to the
user.

The god-object simulation loop ensures that the god-
object attempts to reach the same configuration (position
and orientation) as the haptic device. Continuous collision
detection and constraint-based quasi-statics allow the god-
object to slide on virtual obstacles without penetrating them
as it tries to reach the haptic device. In the following, we
describe how we derive the constraint-based quasi-statics of
the god-object using Gauss’ least constraint principle.

4.2 Constraint-Based God-Object Quasi-Statics

Let a ¼ ðaG;!!ÞT denote the generalized (six-dimensional)
acceleration of the god-object, where aG and !! are,
respectively, the linear acceleration and the angular accel-
eration of the god-object. The set of possible accelerations is
easily determined from the contact positions and normals
provided by the continuous collision detection algorithms.
Let Ik and nk, respectively, denote the position and normal
of the kth contact point, 1 & k & m. Assuming the normal nk

is directed toward the exterior of the environment obstacle,
the acceleration of the god-object must satisfy the following
nonpenetration constraint [22]: aTGnk þ !!T ðGIk % nkÞ (0,
where GIk is the vector from the center of inertia G of the
god-object to the contact point Ik. Note the absence of a
velocity-dependent term in the nonpenetration constraint,
as the quasi-static assumption implies that the velocity of
the god-object is zero at all times. These m nonpenetration
constraints can be concatenated to form a single constraint

460 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 3, MAY/JUNE 2007

Fig. 3. Schematic representation of our method. Our method for
haptic display of six degree-of-freedom manipulation of rigid bodies is
divided in three asynchronous blocks (see Section 3).(~ µs) (~ ms)(1 ms)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Summary

‣ Advantages:

- Continuous collision detection ensures no
object penetration

- No forces are felt in free space

‣ Disadvantages?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Proxy-Based Rendering

Device
Controller

Virtual
Coupling

Proxy
Solver

Collision
Detector

position +
orientation

force +
torque

position +
orientation

force +
torque

position +
orientation

contact points +
normals or forces

The paper is organized as follows: Section 2 provides a
summary of related work. Section 3 gives an overview of
our approach. Section 4 describes how we compute the
motion of the god-object to ensure realistic haptic interac-
tion with rigid bodies. Section 5 presents our novel
constraint-based quasi-static approach to computing the
force applied to the user. Section 6 discusses methods for
producing haptic effects for surface perception such as force
shading and textures. Section 7 demonstrates our approach
on several benchmarks and shows how our approach is able
to provide the user with a high-quality haptic display of
contacting rigid bodies. We also discuss the benefits and
limitations of our approach. Finally, Section 8 concludes
and details several future research directions.

2 RELATED WORK

Haptic display of virtual objects has been an active area of
research over the last decade. In 1995, Zilles and Salisbury
[2] proposed what appears to be the first constraint-based
method for three degree-of-freedom haptic rendering of
generic polygonal objects. They introduced the god-object, an
idealized representation of the position of the haptic device
that is constrained to the surface of the obstacles. In their
three degree-of-freedom approach, the location of the god-
object minimizes at each time step the distance to the haptic
device; the difference between the two positions provides
the force direction. Ruspini et al. [6] extend this approach by
replacing the god-object by a small sphere and propose
methods to smooth the object surface and add friction.
Niemayer and Mitra [7] propose dynamic proxies to better
simulate dynamic effects. Several authors have proposed to
extend the virtual proxy approach to a three degree-of-
freedom interaction with objects defined by implicit
representations [8], [9].

Some authors have proposed six degree-of-freedom
haptic display algorithms. McNeely et al. [10] propose a
voxel sampling method. Johnson et al. [11] use local
minimum distances to compute the force applied to the
user. Gregory et al. [12] extend the virtual proxy approach
to six degrees of freedom and estimate the local penetration
depth to compute the force and torque applied to the user.
These methods, like most six degree-of-freedom haptic
display methods [13], [14], [15], [16], [17], [18], do not
attempt to prevent the interpenetration between the virtual
objects, which might lead to missing some collisions
between the virtual objects and can lead to the well-known
pop-through effect, where the virtual proxy can traverse thin
objects or objects parts [6], thereby degrading the percep-
tion of geometric details. Berkelman et al. [19] have
proposed a general constraint-based method for a six
degree-of-freedom interaction with rigid bodies. However,
their approach includes a virtual coupling [5] which leads
to perceptible force artifacts (see discussion in Section 7).
Recent work on stable six degree-of-freedom interactions by
Otaduy and Lin [20], however, has shown that the force
artifacts created by a virtual coupling can be reduced
through the use of an implicit integration method.

To the best of our knowledge, the approach described in
this paper seems to be the first six degree-of-freedom
constraint-based haptic rendering method that does not
suffer from the visual or haptic artifacts of previous
approaches (i.e., interpenetrations, forces felt at a distance,
or artificial friction and sticking).

3 OVERVIEW

Our method extends the classical three degree-of-freedom
constraint-based method by Zilles and Salisbury [2] by
employing a six degree-of-freedom god-object, i.e., an idealized
representation of the haptic device that is constrained to
remain on the surface of the environment obstacles when
the haptic device penetrates the environment obstacles (see
Fig. 2). At each time step, we attempt to reduce the
discrepancy between two rigid reference frames: one
attached to the haptic device, and one attached to the
virtual object. We typically place the origin at the center of
gravity of the virtual object, although any point can be
chosen. Only the god-object is displayed (and not the actual
configuration of the haptic device), so that even when the
haptic device penetrates the environment obstacles, the user

ORTEGA ET AL.: A SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD FOR HAPTIC DISPLAY OF RIGID BODIES WITH SURFACE... 459

Fig. 1. Haptic interaction with Stanford bunnies. The approach
described in this paper allows us to provide a user with high-quality
haptic display of contacting rigid bodies (here, two Stanford bunnies
containing about 27,000 triangles each). Our constraint-based force
computation method allows the manipulated object to come in contact
with and slide on the environment obstacles without penetrating them,
while providing the user with precise haptic display, where each vertex,
edge, and face can potentially be felt.

Fig. 2. Six degree-of-freedom god-object. Although the haptic device
penetrates the environment obstacles (configuration xh), the god-object
is constrained to remain on the surface of the obstacles (configuration
xs). We propose new algorithms to compute the motion of the god-object
and the force applied to the user based on the discrepancy between
these two configurations.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Proxy Rendering Taxonomy

Soft Constraints Hard Constraints

Massless
Proxy

Proxy with
Mass

Quasi-Static
Equilibrium

Distance
Minimization

Penalty-Based
Dynamics

Constrained
Dynamics

CS277 - Experimental Haptics, Stanford University, Spring 2014

