CS 277 - Experimental Haptics

Lecture 17 "Haptic Interface Design - Theory"

CENTRAL RESEARCH LABORATORIES

A DOVER DIVERSIFIED COMPANY

Desirable Characteristics in a Haptic Interface

- Thomas Massie

Freedom and Constraint: "free space feels free" "constraints feel rigid" "solid objects persist" How well can we do this?

Extra Credit: What does this mean at different scales?

Dynamic Range: Motor Abilities

Dynamic Range: Fmax/Fmin	
Human:	10^4:1 to 10^5:1
Good Motor (Maxon):	80:1
Motor (Mabuchi):	10:1
Falcon	10:1

http://www.maxonmotor.com/RE-max.asp

Dynamic Range: Human Abilities

CS277 - Experimental Haptics, Stanford University, Spring 201 Quartesy of Lynette Jones, MIT 6

Constraint Imposed by Contact Between Bodies

- Point contact 1 DOC, 5 DOF
- Point contact with friction 3 DOC, 3 DOC
- Line contact 2 DOC, 4 DOF
- Line contact with friction 5 DOC, 1 DOF
- Soft finger 4 DOC, 2 DOF

Degrees of constraint -> Task Difficulty

Information from Contact Force Measurements

Measurements of contact forces during exploration provide information about objects being touched from spatial and temporal variations in force.

Robot Haptics with a Force Sensing Fingertip

Determining Shape by Palpation

Palpating a sphere and estimating local tangent plane at each contact to provide object image.

Information from Active Exploration

Stroking a textured surface

Friction/Texture Sensing

Finding friction coefficient and texture by stroking object

Friction/Texture Sensing

Finding friction coefficient and texture by stroking object

CS277 - Experimental Haptics, Stanford University, Spring 2014

From Robot Haptics to Computer Haptics

A good Haptic Interface maximizes "Transparency" How?

minimize information distortion

• minimize *cognitive loading*

• maximize *responsiveness*

Mechanical characteristics of good haptic interfaces

- Low and well behaved friction (viscous, static, dynamic)
- Isotropic or minimal friction; symmetric friction volume
- Minimal hysteresis
- Isotropic or minimal reflected inertia

Friction Issues - distortion of force applied to mechanism with friction in joints

• Circles become squares when you operate with an interface with friction

Friction Issues - distortion of force applied to mechanism with friction in joints

 F_{T} is force applied to tip of haptic interface

If $|F_{\tau}| < \text{radius of } S_1$ Jt₁ will not move If $|F_{\tau}|$ < radius of S₂ Jt₂ will not move If $|F_{\tau}|$ is between these two radii, the interface Jt_2 may or may not move... Jt₁

CS277 - Experimental Haptics, Stanford University, Spring 2014

 S_{γ}

Hysteresis Issues

distortion of force or motion due to "gaps" in transmission

Sources of Hysteresis

- backlash in gears or mechanism position
- overcoming friction force
- pushing on spring with friction

Maximizing Interface Transparency

- Inertia Issues
- Translational and Rotational Inertia
 make small and/or isotropic
- Reflected inertia
 - reflected inertia mass felt at tip includes apparent mass of actuators = $N^2 \cdot J_{actuator}$
- Non-Isotropic Inertia distorts accelerations

Maximizing Interface Transparency

Reflected rotational inertia at grip – ball on a stick example:

Therefore, minimize R !

Building a Haptic Interface

Should it be an impedance – force source or an admittance - a position or velocity source?

Vocabulary: Stiffness vs Compliance:

Stiffness:K = F/xCompliance:C = x/FC = 1/Kthey are reciprocals

Velocity – force dependence:

Damping: B = f/x

Inverse damping: 1/B = xd/f (sometimes inexactly called admittance)

Note: Call it damping *not* dampening!

Physical Model for Impedance and Admittance

Issues:

Linearity vs nonlinear, polynomial, piecewise,

Monotonicity vs multiple valued functions

Constant coefficients vs time-varying

Causality

- what combinations are physically impossible
 - (e.g. infinite power)

Haptic Interfaces: An Impedance Device

Sense: interface position, velocity, acceleration

Command: force to apply to user via haptic interface Examples:

- $f = K \cdot x$; spring
- $f = B \cdot x$; pure damper
- $f = M \cdot \ddot{x} + B \cdot \dot{x} + K \cdot x$

f = F(x,t,...)

- · 2nd order impedan
- ; 2nd order impedance
- ; complex impedance

Haptic Interfaces: An Admittance Device

Sense: force user applies to haptic interface

Command: position (and/or derivatives) of interface Examples:

- $x = 1/K \cdot F$; pure compliance
- $\dot{x} = 1/B \cdot F$; pure damper
- $\ddot{x} = f/M B/M \cdot \dot{x} K/M \cdot x$; general admittance

Note: Admittance = Impedance⁻¹

Good Performance

Output Bandwidth "3dB point" of transfer function:

Force Bandwidth: f_{load}/f_{cmd}

Position Bandwidth: x_{load}/x_{cmd}

Good Performance – haptic device as a transducer

Maximize minimum resonant frequency (N=1)fixed load condition: $w_1 = sqrt(J_{motor}/K_{transmission})$ fixed motor condition: $w_2 = sqrt(J_{load}/K_{transmission})$

How to choose N?

Maximum power transfer -> Max acceleration of load -> maximizes bandwidth?

Impedance match motor and load: $J_{load} = N^2 * J_{motor}$ CS277 - Experimental Haptics, Stanford University, Spring 2014 Position and Force quality: we want large dynamic range:

we want large force_{max}/force_{min} we want large position_{max}/position_{min}

Are these scale independent measures of performance?

What do you think should be next?

- 6-Degree-of-Freedom
- Grip Force Feedback
- Multi-Finger, Multi-Arm
- Tactile Display
- Large Workspace
- Minimalist Systems

What about Human Robot Haptics?

Contact Interactions

- Touching and Being Touched
- Taking and Giving
- Leading and Being Led
- Gestural Communications
 - Non-contact gestures
 - Contact Gestures

End 🙂

Degrees of constraint -> Task Difficulty

Cognitive Loading

Cognitive load:

The level of effort associated with thinking and reasoning (including perception, memory, language, etc.), thus potentially interfering with other thought processes. A user interface strives to minimize the cognitive load associated with operating the interface itself so that all of a person's cognitive resources are available for their task.

- from http://www.usabilityfirst.com