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Abstract
Point sets become an increasingly popular shape representation. Most shape processing and rendering tasks re-
quire the approximation of a continuous surface from the point data. We present a surface approximation that is
motivated by an efficient iterative ray intersection computation. On each point on a ray, a local normal direction
is estimated as the direction of smallest weighted co-variances of the points. The normal direction is used to build
a local polynomial approximation to the surface, which is then intersected with the ray. The distance to the poly-
nomials essentially defines a distance field, whose zero-set is computed by repeated ray intersection. Requiring
the distance field to be smooth leads to an intuitive and natural sampling criterion, namely, that normals derived
from the weighted co-variances are well defined in a tubular neighborhood of the surface. For certain, well-chosen
weight functions we can show that well-sampled surfaces lead to smooth distance fields with non-zero gradients
and, thus, the surface is a continuously differentiable manifold. We detail spatial data structures and efficient
algorithms to compute ray-surface intersections for fast ray casting and ray tracing of the surface.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of sur-
faces and contours I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations I.3.7 [Computer
Graphics]: Ray Tracing

1. Introduction

Points samples without additional topological information
gain popularity as a shape representation. On one hand,
many shapes are nowadays created using sampling36, 45,
where the sampling process provides only partial connectiv-
ity information. On the other hand, points are a reasonable
display primitive for shapes with high geometric or textural
complexity relative to the rastered image42, 46, 31, 53. Since ac-
quisition and rendering are point-based, it seems logical to
stay within the framework of point-based shape representa-
tion also during the modelling stage of shapes24, 52, 41.

Modelling or processing shapes, however, requires to in-
terrogate the surface. For point representation this typically
means to attach a continuous surface approximation to the
points. Approximation of surfaces (and not just functions
over a Euclidean domain) from irregularly spaced points is
still a fairly young topic, where many approaches are rather
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practical and provide no guarantee that the reconstructed sur-
face is, for example, continuous, manifold, or resembles the
topology of the sampled surface. Interestingly, only few at-
tempts have been made to give a criterion for sufficient sam-
pling of a surface – a notable exception is the line of work
initiated by Amenta and co-workers4, 5, 7 Here we present a
scheme for the approximation of smooth surfaces from ir-
regularly sampled points that also allows formulating a sam-
pling criterion, however, not yet as concise as Amenta’s.

Our approach resembles a ray tracing technique1 for Point
Set Surfaces35, 2, 3, a surface approximation that uses a non-
linear projection operation to define the surface as the sta-
tionary points of the projection. It has been conjectured that
the projection operation gives rise to a continuous manifold
reconstruction. In an attempt to speed up the ray intersec-
tion computation, we have replaced the non-linear projection
during ray intersection with a simpler method. We found that
the surface that is implicitly defined by this operation has, in
fact, comparable properties – only they are easier to prove.
The requirements for the reconstruction being a continuous
manifold lead to a natural and intuitive sampling criterion.
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After establishing some context by briefly discussing re-
lated work (Section 2), we first provide the theory using a
slightly less general version of our surface definition (Sec-
tion 3) and then explain the iterative procedure (Section 4)
and spatial data structures (Section 5).

2. Related Work

We concentrate on work that is directly related to our ap-
proach, namely, the approximation of a surface from point
samples and interrogating this surface by means of fast ray-
surface intersections.

Most approximation techniques define the surface implic-
itly, either by defining a scalar function of space or by certain
constructive means.

An interesting line of approximation algorithms define
the surface as a subgraph of the Delaunay complex of the
points12, 19. Many algorithms follow this spirit and differ
mostly in how they identify triangles that belong to the sur-
face. Crust4, 5 (or power crust7) uses vertices of the Voronoi
diagram (power diagram in case of power crust) as an ap-
proximation to the medial axis. The Delaunay triangulation
including these vertices connects points on the surface either
to the medial axis or to natural neighbors, which allows iden-
tifying surface triangles. The connection to the medial axis
leads naturally to a minimal sampling density that is linear
in the proximity of the surface to the medial axis. Sufficient
sampling guarantees a reconstruction of the original topol-
ogy. Cocone6, 16, 17 has similar guarantees but eliminates the
step of adding Voronoi vertices to the point set. This makes
the Delaunay-complex significantly smaller and, thus, the re-
construction faster. Still, constructing the Delaunay complex
of millions of points is costly and some algorithm rather use
local triangulations of the points11, 22

Hoppe et al.28 defines an implicit function that is interest-
ingly in a sense dual to Delaunay-type reconstruction: For
each point a normal direction is estimated from neighboring
points and all normals are oriented consistently. The signed
distance to the surface is defined as the normal component
of the distance to the closest point. Thus, the surface consists
of planes through the points bounded by the Voronoi cells of
the points.

In many practical cases one has multiple point samples
for the same region. A way to consolidate this information is
to build a distance function in a volumetric grid by properly
weighting the points15, 51.

Defining the surface as a set of planar pieces results in C0

approximations. To achieve smoother approximations one
could build a smooth surface over the triangulation27, blend
the planar pieces using their implicit representation13, or fit
smoother functions. A global and smooth interpolant for
scattered data can be constructed using radial basis func-
tions (RBF). For surface approximation an implicit function

is computed using extra points away from the surface47, 49.
The computation traditionally involves the solution of a large
linear system, however, is nowadays tackled using com-
pactly supported functions50, mulitpole expansions8, 10, 9,
thinning20, 21, 29, 18, or hierarchical clustering30, 39.

Another approach is to fit globally smooth functions
locally23, or to perform purely local fits43, 33 and blend
these local surface approximations together38. The moving
least squares (MLS)34 approximation takes this approach
to the extreme by building a local fit for every point on
the surface. Using MLS allows defining a projection op-
eration that defines the surface implicitly as its stationary
points35. The projection operation could be used for resam-
pling the surface2, 3. Our surface definition results from sim-
plifying a ray intersection procedure1 for this type of sur-
face. To suit uneven sampling one could use locally adaptive
weight functions40, 41, however, it seems difficult to adapt the
weighting in a smooth way, which would be necessary to re-
main the manifold conjectures of the MLS approach.

For modelling and rendering the surface has to be in-
terrogated. While for rendering one could use the the ex-
isting points42, 46, 31, 53, modelling typically requires opera-
tions such as ray-surface intersection, for example, to specify
points on the surface by clicking. For a variety of deforma-
tion and CSG operations the MLS projection operator could
be used41.

Computing ray-surface intersections for an implicit sur-
face is conceptually simple: The ray is substituted in the im-
plicit surface definition. Computing the intersection is, thus,
equivalent to finding a root of a function in one unknown.
To speed up the intersection computation one should ex-
ploit properties of the implicit function. A common way is
to compute a (local) Lipschitz constant, which yields a con-
servative step width32, 26. Another approach is to use interval
analysis37.

Schaufler and Jensen define a ray-surface intersection
for point sets directly, without an intermediate surface
definition48. They collect points within a cylinder around the
ray and compute a weighted average surface location. This is
very fast, however, the geometry resulting from ray surface
intersection depends on the particular rays used for intersect-
ing the surface.

3. Foundations – Simple Surface Definition and
Sampling Criterion

We assume that a set of points implicitly defines a smooth
manifold surface. More specifically, let points pi ∈ R

3, i ∈
{1, . . . ,N}, be sampled from a surface S (possibly with a
measurement noise). The general idea of our surface def-
inition is inspired by MLS approximation – the surface is
approximated by building local polynomial approximations
everywhere in space and a point s in space belongs to the
surface if its local polynomial approximation contains s. For
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reasons of clarity we first describe a slightly simplified ver-
sion of the definition. We feel this makes the connection to
the sampling criterion and the resulting properties easier to
establish. The more general surface definition is given later
together with an algorithm that computes ray surface inter-
sections.

The main tools for the definition of the surface are
weighted averages and weighted co-variances of the points
in a tubular neighborhood around the surface. A weight func-
tion θ : R → R specifies the influence of a point pi using the
euclidean distance, i.e. θi(x) = θ(‖pi − x‖). Weight func-
tions are assumed to be smooth, positive, and monotonically
decreasing (have negative first derivative).

The weighted average of points at a location s in space is

a(s) =
∑N−1

i=0 θi(s)pi

∑N−1
i=0 θi(s)

(1)

and the weighted co-variance at s in direction n describes
how well a plane n(s−x) = 0 fits the weighted points:

σ2
n(s) =

∑N−1
i=0 θi(s)(n(s−pi))

2

∑N−1
i=0 θi(s)

(2)

Let σ(s) be the vector of weighted co-variances along the
directions of the canonical base

σ(s) =





σ(1,0,0)(s)
σ(0,1,0)(s)
σ(0,0,1)(s)



 (3)

then the major axes (i.e. directions of smallest and largest
weighted co-variance at a point s) are accessible as the eigen-
vectors of the bilinear form

Σ(s) = σ(s)σ(s)T (4)

where an eigenvalue is the co-variance along the direction of
the associated eigenvector.

Our computation and definition of the surface mainly de-
pends on local frames, which are built from locally estimated
normals.

Definition 1 The normal direction n(x),x ∈ R
3 (or normal

for short) is defined as a direction of smallest weighted co-
variance, i.e. minn σ2

n(x). If n is unique the normal is well-
defined.

It is clear that the normal in x is given as the eigenvector
of the co-variance matrix Σ(x) corresponding to the smallest
eigenvector. The normal is well-defined exactly if Σ(x) has
an eigenvalue that is strictly smaller than all other eigenval-
ues.

We define the surface implicitly based on normal direc-
tions and weighted averages. The implicit function f : R

3 →
R describes the distance of a point x to the weighted average
a(x) projected along the normal direction n(x):

f (x) = n(x) · (a(x)−x) (5)

x

n n(x-p)

a(x) f

S

(x)q

l

Figure 1: The surface is defined implicitly as the zero set
of a function f (x). In each point x a local normal direction
n(x) is estimated as the direction of minimal weighted co-
variance. The implicit function f (x) describes the distance
of a weighted average a(x) of the points along normal direc-
tion.

As always, the approximated surface is defined as the zero-
set of the implicit function, i.e.

S = {x : f (x) = 0} (6)

We know from differential geometry that S is a smooth
differentiable manifold if f is a smooth function with non-
zero gradient at least in an ε-tubular neighborhood around
the zero-set (this a generalization of the inverse function the-
orem in calculus14, 25). Requiring f to be smooth leads to a
surprisingly simple and natural sampling criterion:

Definition 2 A surface S is well-sampled with points {pi}
and approximated by S if the normals are well-defined in-
side a neighborhood around S that encloses the zero-set of
f .

We will show that this condition is sufficient for f being
smooth for points x inside the tubular neighborhood: First
note that f is a smooth function in a and n. If all weight func-
tions are smooth, the weighted average a and the weighted
co-variance matrix are smooth functions in x. Furthermore,
eigenvalues are smooth functions in the matrix coefficients
and eigenvectors are the solution of a linear system in the
eigenvalues and the matrix. Since the normal direction is de-
fined as the eigenvector corresponding to the smallest eigen-
value, n(x) is smooth in x as long as one eigenvector is
always associated with the smallest eigenvalue. This has
to be the case if the smallest eigenvalue is always strictly
smaller than all other eigenvalues, i.e., if all normals are
well-defined.

Note that it is no surprise (from a differential geometry
point of view) that a well defined normal field defines a sur-
face. The main point here is that the definition of normals
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as directions of smallest weighted co-variance admits such a
definition.

The topology of the approximated surface S depends on
the particular choice of weight functions θi. It is clear that
certain θi could lead to non-manifold approximations and
that even if S is manifold it’s not necessarily homeomorphic
to S. On the other hand, weights could be so chosen that
S is manifold and, with further restrictions, resembles the
topology of S.

To give an intuition for this, we first consider an infinites-
imal ball B around s. Inside the ball, weights are constant
and so are a(x) and n(x). Thus, for this region f describes a
plane and if this plane passes the ball the approximation of
S inside B is a disk. If, furthermore, the gradient of f inside
such ball is non-zero, S is manifold. We show in the Ap-
pendix that using Gaussians as weight functions is sufficient
for non-zero gradient at f (x) = 0.

For homeomorphic reconstruction the support of the
weights should be so chosen that they separate different
sheets of the surface (note that sufficient sampling is a pre-
requisite for differentiation of sheets). As Gaussians have in-
finite support we have no practical means to construct theo-
retically correct weights yet, however, in practice Gaussians
with appropriate radius perform quite nicely (as is demon-
strated in Section 6).

4. Ray-surface intersections

The surface definition given in the previous section implies
a technique to efficiently compute ray-surface intersections.
The idea is to evaluate function f , as it provides a rough
approximation of the distance field to S for f (x) 6= 0. For
fixed n and a Equation 5 describes the planar fit

l(x) = n(s) · (a(s)−x) (7)

to S with respect to the location s (depicted by the dashed
line in Figure 1). The smaller the distance f (s) is, the better
S is approximated in q, which is the projection of x onto l
along n. If f (s) = 0, q = s is a point on the surface S.

The approximation l is used to converge to S along a ray r,
using an iterative scheme similar to the ray tracing approach
for MLS-surfaces1. Once an approximation is determined,
the equation r = ro + s · td is inserted in l(x), and solving
l(r) = 0 provides td for the intersection of ray and planar
surface approximation. The series of intersections {ri} ap-
proaches the surface S. In theory, once ri is close enough
to the surface, the series | f (ri)|, | f (ri+1)|, | f (ri+2)|, . . . is
strictly decreasing and an increase could be used to bail out
off the iteration and start over. In practice, however, we have
to accommodate imperfect weighting and use more tolerant
iteration conditions: We require that the closest point q on
the approximated surface is close to the current position on
the ray ri that has been used to compute q as well as close
to the next intersection ri+1 of the ray and the plane l = 0

H

Surface

Ray

n

r i

Figure 2: In an intermediate approximation of the ray sur-
face intersection ri a local coordinate system H is estab-
lished using the direction of minimal weighted co-variance
as the normal n

through q. Specifically, a region of trust T around q has to
contain ri and ri+1. If not, the iteration is terminated and
no ray surface intersection in the proximity of r0 could be
reported.

How to obtain an initial point r0 is discussed later in Sec-
tion 5. The region T depends on the weighting-function for
n(x) and a(x), which affects the size of features in S. How
to make suitable choices for the weighting-function and T is
also addressed in Section 5.

The procedure sketched above is easily generalized by
taking the following point of view: In each point on r a local
coordinate system is created using the approximation of a
normal direction. In this coordinate system a weighted least
square constant approximation to the surface is computed
(the weighted average is a constant least squares approxima-
tion). This local approximation is intersected with the ray
and the procedure is repeated. In this setting it seems quite
natural to use higher order least squares approximations to
the surface in the local coordinate system in an attempt to
increase the approximation order of the scheme. In retro-
spect, we have used constant polynomials for the analysis
because this allows explicitly solving the linear system that
determines the polynomial.

The following three steps are iterated until the sequence
r0,r1,r2, ... converges to the ray-surface intersection or the
procedure is terminated, focussing on the next region to be
examined:

1. Support plane: The normal of a support plane H in ri is
determined by minimizing the weighted distances of the
points p j to H. The weights are computed from the dis-
tances of the p j to ri using a smooth, positive, monotone

decreasing function θ (e.g. a gaussian θ(d) = e−
d2

h2 ). This
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weighted least squares problem is solved by minimizing

N

∑
j=1

(

〈n,p j − ri〉
)2θ

(

‖p j − ri‖
)

, (8)

The minimization of equation 8 can be rewritten in bilin-
ear form

min
‖n‖=1

nT Bn, (9)

where B = {bkl} is the matrix of weighted co-variances

blk =
N

∑
j=1

θ j
(

p jk − rik
)(

p jl − ril
)

.

The minimization problem in equation 9 is solved by
computing the eigenvector of B with the smallest eigen-
value. The resulting H is approximately parallel to the
Surface in the area around its nearest approach to ri.

2. Polynomial approximation: The support plane in ri is
used to compute a local bivariate polynomial approxima-
tion ai of S. To determine the coefficients of ai, again a
weighted least squares problem is solved by minimizing
the equation

N

∑
j=1

(

ai(x j,y j)− f j
)2θ

(

‖p j − ri‖
)

, (10)

where (x j,y j) is the projection of p j onto H in normal
direction and f j = 〈n,p j − ri〉 is the height of p j over
H. Equation 10 can be minimized by calculating its gra-
dient over the unknown coefficients of the polynomial.
This leads to a system of linear equations, which is solved
using standard numerical methods. The resulting polyno-
mial is a local approximation of the surface S. If ri is
sufficiently close to S, ai is expected be a good approxi-
mation to S around ri and the intersection ri+1 of the ray
with ai could be used to converge to S.

3. Intersection: If the ray intersects ai, this point ri+1
serves as the starting point for the next iteration. If the ray
misses ai the iteration is terminated. Only ray-polynomial
intersections within T are considered. An intersection is
detected, when the constant part c of ai is zero. In prac-
tice a c being smaller then a ε suffices to accept ri (or
the ray-intersection with ai) as an adequate ray-surface
intersection.

5. Spatial data structures

In this Section we describe how to represent a tubular neigh-
borhood around the surface. This neighborhood is needed to
make sure that the intersection procedure described earlier
starts from a suitable point r0. Moreover, using simple primi-
tives for the representation of the neighborhood significantly
speeds-up ray surface intersection. In practice, the size of a
tubular neighborhood around the surface that contains only
well-defined normals is unknown a-priori. Our best choice is

H

Surface

Ray

n

a i

r i

ri+1

Figure 3: The local coordinate system H is used to com-
pute a local bivariate polynomial approximation to S. This
approximation is intersected with r to yield the next approx-
imation to the ray surface intersection ri+1.

to construct a spatial region that has a certain maximum dis-
tance to the point set as we expect the distance of the points
to the reconstructed surface to be bounded.

Specifically, we construct a set of balls Bi of radius ρi
around the points pi. If the surface S is contained in the
union of the balls the balls are a bounding volume of S that
is easy to test for intersection. If a ray intersects S, it also in-
tersects at least one ball containing the intersection. Thus, an
intersected ball indicates a potential ray surface intersection.
The radius h has to be chosen, to ensure that

S ⊆
N

∑
i=0

Bi. (11)

Unfortunately, S is unknown a priori. The only a-priori
knowledge are the points pi, which are expected to be very
close to the surface S. Therefore, we choose conservative
radii ρi, so that each Bi encloses the k-nearest neighbors of
pi. In practice, we use k = 6.

The intersection of a ray with the set of balls can be com-
puted efficiently. To quickly determine a subset of poten-
tially intersected balls, the balls are arranged within an oc-
tree (see Figure 4), which is traversed along the ray using a
parametric algorithm 44. The current octree-voxel provides
the candidate balls to be tested against the ray. Intersected
balls are sorted along the ray to ensure that the first ray sur-
face intersection is computed.

Each ray ball intersection is handled as follows: The cen-
ter pi of Bi is used as initial point s for the construction of
a local coordinate system and polynomial approximation ai.
Using pi for this approximation instead of the ray ball in-
tersection has two reasons: First, pi is expected to be close
to S and should provide a reasonable approximation of the
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Surface

Ray

Figure 4: The spatial data structures used to represent a
tubular neighborhood around S is constructed as union of
balls around the points. This region has the property that it
contains all points with a certain maximum distance to the
points and represents a best guess to the tubular neighbor-
hood as points are expected to be close to the surface. For
reducing the number of ray sphere intersections an octree is
used.

surface around pi. Second, the coordinate system and poly-
nomial approximation within Bi are independent of the ray
and can be stored for intersection with the next ray that in-
tersects Bi. Intersecting the ray with ai yields r0. Figure 4
illustrates this idea.

Then the procedure detailed in Section 4 is applied using
Bi as the region of trust T . Thus, if the ray intersects the
polynomial approximation inside Bi, the step is repeated un-
til the desired accuracy is reached; otherwise no ray surface
intersection is found within Bi and the next intersected ball
along the ray is inspected.

Sometimes it is not important to determine the first in-
tersection along a ray but only if there is any intersection
with the object. A prominent example for rendering algo-
rithms are shadow rays in ray tracing. Once a shadow-ray is
obstructed by an opaque object, it is not necessary to deter-
mine at what position the ray first hits that object. Such a
ray can be simply discarded from the illumination computa-
tions. This specific ray intersection query can be optimized
by finding an intersection as quickly as possible anywhere
on the ray. As spheres intersected close to their center are
more likely to contain an intersection with the surface, they
are sorted according to the distance di from the ray to the
center ci. The following equation determines the priority γi
of a sphere considering different radii ρi.

γi =
ρi −di

ρi
. (12)

6. Applications & Results

We have used the ray surface intersection algorithm to com-
pute renderings by means of ray tracing. In practice, we
use Gaussian weights, i.e. θi(x) = exp(‖x− pi‖

2/h2). The
global parameter h allows specifying the locality of the ap-
proximation. Using smaller values for h results in a more lo-
cal approximation, larger values could be used to smooth out
small variations in the surface (e.g. noise). Since rendering
is very fast, estimating useful values for h is done interac-
tively. Note that for uneven sampling a localized Gaussian
weighting has proven to be beneficial for MLS projection
operation41. We have found our surface to exhibit less arti-
facts than the surface defined from the MLS projection so
that we have not yet experimented with varying values for h.

To analyze the performance of the ray intersection algo-
rithm we have computed several renderings of the Cyber-
ware Rabit Model consisting of 67,038 points. Connectivity
information available in the original data was discarded.

The effect of using different values for h is shown in Fig-
ure 5: the left rabbit results from using h = 0.00375d and the
right using h = 0.017d, where d is the object’s diameter; as
expected, larger values for h yield a smoother surface. Us-
ing smaller values for h leads to undefined normals, because
the sampling is not dense enough compared to the weight
function. This illustrates the effect of reconstructing from
undersampled surfaces.

The following timings have been acquired using h =
0.004d and an image raster of 200x400 pixel on a P4 with
2GHz: In 10.3 seconds ray surface intersections for 42,463
of the 80,000 rays were computed. In total the distance func-
tion was evaluated 238,715 times (each evaluation requires
estimating a normal and computing the polynomial approxi-
mation). Roughly half of the evaluations lead to an intersec-
tion of the surface, the other half leads to bailing out of the it-
eration. If the center polynomials are stored and reused only
83,922 evaluations have to be calculated, where we compute
and store the center polynomials on the fly.

To estimate the overhead of computing the pixel intensi-
ties and intersecting the rays with the spatial data structures
we have substituted the ray surface intersection procedure
with intersecting precomputed polynomials in the sphere
centers. This simplification needs 1.3 seconds to ray trace
the same scene. Apparently, most of the time is spent calcu-
lating and intersecting polynomial approximations.

An average 2.91 iterations were sufficient to satisfy a pre-
defined precision of p = 10−3h, which seems sufficient as
features are expected to be larger than h. Table 1 shows the
average number of iterations until convergence to ray surface
intersection and the time to render the whole image relative
to the required precision. Increasing the precision by an or-
der of magnitude results in about 1.5 times iterations in aver-
age. The maximum precision that could be achieved is about
10−10h. Increased the required precision further leads to a
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Figure 5: Cyberware’s Rabbit, consisting of 67,038 points, ray traced to images with 200x400 pixels using different Gaussian
weighting functions. If the radius of the weights becomes too small, the surface is effectively undersampled w.r.t. to the weighting,
thus, illustrating the effect of insufficient sampling density. Values for the parameter h relative to the objects diameter from left
to right: 1.7%, 0.375%, 0.22%, 0.19%, 0.17%.

Precision (h) 10−1 10−3 10−7 10−10 10−11

Avg. Iter. 1.99 2.91 4.98 6.56 10.4
Time (sec) 7.9 11.5 18.9 24.6 42.7

Table 1: Average number of iterations until convergence to
a ray surface intersection and time needed to render an im-
age at resolution of 200x400 pixels relative to the required
precision.

numerical breakdown of the procedure, possibly due to the
eigenvector computation. This explains the superlinear num-
ber of iterations and computation time in the last column of
the table.

7. Conclusions

We have presented a surface approximation technique that
is based on an iterative ray-surface intersection algorithm.
The definition of the surface allows deriving an intuitive cri-
terion for sufficient sampling given a weighting function for
the points. As the surface is defined by the ray intersection
algorithm, ray tracing is a natural way to render the sur-
face. Compared to ray tracing point set surfaces1 our new
approach is two orders of magnitude faster. It is comparable
in speed to Schaufler & Jensen’s approach48, however, using
a solid surface definition.

We admit that our formulation of the sampling criterion
has several loose ends and that we are far from having a
solid theory, nevertheless, we felt the results are useful and
interesting. In particular, a qualitative and quantitative com-
parisons between the sampled surface S, the reconstruction
we propose S, and reconstructions with other methods are

missing. From a practical perspective, important next steps
are the definition of weights from a given smooth surface
and the minimal extent of the tubular neighborhood. This
would make the sampling criterion sufficient, yet still not
very practical: One could only decide that a surface is not
well-sampled by finding a point inside the neighborhood
with undefined normal, which is very unlikely. Rather, we
need conditions that necessarily lead to sufficient sampling
(possibly accepting some oversampling).
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Appendix A: A sufficient condition for manifold
reconstruction

To guarantee that f (x) = 0 is manifold (assuming that the
surface is well-sampled and, thus, f is smooth) we have to
show that ∇ f (x) 6= 0 for f (x) = 0. We differentiate along
normal direction in x to reduce the problem to one dimen-
sion. Note that this is possible because the surface is well-
sampled, which implies that normals are well-defined. We
can re-write f in a coordinate system with the origin on the
surface along the dimension in normal direction as

f (ξ) = n(ξ)(a(ξ)−ξ) =
∑θi(ξ)(ξ−φi)

2

∑θi(ξ)

(

∑θi(ξ)φi

∑θi(ξ)
−ξ

)

(13)
where φi denotes the distance of pi along normal direction.
Since we have defined differentiation w.r.t. ξ in direction of
the normal n, f (ξ) = 0 implies a(ξ) = 0 so that we have to
show only a′(ξ) to be non-zero:

a′(ξ) =
∑θ′i(ξ)φi ∑θi(ξ)−∑θi(ξ)φi ∑θ′i(ξ)

(∑θi(ξ))2 −1 6= 0 (14)

A particular simple way to satisfy this inequality is to use
strictly positive weight functions of the form θ′ = cθ (i.e.
exponential functions) because then the nominator is equal
zero and the denominator is strictly positive. However, also
Gaussian weight functions

θi(h) = e|ξ−φi|/h2
(15)

satisfy Eq. 14 for almost all h: The main observation is that

∑θ′i(h)φi ∑θi(h)−∑θi(h)φi ∑θ′i(h)−∑θi(h)∑θi(h)
(16)

is a smooth function in h, whose gradient cannot vanish
everywhere because the Gaussians have strictly positive
derivatives for positive values of h. Thus, Eq. 16 is smoothly
varying with h and has only finitely many zeroes. All h that
equate to non-zero values are sufficient for a local manifold
reconstruction. Note that this is not sufficient for the exis-
tence of a global h that guarantees manifoldness everywhere
on the surface, on the other hand, it is very unlikely in prac-
tice that the set of forbidden h-values all over the zero-set
of f is dense in R. A better characterization of admissible
values for h is, nevertheless, desirable.
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