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Abstract 
A new algorithm for computing contact forces between solid 

objects with friction is presented. The algorithm allows a mix 
of contact points with static and dynamic friction. In contrast to 
previous approaches, the problem of computing contact forces is not 
transformed into an optimization problem. Because of this, the need 
for sophisticated optimization software packages is eliminated. For 
both systems with and without friction, the algorithm has proven 
to be considerably faster, simpler, and more reliable than previous 
approaches to the problem. In particular, implementation of the 
algorithm by nonspecialists in numerical programming is quite fea- 
sible. 

1. Introduction 
In recent work, we have established the viability of using analyt- 

ical methods to simulate rigid body motion with contact[I,2,3]. In 
situations involving only bilateral constraints (commonly referred 
to as "equality constraints"), analytical methods require solving 
systems of simultaneous linear equations. Bilateral constraints typ- 
ically arise in representing idealized geometric connections such 
as universal joints, point-to-surface constraints etc. For systems 
with contact, unilateral (or "inequality") constraints are required 
to prevent adjoining bodies from interpenetrating. In turn, the 
simultaenous linear equations arising from a system of only bilateral 
constraints must be augmented to reflect the unilateral constraints; 
the result is in general an inequality-constrained nonlinear mini- 
mization problem. 

However, analytical techniques for systems with contact have 
yet to really catch on in the graphics/simulation community. We 
believe that this is because of the perceived practical and theoretical 
complexities of using analytical techniques in systems with contact. 
This paper has two goals, one of which is to address these concerns: 
in particular, we present analytical methods for systems with contact 
that can be practically implemented by those of us (such as the 
author) who are not specialists in numerical analysis or optimiza- 
tion. These methods are simpler, reliable, and faster than previous 
methods used for either systems with friction, or systems without 
friction. 

Our other goal is to extend and improve previous algorithms for 
computing contact forces with friction[3]. We present a simple, fast 
algorithm for computing contact forces with friction. The restriction 
of our algorithm to the frictionless case is equivalent to an algorithm 
described in Cottle and Dantzig[4] (but attributed to Dantzig) for 
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solving linear complementarity problems. It is not our intention 
to reinvent the wheel; however, it is necessary to first understand 
Dantzig's algorithm and why it works for our frictionless sytems 
before going on to consider the more general solution algorithm 
we propose to deal with friction. We give a physical motivation 
for Dantzig's algorithm and discuss its properties and implemen- 
tation in section 4. For frictionless systems, our implementation 
of Dantzig's algorithm compares very favorably with the use of 
large-scale, sophisticated numerical optimization packages cited by 
previous systems[11,7,8,6]. In particular, for a system with n unilat- 
eral constraints, our implementation tends to require approximately 
three times the work required to solve a square linear system of 
size n using Gaussian elimination. Most importantly, Dantzig's 
algorithm, and our extensions to it for systems with friction, are 
sufficiently simple that nonspecialists in numerical programming 

can  implement them on their own; this is most assuredly not true 
of the previously cited large-scale optimization packages. 

Interactive systems with bilateral constraints are common, and 
there is no reason that moderately complicated interactive simu- 
lation with collision and contact cannot be achieved as well. We 
strongly believe that using our algorithms, interactive simulations 
with contact and friction are practical. We support this claim by 
demonstrating the first known system for interactive simulations 
involving contact and a correct model of Coulomb friction. 

2. Background and Motivation 
LiStstedt[ 10] represents the first attempt to compute friction forces 

in an analytical setting, by using quadratic programming to compute 
friction forces based on a simplification of the Coulomb friction 
model. Baraff[3] also proposed analytical methods for dealing with 
friction forces and presents algorithms that deal with dynamic fric- 
tion (also known as sliding friction) and static friction (also known 
as dry friction). The results for dynamic friction were the more 
comprehensive of the two, and the paper readily acknowledges that 
the method lJresented for computing contact forces with static fric- 
tion (a Gauss-Seidel-like iterative procedure) was not very reliable. 
The method also required an approximation for three-dimensional 
systems (but not for planar systems) that resulted in anisotropic 
friction. Finally, the results presented did not fully exploit earlier 
discoveries concerning systems with only dynamic friction, and no 
static friction. 

In this paper, we present a method for computing contact forces 
with both dynamic and static friction that is considerably more 
robust than previous methods. Our method requires no approxima- 
tions for three-dimensional systems, and is much simpler and faster 
than previous methods. We were extremely surprised to find that 
our implementation of the method, applied to frictionless systems, 
was a large improvement compared with the use of large-scale opti- 
mization software packages, both in terms of speed and, especially, 
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simplicity. 1 Previous simulation systems for frictionless contact 
that we know of have used either heuristic solution methods based 
on linear programming[11], quadratic programming algorithms[7], 
or constrained linear least-squares algorithms[6]. In all cases the 
numerical software required is sufficiently complicated that either 
public-domain or commercially available software packages are 
required. The problems with this are: 

• Serious implementations of linear programming codes are 
much less common than serious implementations for solving 
linear systems. Serious implementations for quadratic pro- 
gramming are even rarer. 

• A fair amount of mathematical and coding sophistication is 
required to interface the numerical software package with the 
simulation software. In some cases, the effort required for an 
efficient interface was prohibitively high[ 12]. 

• The packages obtained contained a large number of adjustable 
parameters such as numerical tolerances, iteration limits, etc. 
It is not uncommon for certain contact-force computations to 
fail with one set of parameters, while succeeding with another, 
or for a problem to be solvable using one software package, 
but unsolvable using a different package. In our past work in 
offline motion simulation, reliability has been a vexing, but 
tolerable issue: if a given simulation fails to run, one can 
either alter the initial conditions slightly, hoping to avoid the 
specific configuration which caused the difficulty, or modify 
the software itself prior to rerunning the simulation. This 
approach is clearly not practical in an interactive setting. 

• Along the same lines, it is difficult to isolate numerical prob- 
lems during simulation, because of the complexity of the soft- 
ware packages. Unless great effort is put into understanding 
the internals of the code, the user is faced with a "black box." 
This is desirable for black-box code that is bullet-proof, but a 
serious impediment when the code is not. 

Given these hurdles, it is not surprising that analytical methods 
for systems with contact have not caught on yet. Our recent work 
has taught us that the difficulties encountered are, in a sense, self- 
created. In computing contact forces via numerical optimization, we 
translate a very specific problem (contact-force computation) into a 
much more general problem (numerical optimization). The trans- 
lation loses some of the specific structure of the original problem, 
making the solution task more difficult. The approach we take in 
this paper is to avoid (as much as possible) abstracting our specific 
problem into a more general problem. The result is an algorithm 
that solves a narrower range of problems than general purpose 
optimization software, but is faster, more reliable, and considerably 
easier to implement. 

3. Contact Model 
In this section we will define the structure of the simplest problem 

we deal with: a system of frictionless bodies contacting at n distinct 
points. For each contact point p~ between two bodies, let the scalar 
ai denote the relative acceleration between the bodies normal to the 
contact surface at pi. (We will not consider the question of impact 
in this paper; thus, we assume that the relative normal velocity of 
bodies at each contact is zero.) We adopt the convention that a 
positive acceleration ai indicates that the two bodies are breaking 
contact at Pi. Correspondingly, ai < 0 indicates that the bodies 
are accelerating so as to interpenetrate. An acceleration of ai = 0 
indicates that the bodies have zero normal acceleration at pi and 

1Actually, not being numerical specialists, any working numerical software 
we were capable of creating would have to be simpler. We automatically 
assumed however that such software would be slower than the more com- 
prehensive packages written by experts in the field. 

remain in contact (although the relative tangential acceleration may 
be nonzero). To prevent interpenetration we require ai > 0 for each 
contact point. 

For frictionless systems, the force acting between two bodies at 
a contact point is normal to the contact surface. We denote the 
magnitude of the normal force between the bodies at pi by the scalar 
fi. A positive fi indicates a repulsive force between the bodies at 
Pi, while a negative fi  indicates an attractive force. Since contact 
forces must be repulsive, a necessary condition on fi is fi > O. Also, 
since frictionless contact forces are conservative, we must add the 
condition fiai = 0 for each contact point. This condition requires 
that at least one of f i  and a~ be zero for each contact: either ai = 0 
and contact remains, or ai > 0 ,  contact is broken, and fi is zero. 

We will denote the n-vector collection of ai 's as a; the ith element 
of a is ai. The vector f is the collection of the f / s .  (In general, 
boldface type denotes matrices and vectors; the ith element of a 
vector b is the scalar bi, written in regular type. The symbol 0 
denotes on appropriately sized vector or matrix of zeros.) The 
vectors a and f are linearly related; we can write 

a - - - - A f + b  (1) 

where A C R nx" is symmetric and positive semidefinite (PSD), 
and b C R" is a vector in the column space of A (that is, b = Ax 
for some vector x). The matrix A reflects the masses and contact 
geometries of the bodies, while b reflects the external and inertial 
forces in the system. At any instant of time, A and b are known 
quantities w h i l e f  is the unknown we are interested in solving for. 

The problem of determining contact forces is therefore the prob- 
lem of computing a vector f satisfying the conditions 

ai > O, f i > 0 and f iai = 0 (2) 

for each contact point. We will call equation (2) the normal force 
conditions. Using equation (1), we can phrase the problem of 
determining a suitable f in several forms. First, since fi and ai are 
constrained to be nonnegative, the requirement that f~ai = 0 for 
each i is equivalent to requiring that 

n 

fiai = f r a  = 0 (3) 
i=1  

since no cancellation can occur. Using equation (1), we can say that 
f must satisfy the conditions 

A f + b _ > 0 ,  f > 0  and f r ( A f + b ) : O .  (4) 

Equation (4) defines what is known as a linear complementarity 
problem (LCP). Thus one solution method for computing contact 
forces is to formulate and solve the LCP of equation (4). We 
can also compute contact forces by considering the conditions of 
equation (2) as a quadratic pi'ogram (QP): we can equivalently say 
that a vector f satisfying equation (4) is a solution to the quadratic 
program 

min f r (A f  +b)  subjectto { A f + b _ > 0 }  
s f > 0 • (5) 

Phrasing the computation o f f  as a QP is a natural choice. (The 
problem of solving QP's has received more attention than the prob- 
lem of solving LCP's. Both problems are NP-hard in general but 
can be practically solved when A is PSD.) Having transformed the 
problem of computing contact forces into a QP, we have a variety of 
techniques available for solving the QP. Unfortunately, by moving 

T to an optimization problem--minimizef  ( A f + b ) - - w e  necessarily 
lose sight of the original condition f~a~ ---- 0 for each contact point. 
Because of this, we are solving a more general, and thus harder, 
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problem than we really need to. In developing an algorithm, we 
prefer to regard the relationship between f and a in terms of the 
n separate conditions f i a i  = 0 in equation (2) rather than the 
single constraint f r a  = 0 in equation (4) or the minimization of 
f r a  in equation (5). In the next section, we describe a physically- 
motivated method for solving equation (2), along with a practical 
implementation. Following this, we consider friction in section 5. 

4. Frictionless Systems 
In this section we present a restriction of our algorithm for com- 

puting contact forces with friction to the frictionless case. We also 
sketch a proof of correctness. We extend the algorithm in section 5 
to handle static friction, and dynamic friction in section 6. A de- 
scription of Dantzig's algorithm for solving LCP's, and an excellent 
treatment of LCP's in general can be found in Cottle et al.[5]. 

4.1 Algorithm Outline 
Dantzig's algorithm for solving LCP's is related to pivoting 

methods used to solve linear and quadratic programs. The major 
difference is that all linear and most quadratic programming algo- 
rithms begin by first finding a solution that satisfies the constraints 
of the problem (for us, A f  + b _> 0 and f > 0) and then trying to 
minimize the objective function (for us, f r A f  + f r b ) .  

In contrast, Dantzig's algorithm, as applied to the problem of 
computing contact forces, works as follows. Initially, all contact 
points but the first are ignored, and fi is set to zero for all i. The 
algorithm begins by computing a value for f l  that satisfies the nor- 
mal force conditions---equation (2) - - for  i = 1, without worrying 
about those conditions holding for any other i. Next, the algorithm 
computes a value for f2 that satisfies the normal force conditions for 
i = 2 while maintaining the conditions for i = 1. This may require 
modification of f t .  The algorithm continues in this fashion: at any 
point, the conditions at contact points 1 < i < k - 1 are satisfied 
for some k and fi  = 0 for i > k, and the algorithm determines fk, 
possibly altering some of the f i ' s  for i < k, so that the conditions 
now hold for all i < k. When the conditions hold for all n contact 
points, the algorithm terminates. 

To make this concrete, imagine that we have so far computed 
values f l  through f , - i  so that the normal force conditions hold 
everywhere except possibly at the nth contact point. Suppose that 
with f~ still set to zero we have a,  > 0. If so, we immediately 
have a so lu t ionf  that satisfies the normal conditions at all n contact 
points. 

Suppose however that for f ,  -- 0 we have a,  < 0. Our physical 
intuition tells us that since we currently have f ,  ---- 0, the problem 
is that the nth contact force is not doing its fair share. We must 
increase f ,  until we reach the point that a ,  is zero, and we must 
do so without violating the normal force conditions at any of the 
first n - 1 contact points. Since increasing f ,  may change some 
of the ai's, we will generally need to modify the other f i  variables 
as we increase f , .  Our goal is to seek a strength for f ,  that is just  
sufficient to cause an to be zero. (We emphasize that this is not a 
process which takes place over some time interval to to tl during a 
simulation; rather, we are considering the proper value t h a t f  should 
assume at a specific instant in time.) 

The adjustments we need to make to f~ through f , - I  as we 
increase f ,  are simple to calculate. Since the order in which contacts 
are numbered is arbitrary, let us imagine that for the current values 
of the f i ' s  we have al = a2 . . . .  = ak = 0 for some value 
0 < k < n - 1, and for all k + 1 < i < n - 1, we have ai > O. 
Remember that a~ < 0. To simplify bookkeeping, we will employ 
two disjoint index sets C and NC. At this point in the algorithm, 
let C = {1,2 , . . . ,k} ;  thus, ai = 0 for all i E C. Similarly, let 
NC = {k + 1,k + 2, ...,n - 1}; since ai > 0 for all i C NC, 
and we have assumed that fiai = 0 for i < n - 1, it must be that 

f i  = 0 for all i E NC. Throughout the algorithm, we will attempt to 
maintain ai = 0 whenever i C C. Similarly, we will try to maintain 
fi  = 0 whenever i C NC. When i C C, we say that the ith contact 
point is "clamped," and when i C NC we say the ith contact point 
is "unclamped." (If i is in neither, the ith contact point is currently 
being ignored.) 

For a unit increase of fn (that is, if we increase fn to f ,  + 1) we 
must adjust each f i  by some amount z2xfi. Let A f ,  = 1, and let us 
set A f i  = 0 for all i C NC, since we wish to maintain f i  = 0 for 
i E NC. We wish to choose the remaining A l i ' s  for i E C such that 
Aai = 0 for i E C. The collection A a  of the Aai ' s  is defined by 

A a - - A ( f + A f ) + b - ( A f + b ) = A A f  (6) 

where A f  denotes the collection of the Ali ' s .  
Intuitively, we picture the force fi  at a clamped contact point 

undergoing some variation in order to maintain ai -- 0, while the 
force at an unclamped contact remains zero. Modifications of this 
sort will maintain the invariant that fiai = 0 for all 1 < i < n - 1. 
Since C currently has k elements, computing the unspecified A f / s  
requires solving k linear equations in k unknowns. (In general, C 
will vary in size during the course of the algorithm. At any point 
in the algorithm when we are establishing the conditions at the rth 
contact, C will contain r - 1 or fewer elements.) 

However, we also need to maintain the conditions f i  > 0 and 
ai > O. Thus, as we increase f , ,  we may find that for some i C C, 
fi has decreased to zero. At this point, it may be necessary to 
unclamp this contact by removing i from C and adding it to NC, 
so that we do not cause f i  to decrease any further. Conversely, we 
may find that for some i 6 NC, ai has decreased to a value of zero. 
In this case, we will wish to clamp the contact by moving i from 
NC into C, preventing ai from decreasing any further and becoming 
negative. The process of moving the various indices between C and 
NC is exactly the numerical process known as pivoting. Given that 
we start with suitable values for f l  through f , - l ,  computing f ,  is 
straightforward. We set A f ,  = 1 and ~xf i  = 0 for i E NC, and 
solve for the Af i ' s  for i E C so that z~xai = 0 for all i E C. Next, 
we choose the smallest scalar s > 0 such that increasing f by sz~f 
causes either a ,  to reach zero, or some index i to move between C 
and NC. If a,  has reached zero, we are done; otherwise, we change 
the index sets C and NC, and loop back to continue increasing f , .  

We now describe the process of computing A f  along with the 
step size s. After this, we present the complete algorithm and discuss 
its properties. 

4.2 The Pivot Step 
The relation between the vectors a a n d f  is given by a = A. f+  b. 

Let us continue with our example in which C = { 1,2, . . . ,  k} and 
NC = {k + 1, k + 2, ..., n - 1 }. We need to compute A f  and then 
determine how large a multiple of A f  we can add to f .  Currently, 
we have an < 0. Let us partition A and A f  by writing 

A =  A~2 A22 v2 and A f =  0 (7) 
1 

where All and A22 are square symmetric matrices, vi E R k, 
v2 C R ("- l ) -k ,  a is a scalar, and x E R k is what we will need 
to compute. The linear system A a  = A A f  has the form (x) 

A a  = A A f  = A 0 = A~2x + v2 . (8) 
1 vtrx + c~ 

Since the first k components of A a  need to be zero, we require 
A11x + Vl = 0; equivalently, we must solve 

AllX = --Vl. 
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After solving equation (9), we compute A a  ---- A A f ,  and are 
ready to find the maximum step size parameter s we can scale A f  
by. For each i C C, if A f i  < 0, then the force at the ith contact point 
is decreasing. The maximum step s we can take without forcing fi  
negative is 

f i  (1 O) 
S < --Af i"  

Similarly, for each i E NC, if zXai < 0 then the acceleration ai is 
decreasing; the maximum step is limited by 

s <  a_._j__ (11) 
-- --Aai" 

Since we do not wish a.  to exceed zero, if A a .  > 0, the maximum 
step is limited by 

s < -a_~. (12) 
- -  A a n  ' 

Once we determine s, we increase f by s A f ,  which causes a to 
increase by A ( s A f )  = sAa.  If this causes a change in the index sets 
C and NC, we make the required change and continue to increase 
f . .  Otherwise, a. has achieved zero. 

4.3 A Pseudo-code Implementation 
The entire algorithm is described below in pseudo-code. The 

main loop of the algorithm is simply: 

function compute-forces 
f = 0  
a = b  
C = N C =  0 
while 3d such that ad < 0 

drive-to-zero(d) 

The function drive-to-zero increases fd until ad is zero. The 
direction of change for the force, A f ,  is computed by fdirection. 
The function maxstep determines the maximum step size s, and the 
constraint j responsible for limiting s. I f j  is in C or NC, j is moved 
from one to the other; otherwise,j  = d, meaning ae has been driven 
to zero, and drive-to-zero returns: 

function drive-to-zero(d) 
Ll: 

A f = fdirection ( d) 
A a  = A A f  
(s, j)  = maxstep(f, a, A f ,  Aa ,  d) 
f = f + s A f  
a = a + sAa 
i f j  E C 

C - - - - C - { j }  
NC = NCU { j }  
goto L1 

else i f j  C NC 
NC ---- NC - { j  } 
C = C U { j }  
goto Li 

else j must be d, implying aa : 0 
C = C U { j }  
return 

The function fdirection computes A f .  We write Acc to denote 
the submatrix of A obtained by deleting the j th  row and column of 
A for all j ~ C. Similarly, Acd denotes the dth column of A with 
e lement j  deleted for a l l j  9~ C. The vector x represents the change 
in contact force magnitudes at the clamped contacts. The transfer 
of x into A f  is the reverse of the process by which elements are 
removed from the dth column of A to form Acd. (That is, for all 

i C C, we assign to Af i  the element of x corresponding to the ith 
contact.) 

funetion fdirection( d) 
A f  = 0 set all A f i  to zero 
A f d :  1 
let Air : Acc 
let Vl = Acd 
solve A n x  : -V l  
transfer x into A f  
return A f  

Last, the function maxstep returns a pair (s,j) with s the maxi- 
mum step size that can be taken in the direction A f  a n d j  the index 
of the contact point limiting the step size s: 

function maxstep(f, a, A f ,  Aa ,  d) 
s = o o  
j = - I  
i f  A a d  > 0 

j : d  
S = --ad/Aad 

f o r /  C C 
if A f i  < 0 

s' = - f i / A f i  
i fs '  < s 

S : S  t 

j = i  
for i C NC 

if  ~ a i  < 0 
S t = --ai /Aai  
i f  s' < s 

S : S  t 

j = i  
return ( s , j)  

It is clear that if the algorithm terminates, the so lu t ionf  will yield 
ai > 0 for all i. Since each fl  is initially zero and is prevented from 
decreasing below zero by maxstep, at termination fi  > 0 for all i. 
Last, at termination, f iai  = 0 for all i since either i E C and al = O, 
or/¢~ C and f i = O. 

The only step of the algorithm requiring substantial coding is 
fdirection, which requires forming and solving a square linear sys- 
tem. Remarkably, even if A is singular (and A is often extremely 
rank-deficient in our simulations), the submatrices All encountered 
in the frictionless case are never singular. This is a consequence of 
b being in the column space of A. 

4.4 Termination of  the Algorithm 
We will quickly sketch why the algorithm we have described 

must always terminate, with details supplied in appendix A. Exam- 
ining the algorithm, the two critical steps are solving AllX = -V l  
and computing the step size s. First off, could the algorithm fail 
because it could not compute x? Since A is symmetric PSD, if A 
is nonsingular then All is nonsingular and x exists. Even if A is 
singular, the submatrices AlL considered by the algorithm are never 
singular, as long as b lies in the column space of A. x As a result, 
the system AllX : -Vl  can always be solved. This is however a 
theoretical result. In actual practice, when A is singular it is possible 

2A complete proof of this is somewhat involved. The central idea is that if 
thejth contact point has not yet been considered and represents a "redundant 
constraint" (that is, adding j into C makes Air singular) then aj will not be 
negative, so there will be no need to call drive-to-zero on j. Similarly, if 
j G NC and moving j to C would make All singular, it will not be the case 
that aj tries to decrease below zero, requiringj to be placed in C. Essentially, 
the nonzero fi's will do the work of keeping aj from becoming negative, 
without fj having to become positive, allowing j to remain outside of C. 
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that roundoff errors in the algorithm may cause an index j  to enter 
C so that the resulting matrix A11 is singular. This is a very rare 
occurrence, but even so, it does not present a practical problem. 
Appendix A establishes that the vector Vl is always in the column 
space of the submatrix All arising from any index set C. Thus, even 
if At1 is singular, the equation All x = - v l  is well-conditioned, and 
is easily solved by standard factorization methods)  In essence, we 
assert that "All is never singular, and even if it is, AHx = - v l  is 
still easily solved." 

Since it is always possible to solve A~lX = - v l  and obtain 
A f ,  the real question of termination must depend on each call to 
drive-to-zero being able to force ad to zero. To avoid being bogged 
down in details, let us assume that A is nonsingular, with specific 
proofs deferred to appendix A; additionally, appendix A discusses 
the necessary extensions to cover the case when A is singular. 
Although the singular versus the nonsingular cases require slightly 
different proofs, we emphasize that the algorithm itself remains 
unchanged; that is, the algorithm we have just described works for 
both positive definite and positive semidefinite A. 

The most important question to consider is whether increasing f 
by an amount s A f  actually increases ad. Given a change s A f  in f ,  
from equation (8) the increase in ad is 

s(vlrx -F c~) : sAad. (13) 

Theorem 2 shows that if A is positive definite, VlrX + c~ is always 
positive. Thus, ad will increase as long as s is always positive. Since 
Vl r + ~ = Aad > 0, this shows that maxstep never returns with 
s---- ~ and j---- - 1 .  

Can the algorithm take steps of size zero? In order for maxstep 
to return s = 0, it would have to the case that either fi = 0 and 
A f i  < 0 for some i C C or ai : 0 and z~xai < 0 for some 
i E NC. Theorems 4 and 5 shows that this cannot happen. Thus, s 
is always positive. Therefore, the only way for ad to not reach zero 
is if drive-to-zero takes an infinite number of steps s A f  that result 
in in ad converging to some limit less than or equal to zero. This 
possibility is also ruled out, since theorem 3 in appendix A shows 
that the set C of clamped contact points is never repeated during a 
given call to drive-to-zero. Thus, drive-to-zero can iterate only a 
finite number of times before ad reaches zero. 

4.5 Implementation Details 
The algorithm just described is very simple to implement and 

requires relatively little code. The most complicated part involves 
forming and solving the linear system Al lx  = -Vl .  This involves 
some straightforward bookkeeping of the indices in C and NC to 
correctly form A11 and then distribute the components of x into A f .  
It is important to note that each call to fdirection will involve an 
index set C that differs from the previous index set C by only a 
single element. This means that each linear system Attx -- - v t  
will differ from the previous system only by a single row and 
column. Although each such system can be solved independently 
(for example, using Cholesky decomposition), for large problems it 
is more efficient to use an incremental approach. 

In keeping with our assertion that nonspecialists can easily im- 
plement the algorithm we describe, we note that our initial imple- 
mentation simply used Gaussian elimination, which we found to 
be completely satisfactory. (Anticipating the developments of the 
next section when Atx is nonsymmetrical, we did not bother to 
use a Cholesky factorization, although this would have performed 
significantly faster.) 

Gill et al. [9] describe a package called LUSOL that incrementally 
factors a sparse matrix A into the form A = LU where L is lower 

3Since An is both symmetric and PSD, All will still have a Cholesky 
factofization All = LL T, although L is singular. Since L can be simply 
and reliably computed, this is one possible way of solving for x. 

triangular and U is upper triangle. Given such a factorization, if A 
has dimension n and a new row and column are added to A, or a row 
and column are eliminated from A, a factorization of the new matrix 
can be recomputed quickly. Unfortunately, the coding effort for 
LUSOL is large. One of the authors of the LUSOL package was kind 
enough to provide us with a modified version of the software[13] 
that treats A as a dense matrix and computes a factorization LA = U 
(where L is no longer triangular). In the dense case, an updated fac- 
torization is obtained in O(n 2) time when A is altered. The modified 
version contains a reasonably small amount of code. For a serious 
implementation we highly recommend the use of an incremental 
factorization routine. 

In addition, it is trivial to make the algorithm handle standard 
bilateral constraints. For a bilateral constraint, we introduce a pair 
fi and ai, and we constrain ai to always be zero while letting fi be 
either positive or negative. Given k such constraints, we initially 
solve a square linear system of size k to compute compute initial 
values for all the bilateral fi's so that all the corresponding a~'s are 
zero. Each such i is placed into C at the beginning of the algorithm. 
In maxstep, we ignore each index i that is a bilateral constraint, since 
we do not care if that fg becomes negative. As a result, the bilateral 
i's always stay in C and the bilateral ai's are always zero. Exactly 
the same modification can be made in the algorithm presented in the 
next section. 

5. Static Friction 
The algorithm of the previous section can be considered a con- 

structive proof that there exists a solution f satisfying the normal 
force conditions for any frictionless system. The algorithm pre- 
sented in this section grew out of an attempt to prove the conjecture 
that all systems with static friction, but no dynamic friction, also 
possess solutions. (The conjecture is false for systems with dynamic 
friction.) The conjecture currently remains unproven. We cannot 
prove that the algorithm we present for computing static friction 
forces will always terminate; if we could, that in itself would con- 
stitute a proof of the conjecture. On the other hand, we have not yet 
seen the algorithm fail, so that the algorithm is at least practical (for 
the range of simulations we have attempted so far). 

Let us consider the situation when there is friction at a contact 
point, The friction force at a point acts tangential to the contact 
surface. We will denote the magnitude of the friction force at the 
ith contact by fFi, and the magnitude of the relative acceleration in 
the tangent plane as aFi. We will also denote the magnitude of the 
normal force as fNi, rather than fi,  and the magnitude of the normal 
acceleration as aNi rather than ai. To specify the tangential acceler- 
ation and friction force completely in a three-dimensional system, 
we would also need to specify the direction of the acceleration and 
friction force in the tangent plane. For simplicity, we will begin by 
dealing with two-dimensional systems. At each contact point, let ti 
be a unit vector tangent to the contact surface; ti is unique except for 
a choice of sign. In a two dimensional system, we will treat fFi and 
aFi as signed quantities. A friction force magnitude of fF  i denotes 
a friction force of fFiti, and an acceleration magnitude ar~ denotes 
an acceleration of aFiti. Thus, if aFi and fF  i have the same sign, 
then the friction force and tangential acceleration point in the same 
direction. 

Static friction occurs when the relative tangential velocity at a 
contact point is zero; otherwise, the friction is called dynamic fric- 
tion. In this section, we will consider only static friction. Any con- 
figuration of objects that is initially at rest will have static friction, 
but no dynamic friction. Additionally, a "first-order" (or quasistatic) 
simulation world where force and velocity are related by f = mv 
also has static friction but never any dynamic friction 
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5.1 Static Friction Conditions 
At a contact point with static friction, the magnitude VFg of the 

relative tangential velocity is zero. If  the effect of all the forces in 
the system produces ari = 0, meaning that the condition vFi = 0 is 
being maintained, then fei need satisfy only 

-- #fNi <_ fFi _< #fNi  (14) 

where the scalar # denotes the coefficient of friction at the contact 
point. (We will not bother to index # over the contact points, 
although this is easily done.) If  the tangential acceleration is not 
zero, then the conditions on ffei are more demanding: [fFi[ must be 
equal to #fNi and f t i  must have sign opposite that of ari. 

Following the pattem of section 4, we write that fNi, aN~, fFi and 
aFi must satisfy the normal force conditions 

fNi ~ O, aNi >_ 0 and fNiaNi ---- 0, (15) 

as well as 

IlEal ~ ~fNi, aFifei _< 0 and avi(#fNi -- IlEal) = 0. (16) 

The condition aF~(#fNi -- IfF, I) = 0 forces fFi to have magnitude 
# f Ni if aFi is nonzero. The condition aFif  F i _< 0 forces aFi and f Fi tO 
have opposite sign, which means that the friction force opposes the 
tangential acceleration. We will call the conditions of equation (16) 
the static friction conditions; unless specifically noted, a contact 
point said to satisfy the static friction conditions implies satisfaction 
of the normal force conditions as well. 

The approach taken by previous attempts[10,3] at modeling static 
friction has been to form an optimization problem. If  we define the 
quantity scalar z by 

z = E ( l a r i [ ( # f N i  - ISFA) + fNiaNi) ( 1 7 )  

i 

then the problem becomes 

m i n z  subjectto { fN i - ->O}  and { aeifFi-<O } 
f~',,fei aNi > 0 ISF, I _< l , tfNi " 

Computing contact forces in this manner does not appear to be 
practical. 

5.2 Algorithm Outline 
We believe it is better to deal with the problem as we did in 

the frictionless case: as a number of separate conditions. Let us 
consider the static friction condition with that perspective. We can 
state the conditions on a l l  and fFi by considering that the "goal" of 
the friction force is to keep the tangential acceleration as small as 
possible, under the restriction I fEll < ~ fN  i. Accordingly, whenever 
aFg is nonzero we insist that the friction force do its utmost to 
"make" aF~ be zero by requiring that the friction force push as hard 
as possible opposite the tangential acceleration. The reason that 
we find this a useful characterization is that it is essentially the 
same characterization we employed in section 4 to motivate the 
development of Dantzig's algorithm. 

In section 4.1, we assumed that the normal force conditions were 
initially met for contacts 1 through n - 1 and began with fg .  = 0. 
If this resulted in a s .  being nonnegative, then we immediately had 
a solution. Otherwise, it was in a sense fN.'S "fault" that a s .  was 
negative, and we increased fN. to remedy the situation. We can do 
exactly the same thing to compute static friction forces! Suppose 
that the first n -  1 contacts of our system satisfy all the conditions for 
static friction and that the normal force condition holds for the nth 
contact point. We s e t  fFn = 0 and consider aN.. If n E NC, or n C C 
but fN. = 0, then the static force condition is trivially met since 
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]fe.] = 0 = #fN.. If not, but it happens that ag. = 0, again, we 
have satisfied the static friction conditions, since IfF. I = 0 < #fN.. 
Otherwise, aF. is nonzero and following our characterization of 
static friction we must increase the magnitude of the friction force 
to oppose the tangential acceleration as much as possible. 

The procedure to do this is essentially the same as in the friction- 
less case. Without loss of generality, assume that at the nth contact 
point aF. < 0. We will gradually increase f t .  while maintaining the 
static friction and normal conditions at all the other n - 1 contact 
points and the normal condition at the nth contact point. As we 
increase rE., at some point, one of two things must happen: either 
we will reach a point where fF.  = /ZfN., or we will reach a point 
where ae. = 0. In either case, the static friction conditions will then 
be met. 

5.3 Maintaining the Static Friction Conditions 
Once we have established the static friction conditions at a con- 

tact point, we need to maintain them. As before, we maintain the 
conditions fsl  _> O, aNi > 0 and fNiaNi -~" 0 using the index sets 
C and NC, To maintain the conditions on the ffFi and aFi variables, 
we introduce the sets CF, N C -  and NC +. The set Cr is analogous 
to C; whenever i C CF, we manipulate fel to maintain aFi -~ O. 
(We can have i E Ce and i C C. The fact that i C Cr means we 
are maintaining aFi = 0, while the fact that i E C means we are 
maintaining asi  = 0.) In contrast to CF, if i C NC +, then we have 
aFi ( 0 and f F i ---- # f N i. As long as i E NC +, we vary f F i SO that it 
is always equal to #fNr  If aF~ becomes zero, we move i from NC + 
into CF. Thus, NC + denotes the set of contacts that have fFi positive 
and at the upper bound of # fNr  Conversely, if i C N C - ,  then we 
have aFi > 0 and f F  i = - - ~ f N  i. Again, as long as i E NC-  we 
will maintain the condition fFi = --#fNg, and move i into Cr if aNi 
becomes zero. Whenever  we are increasing some fsd or increasing 
or decreasing some fed, computing the corresponding changes in 
the other fri and fNi variables, along with the maximum possible 
step size, is exactly the same as in the previous section. 

In the frictionless case, when we managed to drive aNd to zero, 
we added d into C. For static friction, if the driving process stops 
because aFd has reached zero, we insert d into Cr. Otherwise, 
the process stopped because IfFdl = #fgd and we add d into 
N C -  or NC + as appropriate. Before we present our algorithm for 
computing static friction forces iu two dimensions, we discuss why 
the algorithm we present is not guaranteed to terminate. 

5.4 Algorithm Correctness 
In section 4, we showed that as we increased fd, the acceleration 

ad always increased in response, guaranteeing that a sufficiently 
large increase of fd would achieve ad = 0. We also showed 
that the index set C would never repeat while forcing a particular 
ad to zero, guaranteeing we would not converge to some negative 
value. Finally, we showed that steps of size zero would not occur, 
guaranteeing that we would always make progress towards ad = O. 
For static friction, we can show all these properties except for the 
last. 

First, let us show that if we start with aFd ~ 0 ,  a s  we increase 
fFd, either we will reach a point where frd = #fNd, or we will reach 
a point where aFd = 0. This is not obvious. Since fsd is nonzero 
(otherwise fFd = 0 would satisfy the static friction conditions), we 
must have d E C. This means that as we increase frd, we may also 
be requiring that fNd change as well. If #fNd increases faster than 
fed does, then fed will never reach a value of #fNd. 

Similarly, it is not necessarily the case that increasing fFd will 
cause aFd to increase. The reason for this is the following: the 
relation between the acceleration variables and force variables is 
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still linear, and we can write 

I aNl I aFl 
a :  

aNn 
aFn 

= A  

fel 

fN. 
fen 

+ b = A f + b  (18) 

where A E R 2"xz" and b E R 2" a n d f  and a are the collection of the 
f and a variables• As long as we have no dynamic friction, it is still 
the case that A is symmetric and PSD. For a unit increase in fed, we 
solve for Afgi  and Afe i  exactly as we did in section 4. That is, for 
i E C, we require ~aNi : 0 ,  and for all other i, we have AfNi = O. 
For the friction forces, almost the same holds: for i E CF we require 
AaFi = 0. However, for i E NC- ,  instead of setting AfFi = O, 
we require ~XfF i = --#AfNi, to maintain fFi : --#fNi. Similarly, 
for i E NC + we require AfFi = #AfNi to maintain fFi = #fNi. 
The side conditions AfFi = ±#AfNi  prevent us from applying 
theorem 2 as we did in section 4 and claiming that aFd increases as 
fFd increases. In fact, in some situations, increasing fed will cause 
aed to decrease. The same holds for fNd as well; prior to working 
on fed we may find that increasing fNa to establish the normal force 
conditions may cause causes and to decrease. 

Is it possible then that we can drive some fFd or fNd infinitely far 
without reaching a stopping point? Fortunately, it is not. Theorem 3 
of appendix A states that for frictionless systems, as we increase 
fN~ the index set C never repeats. Exactly the same theorem is 
trivially extended to cover static friction. Thus, we will never 
encounter exactly the same sets C, NC, CF, NC-  and NC + while 
driving a given fN, or fF, variable. We can use this to show that 
increasing fud will eventually cause and to increase. Exactly the 
same argument shows that increasing fFd eventually causes aed to 
increase. 

THEOREM 1 In a problem with static friction only, if  aNd < 0 and 
f Nd = 0 hold initially, a large enough increase in f Nd will eventually 
force and to increase. 

PROOF. Suppose that we could arbitrarily increase fNd without 
causing aNd to increase. Since A is positive definite, in light of 
theorem 2 this can only happen if one or more of the side conditions 
AfFi = ~IZAfNi hold, implying that NC- U NC + ~ 0. Since the 
index sets C, NC, CF, NC-  and NC + never repeat, there are only 
finitely many combinations of those sets that can be encountered 
while increasing fNd. That means that we can only undergo finitely 
many changes of the sets while increasing fNd. Eventually, we settle 
into a state where we can increase fNd without aNd increasing and 
without any change occurring in the index sets. 

However, this cannot be, because of the definition of the index 
sets. For i E C, to avoid a change in index sets, we must have 
AfNi > 0; otherwise, a sufficiently large step will move i into NC. 
The same logic requires that for i C NC we must have ~XaNi > 0,  

otherwise aNi will fall to zero. This yields ~fNiZ~aNi : 0 for all i. 
For the friction forces, if i E CF, then z~xaFi : 0 SO z~XaFi~fFi = O. 
F o r i  E NC +, we haveaFi < 0, requiringAaFi < Otoavoid 
having to move i from NC + to CF. Since Z~fN i ~ 0 for all i and 
AfFi = tzAfNi, we have Z~fF i > O. This yields ~xaFiZ~fF i < 0 for 
all i E NC +. A symmetric argument holds, yielding z~XaFi~X f Fi ~ 0 
for all i ~ NC-.  

Additionally, for at least one i in NC- or NC +, both AaFi and 
AfF~ are nonzero; otherwise, we could remove each side condition 
~fFi : ±#~XfNi and add the conditions AfF i : 0 and z~xaFi = 0 
without altering any other AfNi or AfFi. If we did so however, 
we would then be entitled to apply theorem 2, contradicting our 
assumption that and is nonincreasing. Thus, for at least one i we 

have •aFiAfFi strictly less than zero. Combining that with the fact 
that AaNiAfNi < 0 and AaFiAfFi < 0 for all i we obtain 

± n 
~xaNiz~xfNi "-[- ~ z~XaFiz~XfFi : A a r A f  < 0 .  ( 1 9 )  

i i 

Since Aa  -- A~xf, this gives us 

A a r A f  = A f r A A f  < 0. (20) 

Since A f  is nonzero and A is PSD, this is a contradiction (even i f A  
is singular). Thus, fNd cannot be increased without bound without 
eventually causing aNd to increase. D 

However, there is still the possibility of taking steps of size zero, 
and this is something that can and does occur when running the 
algorithm. Theorems 4 and 5 may fail to hold because of the side 
conditions AfF i : ±#AfNi .  The following scenario is possible: 
for some i E C, fN i decreases to zero. Accordingly, i is moved from 
C to NC. Upon computing A f  with the new index set, we may 
find that AaNi < 0 (which is ruled out in the frictionless case by 
theorem 4). As a result, a step of size zero is taken, and i is moved 
back into C. Clearly, the algorithm settles into a loop, alternately 
moving i between C and NC by taking a step of size zero each 
time. We cannot rule this behavior out in our algorithm for static 
friction• (This is also our current sticking point in trying to prove the 
conjecture that all systems with only static friction have solutions.) 
Fortunately, we have found a practical remedy for the problem. 

While attempting to establish the normal force or static friction 
conditions at some point k, if we observe that a variable i is al- 
ternating between C and NC (or between NC- and Cr or NC + 
and CF), we remove i from both C and NC (or from CF and NC- 
or NC+). Temporarily, we will "give up" trying to maintain the 
normal or static friction conditions at the ith contact point. We do 
so at the expense of making "negative progress," in the sense that 
although we will have achieved our immediate goal (establishing 
normal or friction conditions at a particular contact point), we will 
have done so by sacrificing normal and/or static friction conditions 
previously achieved at other contacts. The algorithm will be forced 
to reestablish the conditions at the points we have given up on at 
some later time. Since contact points no long necessarily keep 
their static friction or normal force conditions once established, we 
cannot prove (as yet) that this process will ever terminate. 

We have however used this algorithm on a large variety of 
problems, and we have never yet encountered any situation for 
which our algorithm went into an infinite loop. We speculate that 
either no such situation is possible, meaning that all systems with 
static friction have solutions, or it requires an extremely carefully 
constructed problem to cause our algorithm to loop (although the 
latter possibility does not necessarily imply that there is in fact no 
solution f) .  A third possibility of course is that we simply have not 
sufficiently exercised our simulation system. 

5.5 Algorithm for Computing Static Friction Forces 
We now describe the necessary modifications to Dantzig's algo- 

rithm to handle static friction forces. The modifications increase the 
complexity of the "logical" portion of the algorithm, but the heart 
of the numerical code, computing A f ,  remains the same. We give a 
description of the necessary modifications of each procedure of the 
algorithm. 

Modifications to compute-frictionless-forces 

The sets C, NC, CF, NC +, and NC- are all initially empty. The 
main loop continually scans for a contact point at which the normal 
or static friction conditions are not met. If no such points exist, the 
algorithm terminates, otherwise, drive-to-zero is called to establish 
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the conditions. Note that one must first establish the normal force 
conditions at a given point before establishing the static friction 
conditions there. In the event that the algorithm gives up on a 
contact point i which has the normal conditions established, it will 
do so because fNi is oscillating between C and NC. At this point 
fN~ = 0, and the normal conditions can be reestablished later. 

If however we give up on the static friction conditions at the ith 
contact point, fF i may be nonzero. (We cannot discontinuously 
set ffr~ to zero as this might break the conditions at all the other 
contact points.) Later, when the algorithm attempts to reestablish 
the static friction conditions at i, we first drive fF i to zero (simply bY 
instructing drive-to-zero to increase or decrease f F i until f ri = 0). 

Modifications to drive-to-zero 

This function is the same, except that there are more ways for 
the index sets to change. If the limiting constraint j returned by 
maxstep is the index of the force being driven, j is moved into C if 
it represents a normal force, and otherwise into CF, N C - ,  or NC + 
as appropriate; the procedure then returns. Otherwise, j is moved 
between C and NC if it represents a normal force, and otherwise 
between CF and N C -  or NC + as appropriate. I f j  attempts to move 
into a set it just came from, and the previous step size was zero, 
j is removed from whatever index set it was in. This is the point 
at which the algorithm temporarily gives up on maintaining the 
conditions at the jth contact point. 

Modifications to fdirection 

The modifications are minor. First, if we are driving a normal force, 
we set AfNd = 1, otherwise we set AfFd = =El, depending which 
way we want to drive the force. The index sets establish the set 
of equations to solve: for i E NC, we set ~xfNi = 0; for i E C 
we require AaNi : 0; for i E CF we require ~xaFi = 0; and for 
i E NC + U N C -  we require AfFi  : ± A f N r  

Modifications to maxstep 

The modifications here are obvious. For each memberj  in an index 
set, we compute the minimum step size s that causes j to need to 
change to another set. For the driving index d, we compute the step 
size that causes us to reach aNa = 0 for a normal force, and aFd = 0 
or fFd ---- d=#fNd for a friction force. The minimum step s that can 
be taken, along with the constraint j responsible for that limit, is 
returned. 

5.6 Three-dimensional Systems 
We have been assuming that our system is two-dimensional. The 

extension to three dimensions is straightforward.At each contact 
point, let us denote vectors u E R 3 tangent to the contact surface as 
pairs (x, y) by choosing a local coordinate system such that (1,0) 
and (0, 1) denote an orthornormal pair of tangent vectors. Let 
(axi, ayi) and (fxi, fyi) denote the relative tangential acceleration 
and friction force, respectively, at the ith contact point. In three 
dimensions, the Coulomb friction law requires that the friction force 
be at least partially opposed to the tangential acceleration; that 
is, 

(fxi, fYi) " (ax,, ayi) = fxiaxi q- fyiayi ~ O. (21) 

The optimization approach taken in previous work[10,3] makes 
enforc ing  I f F i [ ~ # f N i difficult, because 

[SFil ~- (fx~ -~- Sy~) ½ ~ #SNi (22) 

is a nonlinear constraint. However, this constraint is easily dealt 
with by our algorithm. In place of the two sets N C -  and NC +, 
for three-dimensional systems, we use a single set NCF. In two 

dimensions, given AfNi and AfFi,  determining the step size s so 
that fFi + SAfFi = #(fNi + SAfNi) is trivial. In three dimensions, 
computing s > 0 so that 

(fxi + S~fx i )  2 + (fYi + S~fy i )  2 = (~(fNi + S~fNi ) )  2 (23)  

is also trivial. As a result, it is easy to augment maxstep to move i 
into NCF when f.~ + fy~ ..~ (#fNi) 2 and also easy to detect when 
to move i back into CF. When i moves into NCF, we record the 
direction that the friction force is pointing in. As long as i remains 
in NCe, we require the friction force (fxi, .~'i) to maintain the same 
direction it had when i most recently entered NCr. Once i moves 
back into Cr, the pair (fxi, ff~'i) may point in any direction. 

To initially establish the static friction conditions for fxi and fyi, 
we first increase fxi (assuming axi < 0) until either i moves into 
NCF, or axi reaches zero. If i is in NCF, we are done, otherwise, we 
now adjust fyi so that either ay i reaches zero, or i moves into NCe. 
Reversing the order with which one considers x and y, or rotating 
the local coordinate system in the tangent plane may give rise to 
different solutions o f f  with this method. This is a consequence of 
the condition of equation (21), which does not completely specify 
the direction of friction when the tangential acceleration is nonzero 
at a contact point. 

6. Dynamic Friction 
If the relative tangential velocity at a contact point is nonzero, 

then dynamic friction occurs, as opposed to static friction. Re- 
gardless of the resulting tangential acceleration, the strength of the 
friction force satisfies 

IfF, I = #fNi, (24) 

with the direction of the force exactly opposite the relative tan- 
gential velocity. Since fFi is no longer an independent variable, 
when we formulate equation (18), we can replace all occurences 
of fF i with ± # f N  i. This replacement results in a matrix A which 
is unsymmetric and possibly indefinite as well. Because of this, 
systems with dynamic friction can fail to have solutions for the 
contact force magnitudes, requiring the application of an impulsive 
force. Another consequence of A losing symmetry and definiteness 
is that all the theorems in this paper which require A to be symmetric 
and PSD fail to hold. Remarkably, this turns out to be a fortunate 
development. 

Previously, Baraff[3] presented an algorithm for computing fric- 
tion forces and impulses for systems with dynamic friction but no 
static friction; the intent was to treat the problem of nonexistence 
of a solution f .  Baraff's method for computing either regular or 
impulsive forces for systems with dynamic friction involved using 
Lemke's algorithm[5] for solving LCP's. It is noted that Lemke's 
algorithm can terminate by encountering an "unbounded ray." The 
algorithm we have just presented for static friction requires abso- 
lutely no modifications to handle dynamic friction in this manner. 
An unbounded ray corresponds to finding a state in which one can 
drive a variable fNi or  fF i tO infinity without forcing aNi or aFi to 
zero, or inducing a change in the index sets C, NC, CF, NC + orNC- .  
When this occurs, it is easily detected, in that maxstep returns a step 
size of s = ~ .  Note that theorem 2 tells us that an infinite step 
cannot occur if A is symmetric and PSD. which means that infinite 
steps are possible only if there is dynamic friction in the system. 
Either our algorithm finds a solution f ,  or at some point s = c~, 
and the current force direction A f  matches the definition proposed 
by Baraff for suitably applying impulsive forces to systems with 
dynamic friction. As a result, we can unify our treatment of both 
dynamic and static friction in a single algorithm. We note in closing 
that we' feel that this is mostly a theoretical, and not a practical 
concern, because we have encountered this infinite driving mostly 
in situations where # has been made unrealistically large. 
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7. Results 
Our method for computing contact and friction forces is both 

reliable and fast. Like most pivoting algorithms (for example, the 
simplex algorithm for linear programming), worst-case problems 
resulting in exponential running times can be constructed. Empiri- 
cally however, the algorithm appears to require about O(n) calls to 
drive-to-zero for systems with and without friction. Our real interest 
however is the performance of the algorithm in actual practice. 

We have implemented the two-dimensional algorithm for static 
friction in an interactive setting and the three-dimensional algorithm 
in an offline simulation system. For frictionless systems, our so- 
lution algorithm compares favorably to Gaussian elimination with 
partial pivoting. Given a matrix A and vector b, the algorithm of 
section 4 takes only two to three times longer to compute the contact 
forces than it would take to solve the linear system Ax = b, using 
Gaussian elimination. Compared with the best QP methods we 
know of, our algorithm runs five to ten times faster, on problems up 
to size n = 150. For systems with friction, there is no comparable 
solution algorithm we can compare our algorithm to. 

Interactive simulations of 2½D mechanisms are shown in fig- 
ures 1 and 2. Fixed objects are colored in black. Objects in different 
"levels" are different colors (orange, purple, and green) and have 
no collision interaction. White circles indicate a bilateral point- 
to-point constraint. In figure 2, the green circles indicate contact 
points. Both systems can be simulated robustly at a consistent 
framerate of 20-30Hz on an SGI R4400 workstation. 
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Appendix A: Theorems 
In this appendix, we prove some theorems necessary to show that 

the algorithm for frictionless contact forces in section 4 terminates. 
For simplicity, we consider only the case when A is nonsingular and 
sketch the modifications necessary if A is singular. 

THEOREM 2 Let the symmetric positive definite matrix A be par- 
titioned as in equation (7). I f  x satisfies ANx = - v t ,  then the 
quantity VlrX + a is always positive. 

PROOF. Principal submatrices of A are positive definite, so a > 0, 
An is positive definite and the submatfix 

v~ r c~ 

is positive definite. Applying a Cholesky factorization, we can 
write 

( All Vl ) ( L I ,  0 ) ( LiTi Li2 ) (25) 
V T Ol = LIT2 LZ2 0 L22 

where LH and Li2 have the same dimensions as All and vl respec- 
tively, and L22 is a positive scalar. Note that since All = LHLirl 
is invertible, LH is also invertible and A~ l = L~rL~  1. From 
equation (25), we have vl = LHL12. Since A u x  = - v l ,  we also 
have x = --A~llVl. Then 

VITX -}- O~ = O~ -- vlTA~ilvI 
= c z -  (L~2Lir,)A~I(Lt1Li2) 

T T --T --I 
= o~- -L izLl lL  n Ltl LllLl2 

= 0~-- Llr2Li2. 

From equation (25) we have a = LiT2Li2 + L~2; thus 

v~x + c~ = c~ - L~2L,2 = L.~2. (26) 

Since L22 is positive, v~x + c~ is positive. [] 
Almost the same result applies when A is not inverlible. In this 

case, Al~ may be singular; note however that a Cholesky factoriza- 
tion can still be obtained although LII may now be singular. Since it 
is still the case that All = LHL~1, and L n  and LHLirj have exactly 
the same column space, the fact that vj = LllLj2 implies that vl is 
in the column space of AH. Thus, the equation AHx = --vl will 
always have a solution. Using basic continuity principles 4 it can be 
shown that in the singular case, v~x + a > 0. 

THEOREM 3 During a given call to drive-to-zero, the same index 
set C is never repeated. 

PROOF. Suppose some index set C was repeated during a call to 
drive-to-zero. Since CUNC remains constant during a given invoca- 
tion of drive-to-zero (except at the last step, where the driving index 
d is added to C), whenever C is repeated, NC is repeated as well. 
Let the values o f f  the first time and second time C is encountered 
be denoted f(1) and f(2) respectively. Let a (1) = A f  0) + b and 
a (2) ---- A f  (2) + b. The intuition of the proof is simple: if the 
algorithm could have increased f along a straight line from f 0 )  
t o f  (2), it would have done so. The fact that it did not means that 
increasing f r o m f  0) t o f  (z) must have required a change between C 
and NC. We show that this cannot happen because of the inherent 
convexity involved, contradicting the fact that C was repeated. 

Specifically, we have a} ~) ---- a} 2) = 0 for a l l / C  C and a} ~) > 0 

anda} 2) _> 0 f o r a l l i  C NC. Given C a n d N C ,  the vector f is 
increased in the direction A f  where A f i  = 0 for i E NC, A fd  = 1 
and Aai = 0 for i C C. However, the vector 

f~2) _ f o )  (27) 
Y -- f~2) _ ade(l) 

fulfills all the conditions for A f ,  since Yd = 1, Yi = 0 for i E NC, 
and the vector 

A(f(2) _ f ( I ) )  a(2) _ a O) 
Ay -- -- (28) 

s ? -  ') 2 ' -  ') 

has its ith component equal to zero for all i E C. Thus, when C was 
first encountered, A f  = y was chosen. If aa = 0 could have been 
achieved by increasingf in this direction, drive-to-zero would have 
terminated, and C would not have been repeated. This means that 
in increasing f r o m f  O) in the direction A f  = y, it was necessary to 
change C and NC prior to reaching f(2); that is for some value t in 
the range 0 < t < 1, either 

(Aft( ,)  + t(f(2) _ f ( l ) ) )  + b)j < 0 (29) 

for somej  E NC or 

(f( ' )  + t ( f  (2) - f ( ' ) ) ) j  < 0 (30) 

for somej  E C. However, since neither of the above two equations 
are satisfied when t = 0 or t = 1, and the equations involve only 

4If A is a symmetric PSD singular matrix, then there exist arbitrarily small 
perturbation matrices e such that A + c is symmetric positive definite (and 
hence nonsingular). 
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linear relations and inequalities, by convexity, neither of the two 
above equations are satisfied for any value 0 < t < 1. This 
contradicts the assumption that the same set C was encountered 
twice during a call of drive-to-zero. [] 

This theorem also extends to the algorithm for static friction in 
section 5. Namely, we claim that the index sets C, NC, CF, NC- 
and NC + are never repeated while driving a given force variable 
fNa or fra. The proof is exactly the same, the only difference being 
that extra conditions of the form AfFi = :kz#AfN i may be present. 
However, given that f 0) and f(2) satisfy these extra conditions, any 
vector f(1) +t(f(2) _ f 0 ) )  for0 < t < 1 will satisfy these properties 
as well. Again, this means that the algorithm should have gone 
directly from f 0 )  to f(2), contradicting the fact that the index sets 
were repeated. 

The last two theorems guarantee that the frictionless algorithm 
never takes steps of size zero, as long as the system is not degener- 
ate. A degenerate problem (not to be confused with A being singu- 
lar) is one that would require the algorithm to to make two or more 
changes in the index sets C and NC at exactly the same time (for 
example, if two normal forces decreased to zero simultaneously). 
When degeneracy occurs, it is possible that some number of size 
zero steps are taken. Cottle[5, section 4.2, pages 248-251] proves 
that the frictionless algorithm cannot loop due to degeneracy. 

Proving that a nondegenerate problem never takes steps of size 
zero is relatively straightforward. We need to show that whenever 
i ¢ C moves to NC, ai immediately increases. As a result, i cannot 
immediately move back to C without taking a step of nonzero size. 
Similarly, we need to show that whenever i G NC moves to C, fi 
immediately increases. 

THEOREM 4 In a nondegenerate problem, when an index i moves 
from C to NC, ai immediately increases. 

PROOF. Without loss of generality, let C = { 1,2,.. . ,  k - 1 } and 
let us assume that the kth contact has just moved from C to NC. 
When k was still in C, we computed z~xfi by solving the system 
AIIX = --Vl and setting Af i  = xi. Let All and x be partitioned 
by 

(. w)(u)(z) 
A l l x :  w r fl y : C : - - V I  (31) 

where B E R (k-1)x(k- l ) ,  u , w , z  C R k and y, fl, and c are scalars. 
This yields 

u = B - l ( z  - wy)  and w r u  = c - fly (32) 

or 
w r B - t ( z  - wy)  = c - fly. (33)  

Since this A f  caused fk to decrease to zero, Ark = y must have 
been negative. 

Once k moves into NC and we recompute Aff, we need to show 
the new Aa~ will be positive. Let 6 and S' denote the new values 
computed for u and y when we resolve for A f .  Since k is now in 
NC, we set Ark = ~ = 0, and solve 

Bfi + w~  = z (34) 

to obtain 
fi = B - I z .  (35)  

From equations (8) and (31), the new Aak is 

Aak : wrfi + fl.~ -- c = wTfi -- c. (36) 

Substituting from equations (35) and (33), we have 

Aak = wTB-Iz  -- c 

= - - w r B - l w y - -  fly (37) 

-- - - y ( w T B - I w + f i ) .  

Since All is positive definite, B - I  is positive definite, and fl is 
positive, so w r B - t w  + / 3  must be positive. Since y is negative, 
- y  is positive, and we conclude that Aak > 0. [] 

This theorem extends immediately to the case when A is singular, 
because the index sets C encountered never produce a singular 
submatrix All. 

THEOREM 5 In a nondegenerate problem, when an index i moves 
from NC to C, f i immediately increases. 

PROOF. The proof is constructed in the same way as the proof of 
the previous theorem. [] 
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Figure 1: Time-lapse simulation sequence ofa blockfeeder. 

33 



SIGGRAPH 94, Orlando, Florida, July 24-29, 1994 

I 

I 

34 

Figure 2: Time-lapse simulation sequence of a double-action jack. 


