
Point Clouds Can Be Represented as Implicit Surfaces for

Constraint-Based Haptic Rendering

Adam Leeper∗, Sonny Chan†, and Kenneth Salisbury†‡

∗Department of Mechanical Engineering, †Department of Computer Science, ‡Department of Surgery

Stanford University, Stanford, CA 94305

Email: {aleeper, sonnycs}@stanford.edu, jks@robotics.stanford.edu

Abstract— We present a constraint-based strategy for haptic
rendering of arbitrary point cloud data. With the recent
proliferation of low-cost range sensors, dense 3D point cloud
data is readily available at high update rates. Taking a cue from
the graphics literature, we propose that point data should be
represented as an implicit surface, which can be formulated
to be mathematically smooth and efficient for computing
interaction forces, and for which haptic constraint algorithms
are already well-known. This method is resistant to sensor noise,
makes no assumptions about surface connectivity or orientation,
and data pre-processing is fast enough for use with streaming
data. We compare the performance of two different implicit
representations and discuss our strategy for handling time-
varying point clouds from a depth camera. Applications of
haptic point cloud rendering to remote sensing, as in robot
telemanipulation, are also discussed.

I. INTRODUCTION

Haptic rendering of virtual or remote environments re-

quires representing objects in a form that can be processed

efficiently in the haptic rendering pipeline. In a virtual

environment it is common to use simple mathematical rep-

resentations such as potential fields, geometric primitives,

and triangle meshes to represent objects and constraints. In

a remote teleoperation situation, however, the environment

may not be known in advance and can only be measured

by sensors. The rise of widely-available, low-cost RGB-D

cameras promises to dramatically improve remote sensing

capabilities in robotics; our motivation for this work is to

facilitate exploration and remote teleoperation in dynamic

environments by finding a method to compute haptic inter-

action forces and constraints from 3D point data.

Sensors such as RGB-D cameras and laser scanners pro-

duce dense 3D point clouds (Figure 1). However, attempts

to fit point data into traditional structures (shape primitives

and polygon meshes) face significant limitations. Shape

primitives are of limited use for arbitrary objects. Sensor

noise reduces the effectiveness of mesh tesselation methods,

and mesh representations make strong assumptions about the

connectivity and topology of point data that are not suitable

for the general case of multiple sensors viewing a dynamic

scene with asynchronous data acquisition.

We propose that point data can be rendered directly as an

implicit surface, allowing us to adapt the rendering algorithm

described by Salisbury [10]. Pre-processing is minimized

because the implicit surface can be computed locally near

the haptic interaction point (HIP) at each servo cycle.

(a) (b)

Fig. 1. The algorithm presented in this paper works on arbitrary point
cloud data. Clouds collected by one or more sensors, such as the scene in
(a) viewed by an RGB-D camera, can be updated and rendered at interactive
rates. (b) Lower point densities are handled well by the algorithm. The haptic
interaction point is the dark sphere and the local constraint is the green disk.

We use two approaches for computing the implicit surface,

both of which are widely used in graphics but have seen little

use in haptic rendering. In one approach the points are used

to form a metaball surface (also known as a soft object [13]

or a convolution surface [2]). This method treats each point

as a representation of a probable obstacle, so it excels at

rendering thin objects and sparse clouds with poorly defined

outer surfaces. In the second approach, an implicit surface is

defined using the weighted average of nearby points, as in

[1]. It is to this definition we refer when we mention ‘point-

set surface’ in this work. This method is better suited to point

clouds that closely follow the surface of a closed object. For

both methods we argue that the clouds can be downsampled

significantly while retaining most of the necessary shape

information, facilitating fast updates from sensors.

The contributions of this work are:

• Application to haptic rendering of two implicit surface

representations of unorganized point data.

• Investigation of the qualities of these representations for

rendering of static and time-varying point sets.

II. RELATED WORK

Haptic interfaces provide a means for an operator to

interact with physically-remote or entirely virtual objects and

to feel the forces resulting from the interaction. The forces

displayed to the operator are governed by haptic rendering

algorithms. Constraint-based methods, such as the god-object

[14] or virtual proxy [8] algorithms, are the most preferred

for 3-DOF haptic rendering. In these methods the haptic

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 5000

device is typically represented by a virtual point or sphere,

and this point is constrained to the surface of the object

geometry when in contact. The force rendered to the user

is proportional to the difference between the virtual and

actual device positions. Unlike penalty-based methods, which

compute contact forces from object penetration distance,

constraint-based methods do not suffer from the problems of

popping through thin objects or an incorrect force summation

from overlapping objects. These algorithms were originally

developed to render polygonal mesh geometry, as this was

the most prevalent representation of virtual objects used for

visual rendering at the time.

The advent of RGB-D camera technology provides us

with a new kind of object representation to understand and

explore. A natural path to allowing haptic interaction with

RGB-D data is to tessellate the organized grid of depth

values in 3D to form a special kind of triangle mesh called

a terrain. This mesh can be rendered using the original

constraint-based methods, although the tight density of mesh

elements sometimes poses special problems in the simulation

of the proxy’s motion. Walker & Salisbury [11] developed the

proxy graph algorithm to address these problems and greatly

accelerated the simulation of the proxy’s motion over this

type of mesh structure. Cha et al. [3] proposed the use of this

algorithm specifically for haptic rendering of depth image

data and expanded the method to render surface properties,

such as friction, on the mesh.

A straightforward tessellation of the depth image points,

however, may not be the ideal representation of the geom-

etry of the scene. Aside from generating an abundance of

triangles, the tessellated mesh can suffer from a number of

problems when rendered with a constraint-based algorithm.

Firstly, the depth data is acquired through a physical sensor

whose measurements are subject to noise. A small depth

perturbation on a densely sampled surface that should be

smooth can cause a peak or valley to form on the tessellated

mesh, and we can see that it would be easy for the proxy

to catch momentarily on a peak or in a valley as it moves

over the triangles of the surface. Secondly, the sharp edges

of the triangular mesh elements can be perceived, especially

if a high-resolution haptic interface is used for rendering.

These edges are an artifact of the tessellation, and not a

feature on the object itself. Force shading [8] can mitigate

this problem, but cannot completely eliminate it because the

mesh geometry is unchanged.

El-Far et al. [4] proposed a method that allows direct

haptic interaction with the point cloud data without first

creating a tessellated mesh. The points are grown into

overlapping regular hexahedral regions for the purposes of

collision detection, and then the proxy moves from point

to point to minimize the distance to the device position.

In essence, their method approximates the original 3-DOF

constrained motion simulation over a discretized surface

formed by the point cloud. A drawback of this method is

that the descretization in the proxy motion may lead to

perceptible discontinuities in the rendered force.

A recent interest in point-based representations from the

graphics community has led to the development of a rigorous

theory on surfaces induced by point sets. Smooth, manifold

surfaces can be defined to approximate unorganized sets of

points, and computational tools were developed for various

operations on such surfaces. One often-used definition of a

surface is based on a moving least-squares (MLS) approxi-

mation of the points in a local, compact region of support [7].

However, evaluating or querying an MLS surface (e.g. testing

for containment or intersection) can be computationally

costly. Adamson & Alexa [1] presented another popular

scheme, wherein they used a weighted average of points from

a local region of support to derive functions which define a

local implicit surface and a local normal direction.

With this in mind, we discuss other works that look at

surface properties in a local region of a point cloud. Lee &

Kim [5] described a penalty-based method for rendering a

point set surface defined by an MLS approximation. They

used MLS projection, accelerating the surface queries with

a bounding volume hierarchy of swept-sphere volumes, to

determine the nearest point on the surface from the haptic

device position. The contact force is based on the computed

penetration distance.

Most recently, Ryden et. al. [9] achieved results similar

to ours using an iterative stepping algorithm for motion

of the proxy. Advantages of our implicit surface approach

are that surface effects such as friction can be applied [10]

and the algorithm is readily extensible to 6-DOF rendering

techniques. For example, the authors’ work in [6] uses

the surface representation described herein for a 6-DOF

telerobotic grasping application.

III. COMPUTING THE IMPLICIT SURFACE

This section explains the two methods for mathematical

formulation of the implicit surface from a set of points. Our

algorithm also relies on techniques to increase speed and

robustness to noise, which are discussed in section IV.

The implicit rendering algorithm in [10] requires the

ability to evaluate the magnitude and gradient of a 3D scalar

field, f(x, y, z) = 0. It uses this function to find a local

tangent plane constraint for the implicit surface; the haptic

proxy is constrained to always lie on or above this plane, and

the haptic force is computed by applying a virtual spring

between the proxy and the haptic interaction point (HIP).

The location of the tangent constraint and proxy are updated

as the HIP moves inside the surface. The primary advantage

of this algorithm is that it prevents pop-through, even if the

HIP has penetrated through an object into free-space.

We use two methods for creating a scalar field equation

from point data. As we describe below, the “metaball” ap-

proach treats each point as a piece of constructive geometry,

letting us render points that do not represent an oriented

surface. For example, a single line of points would render as

a blobby cylinder encasing the points. The “point-set surface”

approach approximates the local surface in a region of points,

requiring point sets that more closely resemble surfaces, but

producing an implicit surface that lies within rather than

around the points.

5001

Fig. 2. The radial basis functions used to weight the strength of each point
have the useful property that f(r > R) = 0, and f ′(0) = f ′(R) = 0.

In either case, we need a method to weight the contribution

from local points to the computation of the implicit surface.

For this purpose, we use a compactly supported radial

function as described below.

A. Point Weighting Using Radial Basis Functions

At each haptic update we estimate the local surface near

the haptic proxy. We assume that this can be estimated

from points in a small neighborhood, and we weight the

contribution from each point based on its distance to the

query location. A physically motivated function with infinite

support, such as an inverse-square, is generally avoided

because it is computationally expensive and does not allow

for efficient spatial partitioning. Instead, we use functions

with compact support, that is, they are non-zero only on the

range [0, R], where R is picked as described in section III-D.

We explored the soft-objects function C(r) described by

Wyvill [13] and the Wendland function ψ3,1(r) in [12],

referred to here as simply ψ(r).

C(r) = 1−
4

9
r6 +

17

9
r4 −

22

9
r2 (Wyvill) (1)

ψ(r) = (1− r)4(4r + 1) (Wendland) (2)

As shown in Figure 2, these functions have the useful

property that f(r > R) = 0, and f ′(0) = f ′(R) = 0. In

this way we are assured that moving incrementally closer

to new points will smoothly increase their weight and avoid

any sharp jumps in the calculation of the scalar field. In

the remainder of this paper we will use w(x) as a generic

reference to any weighting function at the position x.

B. Metaball Surface Representation

We motivate a metaball surface representation by assum-

ing that points in the cloud represent an occupied region

of space, with some probability function w(x). Regions in

space near many points will have a high probability of being

occupied, so we want to prevent movement through regions

wherein the probability exceeds some chosen threshold.

Formally, the haptic surface is an isosurface on probability;

the size of the isosurface depends on the maximum radius

R of the support function and the threshold value, T , as

illustrated in Figure 3.

The gradient of a single metaball at location pi is
x−pi

||x−pi||
wi(x), but we use the negative of this since, by con-

vention, the gradient of an implicit surface points outward.

R = 1.0 R = 1.4 R = 1.8

T=0.2

T=0.6

T=1.0

Fig. 3. A uniform line of points with the resultant metaball isosurface
is shown for various values of radius R and threshold T . A mid-value
threshold and a large radius provide the best smoothness at the cost of
reduced sensitivity to sharp, high-frequency features in the cloud. The dark
dots are points, the red region is the isosurface, and the light circles are the
finite radii of the weighting function for each point.

The net implicit function, f(x), and gradient, ∇f(x), are:

f(x) = T −
∑

i

wi(x) (3)

∇f(x) = −
∑

i

(

x− pi

||x− pi||
wi(x)

)

(4)

In the graphics literature this is frequently referred to as a

metaball equation, and is often used in fluid simulations or

other situations that call for smooth constructive geometry.

This smoothness is highly desirable for haptic rendering,

yet we note that the results can be somewhat wavy or

bumpy, depending on parameters and noise. We regard this

as a benefit for certain applications wherein the points are

relatively sparse and are used as constructive geometry.

However, if the point data are sampled from the surfaces of

objects and we know or can reliably compute the appropriate

surface normal, we use the representation described in the

following section.

C. Point-Set Surface Representation

Raytracing of point data has been well explored for pro-

ducing images, and we observe that the resulting equations

can be used for haptics as well. We choose to use the method

in [1] because it is simpler and more efficient than MLS.

For a given query location, x, we define the weighted

average a(x) of the point positions pi, and the weighted

average n(x) of the point normals.

a(x) =

(

∑

i

ωipi

)

/

(

∑

i

ωi

)

(5)

n(x) =

(

∑

i

ωini

)

/

(

||
∑

i

ωini||

)

(6)

Then the implicit equation and gradient are:

f(x) = n(x)T (x− a(x)) (7)

∇f(x) ≈ n(x) (8)

In words, f(x) tells us whether a given point in space lies

‘above’ or ‘below’ a(x) along the normal direction. This

method acts as a better low-pass filter than the metaball

approach, minimizing bumps in the rendered surface.

5002

D. Parameter Selection

Selection of the radius of influence R (and surface thresh-

old T for a metaball surface) has a strong influence on

the surface computation. While each cloud can benefit from

tweaking of the parameters by hand it is best to have an

automated way to calculate the parameters. We observe that

the value of R should be dependent on the density of the

cloud. We compute the average separation s between points

in the cloud, and R is set to be some multiple m of the

spacing, R = m·s. Small values of R tend to produce higher

frequency features in the rendered surface but can also leave

holes and result in pop-through. Large values of R undermine

the efficiency of any spatial partition structure and, for the

metaball surface, make a very “fat” surface around the points.

We discuss selection of the value of m in section V-A.

We can support clouds with non-uniform densities by

allowing the value of R to vary across points. Instead of

computing a global value of s and R, we can assign a value

of R to each point individually as a function of the average

distance to its nearest k neighbors (we used k = 3). For

rendering, we choose R of the point nearest to the proxy

as the radius for neighbor searches. We assume that cloud

density varies slowly, such that points in a neighborhood will

have roughly uniform support radii. Although in theory this

can produce minor geometric discontinuties as R jumps in

value from point to point, in practice this is imperceivable

because the basis function diminishes quickly near the outer

edges.

IV. METHODS FOR REAL-TIME RENDERING

The methods described above will work for a point cloud

of arbitrary size, but real-time performance is not feasible

if the cloud is too large. We note that stable rendering of

stiff surfaces is improved at high servo rates; the standard is

1kHz. In this section we describe key insights and methods

that allow us to render a reaslistic haptic interaction at high

rates and handle real-time updates to the environment.

A. Fast Collision Detection

An accelerated collision detection structure is essential

for rendering the large data sets encountered, as there is

insufficient time in a haptic rendering cycle to perform a

linear time collision search. Point data has the favorable

quality that it is easily partitioned using a kd-tree, which

nominally has O(log n) search time. Note that we use a kd-

tree because we want to avoid assumptions about the density

of the point data. That said, since we downsample the data

using a voxel grid filter (section IV-B) we could use a spatial

hash or octree instead. Points further than a distance R from

the proxy do not contribute to the surface computation at

that location, so we set our kd-tree search radius to R.

B. Downsampling the Cloud

A single 640 × 480 depth image contains over 300,000

points, and using multiple sensors or a history of depth

images could quickly give millions of points to process. We

(a) 1mm spacing (b) 4mm spacing

(c) 8mm spacing (d) 18mm spacing

Fig. 4. The algorithm adapts easily to any cloud density, so we down-
sample the cloud based on the desired frequency content to improve pre-
processing efficiency. The proxy is shown in black with the local tangent
constraint disk in green; the HIP is in light red.

argue that clipping and downsampling the cloud are effective

measures that do not impact the perception of the surfaces.

For clipping, consider that at any time step we need only

consider the cloud points near the haptic proxy. If we assume

a maximum velocity of the haptic tool and a given rate of

cloud updates then we can calculate a bounding volume for

the points that may be encountered before the next update.

All other points can be clipped from any pre-processing

steps, such as building the spatial partition structure.

For downsampling, we consider the spatial frequency con-

tent of the point cloud. As discussed previously, algorithms

that rely on tesselation of a depth image may be introducing

unwanted sharp edges into the haptic surface. Since we

know the cloud is derived from a sensor with noise it is

reasonable to assume that the desired signal (the surface)

has a significantly different bandwidth than the noise so that

a filter can be applied. In our case a spatial filter that reduces

frequency content while downsampling the cloud is highly

desireable as it can dramatically decrease the number of

points while also enforcing a measure of uniform spacing

in the cloud. For this purpose we use a voxel grid filter 1

with adjustable grid size, generally 2-5mm (see Figure 4).

C. Multiple Point Sources

One advantage of our rendering strategy is that it easily

handles overlapping views of the same region, such as

when the same scene is captured through multiple cameras.

Collision detection can be done in parallel. That is, the

nearby points from each source can be queried separately.

The union of these points can be used to calculate the implicit

surface equation with no modification to the algorithm.

We note that this case is not easily handled by previous

explicit surface methods. Tesselating a depth image is fast

1This filter partitions space into a uniform rectilinear grid and downsam-
ples a point cloud by replacing all points in a given cell with a single point
whose position is the average of those points.

5003

because the points are ordered. If two depth images overlap,

there is a dilemma. If the points are combined before tesse-

lation, they will no longer be ordered, making the operation

prohibitively slow. If the images are tesselated separately,

then collision detection and force rendering must be done

on two meshes that may weave in and out of each other.

D. Transparent Cloud Updates

Since the typical 1 kHz haptic update rate is much faster

than any other update rate in the system (e.g. 30 Hz camera),

it is important to consider how data will be updated in the

rendering pipeline. There are two main issues:

1) The sudden change in cloud composition tends to result

in force discontinuities, which feel like vibration.

2) Pre-processing cannot interfere with the haptic update.

The first problem is solved by storing and using N
point clouds for collision detection, essentially averaging the

surface location to minimize vibration effects due to noise.

We query the local neighbors from all point sources and

compute the surface from the union of these points. For

the metaball case, we avoid making the surface “fatter”

by dividing the weighting function by N . For the point-

set surface this is not needed, and the normals are not

jeopardized by the additional noise covariance from multiple

clouds if normal estimation is done per-cloud. We observe

that this solution is most appropriate for a quasi-static scene.

Future work will address a formulation that handles filtering

in time at the correct bandwidth.

For the second issue, the time between receiving a new

point cloud and when it is ready to use for rendering can vary

between 15ms to hundreds of milliseconds, depending on

the number of points. It is not acceptable to force the haptic

update loop to wait while the new cloud is prepared. To solve

this, we maintain N + 1 point clouds for each source, and

up to N of them are active at any time. This requires more

memory but is essential for fast updates. We prepare the new

cloud in a separate thread while haptic interaction continues

with the previous clouds. When the new data structure is

ready, the pointer to the new cloud is swapped in before the

start of the next haptic update.

V. RESULTS AND DISCUSSION

The proposed algorithm was implemented on an Intel PC

(Core i7-950 3.06GHz, 6 GB RAM) under Ubuntu Linux.

We used CHAI 3D (chai3d.org) to interface with a Phantom

Omni haptic device (sensable.com). All visualization was

done using the Rviz tool in ROS (ros.org). Our depth camera

was the Microsoft KinectTM using the OpenNI driver in ROS.

We profiled the speed of the costly parts of our cloud

pre-processing pipeline. The results are shown in Figure 5.

We observe that normal estimation is much more costly than

creating the spatial partition and estimating cloud parameters;

naturally, a multi-threaded or GPU-based normal estimation

strategy would help.

The two implicit surface representations have different

strengths. An advantage of the metaball surface representa-

tion is reduced pre-processing time since point normals are

points build kd-tree estimate normals find spacing

146,000 135ms 780ms 275ms

36,000 26ms 160ms 60ms

16,000 10ms 70ms 25ms

2,500 1.4ms 10ms 3.7ms

Fig. 5. Elapsed times for cloud pre-processing steps. The metaball method
does not require normal estimation, while the point-set surface requires all
three preprocessing steps.

(a) plane (b) box

(c) spherical shell (d) shell with high noise

Fig. 6. A variety of sythetic objects. The proxy is shown in yellow with
the local tangent constraint disk in green; the HIP is in blue.

not needed. The metaball representation also works better on

thin or sparse areas, such as the ear of the bunny in figure

4(d), as the point-set surface cannot handle cloud regions that

do not closely resemble a surface. Conversely, the point-set

surface is much smoother in cases where a surface is clearly

intended but masked by noise, such as figure 6(a,d).

A. Static Point Sets

We tested the algorithm on a variety of static synthetic

data sets (Figure 6), with and without noise. We also used

some ubiquitious high-density point sets from the literature,

such as the Stanford Bunny (Figure 4). We varied the density

of the point sets to find a heuristic for selecting parameters

for the implicit surface equation, namely, the value of R and

T . We found the following, where s is the average spacing

between points in the cloud and R = m · s:

• For a roughly regular, low-noise point surface, we could

select m ≈ 2.0 and T = 0.5.

• For noise amplitudes on the order of the nominal point

spacing, a smoother result was obtained for m ≈ 3.0 to

m ≈ 5.0 and T = 1.0.

B. Streaming RGB-D Camera Data

We tested the algorithm and our full system on a live

feed from a Microsoft Kinect RGB-D camera. For a quasi-

static scene (e.g. Figure 1) the interaction force was very

5004

(a) (b) (c)

Fig. 7. The tangential components (nx, ny) of the surface normal have high variability over time when using (a) the metaball surface, while (b) the
point-set surface is smoother over time. (c) Keeping a history of previous clouds dramatically improves the performance of the metaball algorithm.

stable in most regions; regions at the edge of an object were

susceptible to some vibration, but the effects were mitigated

by the averaging technique described in IV-D.

To evaluate the stability of the haptic isosurface over time,

we pointed the Kinect at a static, horizontal surface. To

simulate a robot exploring a remote environment, the Kinect

was angled down 27◦ from horizontal, and the test point was

70 cm from the Kinect. We pressed the haptic device into

the surface at the fixed test point and measured the height

and surface normal of the proxy over time. The isosurface

was computed using T = 0.5 and m = 2.5. The number of

clouds used for rendering varied from 1 to 4.

The results, shown in Figure 7, was that the stability

of the surface normal was quite different between the two

algorithms. The tangential components of the surface normal

have much higher variablity using the metaball surface

compared to the point-set surface when using only 1 cloud,

though using 4 clouds reduces this effect dramatically. While

slight changes in the ‘height’ of the surface over time are

mostly imperceptible, the changes in direction of the haptic

force can be rather unsettling when exploring the surface

with a light touch.

VI. CONCLUSIONS AND FUTURE WORK

The ability to haptically render point cloud data has utility

in multiple contexts such as enabling users to feel the shape

of remote, inaccessable, or other noisily defined objects. It is

also of value in remote manipulation contexts where operator

motions need to be constrained by surfaces that are visually

detected in realtime. We have presented an algorithm for

interaction with arbitrary point clouds, like those acquired

by one or more range scanners like an RGB-D camera.

We have demonstrated the applicability of implicit rendering

techniques to point data and described the advantages of two

methods for calculating a surface equation. We have also

demonstrated methods to improve efficiency and robustness

to noisy data.

A natural application area for this work is settings where

limited sensing results in noisy and incomplete environment

data. In parallel work we are using the algorithms from this

paper to enable 6-DOF interaction between a proxy object

(e.g. a robot gripper) and a point cloud acquired by a robot

in a remote manipulation scenario. We are also working

to formalize our approach to spatial and temporal filtering,

which will be the subject of future work.

ACKNOWLEDGMENTS

A. Leeper is supported in part by a National Science

Foundation GRFP Fellowship. S. Chan is supported in part

by a post-graduate scholarship from the National Science and

Engineering Research Council (NSERC) of Canada.

We thank Reuben Brewer and Günter Niemeyer for dis-

cussions to refine ideas and for helping with revisions.

REFERENCES

[1] A. Adamson and M. Alexa. Approximating and intersecting surfaces
from points. In Proceedings of the 2003 Symposium on Geometry

Processing, pages 230–239. Eurographics Association, 2003.
[2] J. Bloomenthal and K. Shoemake. Convolution surfaces. In Proceed-

ings of SIGGRAPH ’91, pages 251–256, New York, New York, USA,
1991. ACM Press.

[3] J. Cha, M. Eid, and A. El Saddik. DIBHR: Depth Image-Based Haptic
Rendering. Haptics: Perception, Devices and Scenarios, 2008.

[4] N. R. El-Far, N. D. Georganas, and A. El Saddick. An algorithm for
haptically rendering objects described by point clouds. In Canadian

Conference on Electrical and Computer Engineering, 2008.
[5] J.-K. Lee and Y. J. Kim. Haptic rendering of point set surfaces. World

Haptics Conference, 0:513–518, 2007.
[6] A. Leeper, S. Chan, and K. Hsiao. Constraint-Based Haptic Rendering

of Point Data for Teleoperated Robot Grasping. In Proceedings of

IEEE Haptics Symposium, 2012.
[7] D. Levin. The approximation power of moving least-squares. Mathe-

matics of Computation, 67(224):1517–1532, Oct. 1998.
[8] D. C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of

complex graphical environments. In SIGGRAPH ’97, pages 345–352,
1997.

[9] F. Ryden, S. Nia Kosari, and H. J. Chizeck. Proxy method for fast
haptic rendering from time varying point clouds. In Proceedings of

IROS, 2011, pages 2614–2619. IEEE, Sept. 2011.
[10] K. Salisbury and C. Tarr. Haptic Rendering of Surfaces Defined by

Implicit Functions. In Proceedings of 6th Annual ASME Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pages 61–67, Dallas, TX, 1997.

[11] S. P. Walker and J. K. Salisbury. Large haptic topographic maps.
ACM Press, New York, New York, USA, 2003.

[12] H. Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Advances in Computa-

tional Mathematics, 4(1):389–396, Dec. 1995.
[13] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures for soft

objects. The Visual Computer, 2(4):227–234, Aug. 1986.
[14] C. Zilles and J. Salisbury. A constraint-based god-object method for

haptic display. In Proceedings of IROS, 1995, pages 146–151. IEEE,
1995.

5005

